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Abstract

We present a new type of manifold called partially negative dimensional product manifold

(PNDP-manifold for short). In particular a PNDP-manifold is a special type of Einstein

sequential warped product manifold, where the base-manifold B is a Remannian (or

pseudo-Riemannian) product-manifold B = B1×B2 (where B1 is an Einstein-manifold),

and the fiber-manifold F is a derived smooth manifold (i.e., F is the Kuranishi neigh-

borhood (Rd, E, S), where E is the bundle of obstruction and S is a smooth section, so

it can admit a ”virtual” dimension which can also be negative).

From differential geometric point of view, this special type of Einstein sequential warped

product manifold allows to cover a wider variety of exact solutions of Einstein’s field

equation, without complicating the calculations much, compared to the Einstein warped-

product manifolds with Ricci-flat fiber (F ; g̈). From speculative point of view, consid-

ering the fiber as derived smooth manifold, the dimensions of a PNDP-manifold is not

related with the usual geometric concept of dimension (we consider them as ”virtual”

dimensions), and with a correct interpretation it is possible to consider a new type of

”hidden” dimensions that lead to many speculative/applicative aspects, such as in the

econophysical field, in the description of financial markets influenced by ghost fields

as dark volatility, but also in cosmological field introducing the concept of ”emerging

spaces”.
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1. Introduction

The concept of negative dimensional space is not new, in fact it is already used in

linguistic statistics [1] and also in supersymmetric theories in Quantum Field Theory,

[2].

Here is considered a special type of Einstein sequential warped product manifold, where

as a ”mathematical tool”, for the fiber-manifold (F ), it uses the derived geometry and

about this, let’s make a small consideration. If A→M and B →M are two transversal

submanifolds of codimension a and b respectively, then their intersection C is again a sub-

manifold, of codimension a+ b. Derived geometry, for example, explains how to remove

the transversality condition and make sense out of a nontransversal intersection C as a

derived smooth manifold of codimension a+ b. In particular dim(C) = dim(M)− a− b
and therefore the latter number can also be negative. In this way the obtained dimension

are not related to the usual geometrical concept of ”dimension”, but it can be considered

a ”virtual” dimension.

In this paper we will consider F as a derived smooth manifold of the Kuranishi neigh-

borhood type (Rd, E, S).

2. Preliminaries

Let’s start by providing a brief general introduction to warped product manifolds, a

type of manifold introduced by Bishop and O’Neill in [3], to construct a wide variety of

manifolds of negative curvature. For further insights into this classic topic we recom-

mend [3] and [4].

Let (B, gB) and (F, gF ) be two Riemannian manifolds and τ , σ be the projection of

B × F onto B and F , respectively.

Definition 2.1. The warped product M = B ×f F is the manifold B × F equipped with

the metric tensor g = τ ∗gB + f 2σ∗gF , where ∗ denotes the pullback and f is a positive

smooth function on B, the so-called warping function.

Explicitly, if X is tangent to B × F at (p, q) (where p is a point on B and q is a

point on F ), then:

〈X,X〉 = 〈dτ(X), dτ(X)〉+ f 2(p)(dσ(X), dσ(X)).(2.1)

B is called the base-manifold of M = B ×f F and F is the fiber-manifold; If f = 1,

then B ×f F reduces to a Riemannian product manifold. The leaves B × q = Σ−1(q)
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and the fibers p × F = τ−1(p) are Riemannian submanifolds of M . Vectors tangent to

leaves are called horizontal and those tangent to fibers are called vertical. H will be the

orthogonal projection of T(p,q)M onto its horizontal subspace T(p,q)(B × q) and V will be

the projection onto the vertical subspace T(p,q)(p× F ).

Lemma 2.1. If h ∈ F(B), where F(B) is the set of all smooth real-valued functions on

M , then the gradient of the lift h ◦ τ of h to M = B×f F is the lift to M of the gradient

of h on B.

Proof. If v is a vertical tangent vector to M , then 〈∇(h ◦ τ), v〉 = v(h ◦ τ) = dτ(v)h = 0,

since dτ(v) = 0. Thus ∇(h ◦ τ) is horizontal. If w is horizontal,

〈dτ(∇(h ◦ τ)), dτ(w)〉 = 〈∇(h ◦ τ), w〉 = w(h ◦ τ) = dτ(w)h = 〈∇h, dτ(w)〉,(2.2)

which implies that at each point, dτ(∇(h ◦ τ)) = ∇h. �

The following proposition is to define the Levi-Civita connection ∇ of M = B ×f F

related to those of B and F .

Proposition 2.1. On M = B ×f F , if X, Y ∈ L(B) and U, V ∈ L(F ), (where L(B) is

the set of all lifts on B to B × F and L(F ) is the set of all lifts on F to B × F ), then:

(a) ∇XY ∈ L(B) is the lift of ∇XY on B,

(b) ∇XU = ∇UX = (Xlnf)U ,

(c) nor(∇UV ) = η(U, V ) = − 〈U,V 〉
f
∇f , where η(U, V ) is the second fundamental form on

the fiber,

(d) tan(∇UV ) ∈ L(F ) is the lift of ∇̈UV on F , where ∇̈ is the Levi-Civita connection

of F .

Proof. The Koszul formula for 2〈∇XY, U〉 reduces to 〈U, [X, Y ]〉−U〈X, Y 〉 due to [X,U ] =

[Y, U ] = 0. Since X, Y are lift from B, then 〈X, Y 〉 is constant on fibers. Because U

is vertical, U〈X, Y 〉 = 0. But [X, Y ] is tangent to leaves, so 〈U, [X, Y ]〉 = 0. Thus

〈∇XY, U〉 = 0 for all U ∈ L(F ). This shows that ∇XY is horizontal and since τ |B×q is

an isometry, (a) is obtained.

From [X,U ] = 0, we find ∇XU = ∇UX. Since these vector fields are vertical, then

〈∇XU, Y 〉 = −〈U,∇XY 〉 = 0. All the terms in the Koszul formula for 2〈∇XU, V 〉 vanish

except X〈U, V 〉.
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So:

(e)2〈∇XU, V 〉 = X〈U, V 〉.(2.3)

By the definition of warped product metric, we find 〈U, V 〉(p,q) = f 2(p)〈Uq, Vq〉. After

writing f for f ◦τ , we have 〈U, V 〉 = f 2((U, V )◦σ) . Hence X〈U, V 〉 = X[f 2(U, V )◦σ)] =

2fX[f((U, V ) ◦ σ)] = 2(Xlnf)〈U, V 〉. Combing this with (e) gives property (b), and the

property (b) implies:

〈∇UV,X〉 = −〈V,∇UX〉 = −(Xlnf)〈U, V 〉.(2.4)

Thus, after applying Lemma 2.1, we find Xf = 〈∇f,X〉 on M as on B. Hence, for

any X, we obtain:

〈∇UV,X〉f = −〈U, V 〉〈∇f,X〉,(2.5)

which implies property (c).

Since U and V are tangent to all fibers, tan(∇UV ) is the fiber covariant derivative applied

to the restrictions of U and V to that fiber. Therefore, we have property (d). �

The next result provides the curvature ( ¯Riem) of a warped product M = B ×f F in

terms of its warping function f and the curvature tensors Riem and ¨Riem of B and F

respectively.

Proposition 2.2. Let M = B ×f F be a warped product of two (pseudo-)Riemannian

manifolds. If X, Y, Z ∈ L(B) and U, V,W ∈ L(F ), then:

(f) ¯Riem(X, Y )Z ∈ L(B) is the lift of Riem(X, Y )Z on B

(g) ¯Riem(X, V )Y = Hf (X,Y )
f

V ,

(h) ¯Riem(X, Y )V = ¯Riem(V,W )X = 0,

(i) ¯Riem(X, V )W = − 〈V,W 〉
f
∇X(∇f),

(j) ¯Riem(V,W )U = R̈iem(V,W )U + 〈∇f,∇f〉
f2 {〈V, U〉W − 〈W,U〉V },

where Hf is the Hessian of f .

Proof. The projection τ : M → B is isometric on each leaf, soRiem gives the Riemannian

curvature tensor of each leaf. Because leaves are totally geodesic in M , Riem agrees with

the curvature tensor ¯Riem of M on horizontal vectors. Thus we have (f).

Considering X, Y ∈ L(B) and V ∈ L(F ), we have [X, Y ] = 0 and Riem(X, V )Y =

∇X∇V Y −∇V∇XY .
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By Proposition 2.1

∇X∇V Y = ∇X(Y (lnf)V ) = (XY (lnf))V + (Y (lnf))∇XV =(2.6)

= {XY (lnf) + (Y f)Xf−1}V + (X(lnf))(Y (lnf))V =(2.7)

= (XY (lnf))V.(2.8)

Thus:

(k) ¯Riem(X, V )Y = (XY (lnf))V −∇V∇XY.(2.9)

But on the other hand, since ∇XY ∈ L(B), we obtain ∇V∇XY = (∇XY (lnf))V , and

combining this with (k) gives (g). Now to prove (h) assume that [V,W ] = 0,

∇V∇WX = (V X(lnf))W + (X(lnf))∇VW,(2.10)

but X(lnf) is coinstant on fibers, so V X(lnf) = 0. Thus

¯Riem(V,W )X = (X(lnf))(∇WV −∇VW ) = X(lnf)[W,V ] = 0.(2.11)

By the symmetry of curvature, 〈 ¯Riem(X, Y )V,W 〉 = 〈 ¯Riem(V,W )X, Y 〉 = 0.

From (f) 〈 ¯Riem(X, Y )V, Z〉 = −〈 ¯Riem(X, Y )Z, V 〉 = 0. These equations hold for all

W ∈ L(F ) and Z ∈ L(B), hence ¯Riem(X, Y )V = 0.

To prove (i) first we note that ¯Riem(X, V )W is horizontal, since

〈 ¯Riem(X, V )W,U〉 = 〈 ¯Riem(W,U)X, V 〉 = 0(2.12)

according to (h). Since ¯Riem(V,W )X = 0, it follows from first Bianchi identity

¯Riem(X, V )W = ¯Riem(X,W )V.(2.13)

But using (g):

〈 ¯Riem(X, V )W,Y 〉 = 〈 ¯Riem(V,X)Y,W 〉 = −H
f (X, Y )

f
〈V,W 〉 =(2.14)

−〈V,W 〉
f
〈∇X(∇f), Y 〉.(2.15)

Since ¯Riem(X, V )W is horizontal and the equation holds for all Y , we obtain (i).

For (j), we observe that ¯Riem(V,W )U is a vertical vector field since 〈 ¯Riem(V,W )U,X〉 =

−〈 ¯Riem(V,W )X,U〉 = 0 by (h). Because the projection σ : M → F is a homothety

on fibers, ¨Riem(v,W )U ∈ L(F ) is the application to V,W,U of the curvature tensor of

each fiber. Consequentely, ¨Riem(V,W )U and ¯Riem(V,W )U are related by the equation

of Gauss. Combining this with the fact that the shape tensor of the fibers is given by

η(V,W ) = − 〈V,W 〉
f
∇f , we obtain (j). �
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Definition 2.2. Let Riem be the Riemannian curvature tensor of M . The Ricci curva-

ture tensor Ric of M is the contraction C1
3(Riem) ∈ I0

2 (M) (where Irs (M) is the set of all

tensor fields on M), whose components relative to a coordinate system are Rij = ΣRm
ijm.

Because of the symmetries of Riem the only nonzero contractions of Riem are ±Ric.

Lemma 2.2. The Ricci curvature tensor Ric is symmetric, and is given relative to a

frame field by:

Ric(X, Y ) = Σmεm〈Riem(Y,X)Em, Em〉,(2.16)

where as usual εm = 〈Em, Em〉.

Proof. Ric(X, Y ) = (C1
3Riem)(X, Y ) = Σεm〈Em, Riem(X, Y )Em〉. Symmetry by pairs

then gives the required formula and shows that Ric is symmetric. �

If its Ricci tensor is identically zero, M is said to be Ricci flat; A flat manifold is

certainly Ricci flat.

Proposition 2.3. On a warped product M = B ×f F with d = dim(F ) > 1, let X, Y be

horizontal vectors and V,W vertical vectors. Then the Ricci tensor R̄ic of M satisfies:

(k) R̄ic(X, Y ) = Ric(X, Y )− d
f
Hf (X, Y ),

(l) R̄ic(X, V ) = 0,

(m) R̄ic(V,W ) = R̈ic(V,W )− 〈V,W 〉f ∗,
where f ∗ = ∆f

f
+ (d − 1) 〈∇f,∇f〉

f2 , Ric and R̈ic are the lifts of the Ricci curvature of B

and of F , respectively.

The proof is an exercise in tensor computation, just apply the Ricci formula in Lemma

2.2 to a frame field on M whose vector fields are in L(B) and L(F ).

Now it is possible to provide the classic definition of Einstein-warped product manifold

(for more details see eg [5]):

Definition 2.3. A warped product manifold (M, ḡ) = (B, g)×f (F, g̈), with metric tensor

ḡ = g + f 2g̈, is Einstein if only if:

(2.17) R̄ic = λḡ ⇐⇒


Ric− d

f
∇2f = λg

R̈ic = µg̈

f∆f + (d− 1)|∇f |2 + λf 2 = µ

where λ and µ are constants, d is the dimension of F , ∇2f , ∆f and ∇f are, respec-

tively, the Hessian, the Laplacian and the gradient of f for g, with f : (B) → R+ a

smooth positive function.
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Contracting first equation of (2.17) we get:

(2.18) Rf 2 − f∆fd = nf 2λ

where n and R is the dimension and the scalar curvature of B respectively, and from

third equation, considering d 6= 0 and d 6= 1, we have:

(2.19) f∆fd+ d(d− 1)|∇f |2 + λf 2d = µd.

3. Definition and construction of a PNDP-manifold

In the previous section a general introduction to the theory of warped product man-

ifolds was given. In this session we will deal with PNDP-manifolds, special types of

Einstein sequential warped product manifolds, introduced by A. Pigazzini et al. in [6],

whose base-manifold (B) is a Riemannian product with precise characteristics and whose

fiber-manifold (F ) is a derived smooth manifold that allows a concept of ”virtual” dimen-

sions. For more information about Kuranishi neighborhoods (derived smooth manifolds

and obstruction bundle) see [7].

Definition 3.1. We called PNDP-manifold a warped product manifold (M, ḡ) = (B, g)×f

(F, g̈) that satisfies (2.17), where the base-manifold (B, g) is a Riemannian (or pseudo-

Riemannian) product-manifold B = B1 × B2 with g = Σgi, where B2 is an Einstein

manifold (i.e., Ric2 = λg2 where λ is the same for (2.17) and g2 is the metric for B2),

with dim(B1) = n1, dim(B2) = n2, so dim(B) = n = n1 + n2. The warping function

f : B → R+ is f(x, y) = f1(x) + f2(y) (where each is a function on its individual man-

ifold, i.e., f1 : B1 → R+ and f2 : B2 → R+) and can also be a constant function. The

fiber-manifold (F, g̈) is a derived Riemann-flat manifold with negative ”virtual” integer

dimensions m, where with derived smooth manifold is considered a smooth Riemannian

flat manifolds by adding a vector bundle of obstructions. In particular we consider, for

F , only as Rd, with orthogonal Cartesian coordinates such that gij = −δij, by adding

a vector bundle of obstructions, E → Rd, with dimension m = d − rank(E), where

rank(E) = 2d. In fact, in this circumstance, if we consider a Kuranishi neighborhood

(Rd, E, S), with manifold Rd, obstruction bundle E → Rd, and section S : Rd → E, then

the dimension of the derived smooth manifold F is dim(Rd) − rank(E). Moreover in

the case n − d > 0 (i.e., positive ”virtual” dimension) we consider n1 = d = −m (the

”virtual” dimension of M , dim(M)V , which coincides with dim(B2)). In the specal case

where n − d > 0 with also B1 an Einstein-manifold with the same Einstein-λ, then we

consider only the case B1 = B2.



8

Important Note: Since F := (Rd, E, S), and on E (obstruction bundle) the

(pseudo-)Riemannian geometry does not work, each (pseudo-)Riemannian geometry op-

eration is performed and defined only on the underlying Rd, but is considered performed

and defined also on F (i.e., for example, we will say that the Ricci curvature of F

is zero because the Ricci curvature of Rd is zero). Being, therefore, that the usual

(pseudo-)Riemannian geometry works for the underlying smooth manifold (because it

is an ordinary manifolds), from now on it we will work with the (pseudo-)Riemannian

geometry on the derived fibers-manifold F , going to define all (pseudo-)Riemannian ge-

ometry operations not directly on F , but on Rd, but considering them made on F , paying

attention only to the dimension. Obviously for what has been said, the tangent space

and the vector fields are those of Rd. The scalar product with two arbitrary vector fields

g̈〈V,W 〉 is define on F as: gijv
iwj = −δijviwj = −(viwi).

The analysis does not differ from the usual Einstein sequential warped product man-

ifold analysis, (M1×hM2)×h̄M3, (see [8], [9]), where h = 1, M2 is an Einstein-manifold

and M3 is a derived-smooth-manifold with negative ”virtual” dimensions. The Riemann-

ian curvature tensor and the Ricci curvature tensor of the product Riemannian manifold

can be written respectively as the sum of the Riemannian curvature tensor and the Ricci

curvature tensor of each Riemannian manifold (see [10]).

Proposition 3.1. If we write the B-product as B = B1 ×B2, where:

i) Rici is the Ricci tensor of Bi referred to gi, where i = 1, 2,

ii) f(x, y) = f1(x) + f2(y), is the smooth warping function, where fi : Bi → R+,

iii) Hess(f) = Σiτ
∗
i Hessi(fi) is the Hessian referred on its individual metric, where τ ∗i

are the respective pullbacks, (and τ ∗2Hess2(f2) = 0 since B2 is Einstein),

iv) ∇f is the gradient (then |∇f |2 = Σi|∇ifi|2), and

v) ∆f = Σi∆ifi is the Laplacian, (from (iii) therefore also ∆2f2 = 0).

Then the Ricci curvature tensor will be:

(3.1)



R̄ic(Xi, Xj) = Ric1(Xi, Xj)− d
f
Hess1(f1)(Xi, Xj)

R̄ic(Yi, Yj) = Ric2(Yi, Yj)

R̄ic(Ui, Uj) = R̈ic(Ui, Uj)− g̈(Ui, Uj)f
∗

R̄ic(Xi, Yj) = 0

R̄ic(Xi, Uj) = 0,

R̄ic(Yi, Uj) = 0,
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where f ∗ = ∆1f1
f

+ (d− 1) |∇f |
2

f2 , and Xi, Xj, Yi, Yj, Ui, Uj are vector fields on B1, B2

and F , respectively.

Also in this case the proof is an exercise, just recompute Proposition 2.1 considering

the characteristics in Definition 3.1 of the base-manifold B = B1 ×B2 and of the warp-

ing function f(x, y) = (f1(x) + f2(y)). The Riemann curvature tensors will therefore be

redefined by considering the recomputation of Proposition 2.1 and then for Lemma 2.2

we will obtain the system (3.1).

Theorem 3.1. A warped product manifold with derived differential fiber-manifold F :=

(Rd, E, S), and dim(F ) a negative integer, is a PNDP-manifold, as defined in Definition

3.1, if and only if:

(3.2) R̄ic = λḡ ⇐⇒



Ric1 − d
f
τ ∗1∇2

1f1 = λg1

τ ∗2∇2
2f2 = 0

Ric2 = λg2

R̈ic = 0

f∆1f1 + (d− 1)|∇f |2 + λf 2 = 0,

(since Ric is the Ricci curvature of B, then Ric = Ric1+Ric2 = λ(g1+g2)+ d
f
τ ∗1∇2

1f1).

Therefore equations (2.18) and (2.19), for n− d = 0 and n− d < 0, become:

(3.3) R̄ = λn̄⇐⇒



R1f −∆1f1d = n1fλ

∆2f2 = 0

R2 = λn2

R̈ic = 0

f∆1f1 + (d− 1)|∇f |2 + λf 2 = 0.

where n1 and R1 are the dimension and the scalar curvature of B2 respectively, while for

n− d > 0, we must set d = n1. We have

(3.4) R̄ = λn̄⇐⇒



R1f −∆1f1n1 = n1fλ

∆2f2 = 0

R2 = λn2

R̈ic = 0

f∆1f1 + (n1 − 1)|∇f |2 + λf 2 = 0.
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Proof. We applied the condition that the warped product manifold of the system (3.1) in

Proposition 3.1 is Einstein. From this we obtain that for a PNDP-manifold the system

(2.17) becomes the system (3.2). �

We underline that from first equation of the systems, R1 cannot depend on points on

B2, so this imposes a condition on f .

Remark 3.1. In the particular case where d = 1 the systems (3.3) and (3.4) are to be

modified, in fact for d = 1 from system (3.2) we get:

(3.5) R̄ic = λḡ ⇐⇒



Ric1 − 1
f
τ ∗1∇2

1f1 = λg1

τ ∗2∇2
2f2 = 0

Ric2 = λg2

R̈ic = 0

f∆1f1 + λf 2 = 0,

from which system (3.3) becomes:

(3.6) R̄ = λn̄⇐⇒



R1f −∆1f1 = n1fλ

∆2f2 = 0

R2 = λn2

R̈ic = 0

f∆1f1 + λf 2 = 0.

and system (3.4) becomes:

(3.7) R̄ = λn̄⇐⇒



R1f −∆1f1 = fλ

∆2f2 = 0

R2 = λn2

R̈ic = 0

f∆1f1 + λf 2 = 0.

Recapitulating, the Derived-geometry is used to define the fiber-manifold and there-

fore admit the presence of negative ”virtual” dimensions. Since, from the point of view

of (pseudo-)Riemannian geometric operations, we consider the fiber-manifold F as Rd,

then the classical construction for the warped product manifold (see [4], [5] and [11]) is

the same; for example considering the vertical vector fields U , V , as lift of vector fields

of F , the development of the formulas remains the same. X, Y are lift from B, they

are horizontal and so constant on fibers, then for example V [X, Y ] = 0, and the inner

product between a vector field on B with one on F is zero (i.e., 〈X, V 〉 = 0).
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Practically, from the differential geometric point of view, a special type of Einstein se-

quential warped product manifold (M, ḡ) = (B1×B2, g1+g2)×f (Rd, g̈), is obtained, which

allows to cover a wider variety of exact solutions of Einstein’s field equation, without

complicating the calculations much, compared to the Einstein warped-product manifolds

with Ricci-flat fiber (F ; g̈), see also [12]. From the derived geometric point of view, the

outcome PNDP-manifold will be a manifold with ”virtual” dimension (n+(d−rank(E))).

PNDP-metric: Referring to a PNDP-manifolds, with negative ”virtual” dimensional

fiber, and for not confusing its metric with the metrics of a ”classic” Einstein warped

product manifold, the Riemannian or pseudo-Riemannian metric of the fiber-manifold

are denoted with the following notation to indicate that F has negative ”virtual” dimen-

sions: g̈ = Σ(dψi)2
(m), where m is the negative ”virtual” dimension of F .

So, the general metric form of a PNDP-manifold is:

ḡ = g − f 2(Σn
i=1(dψi)2)(m) = (g1 + g2) + (f1 + f2)2(Σn

i=1(dψi)2)(m).(3.8)

Example 3.1. Trivial Example - A type of flat PNDP-manifold with positive ”virtual”

dimension.

The manifold (R2×R2)×[(R2+E)] (with rank(E) = 4) is a (4−2)-PNDP-manifold Ricci-

flat. In fact it satisfies the system (3.4) for constant f = 1 (f1 and f2 both constants),

we have n + m = n − d = 4 − 2 = 2 > 0, where rank(E) = −4, so m = −2. Thus we

have to consider dim(B1) = dim(F ) and its metric will be: ds2 = dt2 +dx2 +dy2 +dz2−
(du2 + dv2)(−2).

4. Interpretation of ”virtual” dimensions

In this section we will deal with the interpretation of ”virtual” dimensions, in order

to show the speculative/applicative potential of PNDP-manifolds.

Since m is a ”virtual” negative dimension (m = −d), the dimension of the PNDP-

manifold (M, gM) will be virtual too (dim(M) = dim(B) + dim(F ) = dim(B) + m =

dim(B)−d, where we have dim(B) = dim(B1) +dim(B2), because B = B1×B2). Thus

dim(M) could be”virtual” positive, zero or negative. This means, from speculative point

of view, that the negative ”virtual” dimensions of F interact and ”virtually” cancel each

other with the positive dimensions of B.

For example, since R̄ic = λḡ, from the definition of PNDP-manifold (Definition 3.1) we

have that B2-manifold is also Einstein with the same λ-constant of the PNDP-manifold,

i.e., Ric2 = λg2, and when ”virtual” dim(M)V > 0, then (again for Definition 3.1),

dim(M)V = dim(B2); in this way from a speculative/applicative point of view, will be
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considered a special projection that acts as desuspension, such that it ”projects” M into

B2, which the latter has real dimensions, not virtual ones, and this is interpreted in

the following way: the manifold M ”emerges” as the manifold B2 (we remember that

both (M and B2) are Einstein, with the same λ-constant and in this case dim(M)V =

dim(B2)), the rest of M is hidden, and this is in favor of the interpretation that the

negative ”virtual” dimensions of F interact and cancel each other out with the positive

dimension of B1.

Considerations will also be made on dim(M)V = 0 and dim(M)V < 0. Below are the

three types of PNDP-manifolds considered:

Type I) the (n,−n)-PNDP manifold that has overall, zero ”virtual” dimension (dim(M) =

dim(B) + dim(F ) = (n + (−n)) = 0). The speculative result may be interpreted as an

”invisible” manifold, a ”point-like manifold” (zero-dimension) with ”hidden” dimensions,

Type II) the (n,−d)-PNDP manifold, where n (the dimension of the base-manifold

B) is different from d (with d a positive integer number that is the dimension of the

underlying manifold Rd of the fiber-manifold F ) such that dim = (n + (−d)) > 0. The

particular speculative feature of this manifold is that it appears as another Einstein-

manifold (i.e., B2 manifold), and

Type III) it is like the Type II, but dim = (n + (−d)) < 0. It has the speculative

feature of being considered, through special projection, like ||(n − d)||-th desuspension

of a point.

Definition 4.1. In general, given an n-dimensional space X, the suspension ΣX has

dimension n + 1. Thus, the operation of suspension creates a way of moving up in

dimension. The inverse operation Σ−1, is called desuspension. Therefore, given an n-

dimensional space X, the desuspension Σ−1X has dimension n− 1, (see [13]).

As mentioned above, since the interpretation wants that each negative ”virtual” di-

mension acts on a positive dimension canceling each other, we consider the relation

between the ”virtual” dimension of a PNDP-manifold and the usual geometric concept

of ”dimension”, as a desuspension interpreted by a special projection.

We have B = (B1×B2) and F := (Rd, E, S), then PNDP= B×fF = (B1×B2)×(f1+f2)F ,

with dim(B)− dim(Rd) = dim(PNDP) = (n− d), therefore:

Type I) if (n− d) = 0, (i.e., system solutions (3.3)), we have the projection:
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π(0) : PNDP→ point-like manifold,

Type II) if (n− d) > 0 (i.e. system solutions (3.4)) we have the projection:

π(>0) : PNDP→ B2,

Type III) if (n− d) < 0, (i.e., system solutions (3.3)), we have the projection:

π(<0) : PNDP→ Σn−d(p),

with Σn−d(p), the ||(n− d)||-th desuspension of a point.

Example 4.1. Speculative Example - Let (B1 × B2)×f F be a (8− 4)-PNDP-manifold

with f non-constant, and since n + m = n − d = 8 − 4 = 4 > 0, then (from Defintion

4) dim(B1) = −dim(F ), so dim(B1) = dim(R4). Therefore the PNDP-manifold will

satisfy the system (3.4) and B2 will be an Einstein-manifold, i.e., Ric2 = λg2, then we

will have:

π4 : (8 − 4)-PNDP → B2, where rank(E) = −8. Hence with this interpretation of

the ”virtual” dimensions, from speculative point of view, the (8 − 4)-PNDP manifold is

identified with the Einstein-manifold B2.

Example 4.2. Speculative Example - Let (B1 × B2)×f F be a (6− 6)-PNDP-manifold

with f non-constant, and since n + m = n − d = 6 − 6 = 0, then dim(B) = −dim(F ).

Therefore our PNDP-manifold will satisfy the system (3.3), and we will have:

π0 : (6− 6)− PNDP → point-like manifold (zero-dimension), where rank(E) = −12.

Example 4.3. Speculative Example - Let (B1 × B2)×f F be a (6− 8)-PNDP-manifold

with f non-constant, and since n + m = n − d = 6 − 8 = −2 < 0. Therefore our

PNDP-manifold will satisfy again the system (3.3), and we will have:

π−2 : (6− 8)− PNDP → Σ−2(p) (double desuspension of a point, i.e., −2-dimensional

manifold), where rank(E) = −16.

Example 4.4. Speculative Example using Trivial Example - Considering the manifold

of the Trivial Example, where we have the special case B1 = B2, that is R2, the desuspen-

sion/projection will be: π2 : (R2×R2)×(R2+E)→ R2, i.e., we identify the (4−2)-PNDP

manifold with R2.

5. Possible Multi-Disciplinary Applications

Since the dimensions of a PNDP-manifold is not related with the usual geometric

concept of dimension (we consider them as ”virtual” dimensions), from a speculative

point of view a PNDP-manifold can consider a concept of virtual dimensions referring

to how things are observed. In fact, having chosen a manifold and defining a certain
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Figure 1. The figure represents the Trivial Example according to the spec-
ulative approach to ”virtual” dimensions described in the chapter. The
PNDP-maifold is (R2×R2)× [(R2 +E)] (where the base-manifld is repre-
sented in the figure as a tesseratto) with rank(E) = −4, and following the
approach about the interaction between dimensions (in which the negative
”virtual” dimensions of F interact canceling/hiding with the dimensions
of B1), the manifold resulting from the projection will be R2.

algebra on it, the manifold in respect to that algebra will admit a dimension that we call

”virtual”, because if we don’t look at that algebra, but we look only at the underlying

manifold, the value of its dimension will be different. So, in a PNDP-manifold, depending

on what we consider, we get different dimensional results. So, from speculative point

of view we want suggest that nature manifest itself in a certain way not necessarily

as we observe it. In this respect, PNDP-manifold could be used as a tool to reveal

the ”emergent” dimensional aspect of nature, i.e., the ”emergent space”, and with a

correct interpretation it is possible to consider a new type of ”hidden” dimensions. In

this perspective, the PNPD-manifold, that we have described in detail in the previous

sections (sections 3 and 4), can be considered in many types of applications, as it was

done in [14], [15] and [16], where the authors considered speculatively the string theory,

D-branes and the discrete gravity theory.

This new point of view, starts from the assumption that some dimensions of space-

time, by their intrinsic nature or by some initial situation, behave in such a way as

to be able to mathematically describe them as ”virtual” negative and this, within the

configuration, implies interactions with the other dimensions that are present. In fact,

the space could be a secondary property created by other more fundamental forces, and

in that sense, dimensions could also vanish, because, for example, non-gravitational ex-

tra dimensions can be dynamically generated by fundamentally four-dimensional gauge
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Figure 2. A 2 − 1- PNDP is shown,.e. (I1 × I2) × (I3 + E). From
the interaction between the positive and virtual negative dimensions, a line
interval emerges, topologically equivalent to a string.

theories. The negative ”virtual” dimension therefore corresponds to a possible mathe-

matical description of a dimension in which one type of particular fundamental forces

allow other dimensions to ”emerge”.
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