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1. Introduction
Mathematical modeling of processes with discontinuity effects has
necessitated the need to develop the theory of differential equations
with discontinuities. An important class of such equations is
comprised of differential equations with piecewise constant
argument (DEPCA). The study of DEPCA was initiated by
Busenberg, Cooke, Shah, and Wiener 1, 2, 3.

1Busenberg S., Cooke K.L. Models of vertically transmitted diseases with
sequential-continuous dynamics, in "Nonlinear Phenomena in Mathematical
Sciences"(V. Lakshmikantham, Ed.), pp. 179-187, Academic Press, NY, 1982.,

2Shah S. M., Wiener J. Advanced differential equations with piecewise
constant argument deviations, Intern. J. Math. and Math. Sciences, 6 (1983),
671-703.,

3Cooke K.L., Wiener J. Retarded differential equations with piecewise
constant delays, J. Math. Anal. Appl., 99 (1984), 265-297.
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The questions of the existence and uniqueness of solutions to
DEPCA, their oscillations and stability, integral manifolds and
periodic solutions have been extensively discussed by many authors
(see References).
When modeling with DEPCA, the deviation of the argument, taken
as the greatest integer function, is always constant and equal to
one. But this approach can contradict real phenomena. The
generalization of DEPCA has been undertaken by Akhmet 4, 5, 6, 7.

4Akhmet M.U. Integral manifolds of differential equations with piecewise
constant argument of generalized type, Nonl. Anal., 66 (2007), 367-383.,

5Akhmet M.U. Almost periodic solutions of differential equations with
piecewise constant argument of generalized type, J. Math. Anal. Appl., 336
(2007), 646-663.,

6Akhmet M.U. Almost periodic solutions of differential equations with
piecewise constant argument of generalized type, Nonl. Anal.: Hybrid Systems
and Appl., 2 (2008), 456-467.,

7Akhmet M.U. Stability of differential equations with piecewise constant
argument of generalized type, Nonl. Anal.: Theory, Methods and Appl., 68
(2008), 794-803.
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In his works the greatest integer function as deviating argument
was replaced by an arbitrary piecewise constant function. Thus,
differential equations with piecewise constant argument of
generalized type (DEPCAG) are more suitable for modeling and
solving various application problems, including areas of neural
networks, discontinuous dynamical systems, hybrid systems, etc. To
date, the theory of DEPCAG on the entire axis has been developed
and their applications have been implemented. The results have
been extended to periodic impulse systems of DEPCAG (see
References).
Along with the study of various properties of DEPCA, a number of
authors investigated the questions of solvability and construction of
solutions to boundary value problems for these equations on a finite
interval (see References).
For DEPCAG, however, the questions of solvability of boundary
value problems on a finite interval still remain open.
This issue can be resolved by developing constructive methods.
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2. Statement of problem
On [0, T ], we consider the following two-point boundary value
problem for a system of DEPCAG:

dx

dt
= A(t)x + A0(t)x(γ(t)) + f(t), x ∈ Rn, t ∈ (0,T),

(1)

Bx(0) + Cx(T) = d, d ∈ Rn. (2)

Here x(t) = col(x1(t),x2(t), ...,xn(t)) is the unknown function,
(n× n) matrices A(t), A0(t) and n-vector f(t) are continuous on
[0,T];

γ(t) = ζj if t ∈ [θj, θj+1), j = 0,N− 1;
θj ≤ ζj ≤ θj+1 for all j = 0,1, . . . ,N− 1;
0 = θ0 < θ1 < . . . < θN−1 < θN = T;

B and C are constant (n×n) matrices, and d is constant vector.
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A function x∗(t) : [0,T]→ Rn is a solution to problem (1), (2) if:

(i) x∗(t) is continuous on [0,T];

(ii) x∗(t) is differentiable on [0,T] with the possible exception of
the points θj, j = 0,N− 1, at which the one-sided derivatives exist;

(iii) x∗(t) satisfies the system of equations (1) on each interval
(θj, θj+1), j = 0,N− 1; at the points θj, j = 0,N− 1, system (1)
is satisfied by the right-hand derivative of x∗(t);

(iv) x∗(t) satisfies the boundary condition (2) at t = 0 and t = T.

The aim of report is to develop a constructive method for
investigation and solving the boundary value problem (1), (2), as
well as to construct algorithms for finding approximate solutions to
the problem.
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To this end, we use the parametrization method 8 and a new
approach to the concept of the general solution.
This approach was originally introduced for linear Fredholm IDEs 9

and then applied to families of loaded DEs 10 and to ODEs 11

8Dzhumabaev D.S. On one approach to solve the linear boundary value
problems for Fredholm integro-differential equations, J. Comput. Appl. Math.,
294 (2016), 342-357.

9Dzhumabaev D.S. New general solutions to linear Fredholm
integro-differential equations and their applications on solving the BVPs, J.
Comput. Appl. Math., 327 (2018), 79-108.

10Dzhumabaev D.S. Well-posedness of nonlocal boundary-value problem for
a system of loaded hyperbolic equations and an algorithm for finding its
solution, J. Math. Anal. Appl., 461 (2018), 817-836.

11Dzhumabaev D.S. New general solutions of ordinary differential equations
and the methods for the solution of boundary - value problems, Ukranian Math.
J., 71 (2019), 1006-1031.
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3. Scheme of the method
Let ∆N denote the partition of the interval [0,T) by points

t = θr, r = 1,N− 1: [0,T) =

N⋃
r=1

[θr−1, θr).

We define the following spaces:
C([0,T],Rn) is the space of continuous functions x : [0,T]→ Rn

with the norm

‖x‖1 = max
t∈[0,T]

||x(t)|| = max
t∈[0,T]

max
i=1,n

|xi(t)|;

C([0,T],∆N,RnN) is the space of functions systems
x[t] = (x1(t),x2(t), . . . ,xN(t)), where xr : [θr−1, θr)→ Rn are
continuous functions that have finite left-hand limits lim

t→θr−0
xr(t)

for all r = 1,N, with the norm

‖x[·]‖2 = max
r=1,N

sup
t∈[θr−1,θr)

|xr(t)|.
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Let xr(t) denote the restriction of the function x(t) to the rth
subinterval [θr−1, θr), i.e.

xr(t) = x(t) for t ∈ [θr−1, θr), r = 1,N.

Then the system x[t] = (x1(t),x2(t), . . . ,xN(t)) belongs to the
space C([0,T],∆N,RnN), and its elements xr(t), r = 1,N,
satisfy the following system of DEPCAG

dxr

dt
= A(t)xr(t) + A0(t)xr(ζr−1) + f(t), (3)

t ∈ [θr−1, θr), r = 1,N.

Here we take into account that
γ(t) = ζj if t ∈ [θj, θj+1), j = 0,N− 1.
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We introduce parameters λr = xr(ζr−1), r = 1,N. By making the
substitution

zr(t) = xr(t)− λr on each subinterval [θr−1, θr),
we get the system of differential equations with parameters

dzr
dt

= A(t)(zr(t) + λr) + A0(t)λr + f(t), (4)

t ∈ [θr−1, θr), r = 1,N,
subject to the initial conditions

zr(ζr−1) = 0, r = 1,N. (5)

Thus we obtain the Cauchy problems (4), (5) for systems of ODEs
with parameters on the subintervals [θr−1, θr), r = 1,N.
For fixed λr ∈ Rn and r, the Cauchy problem (4), (5) has a unique
solution zr(t, λr), and the system
z[t, λ] = (z1(t, λ1), . . . , zN(t, λN)) belongs to
C([0,T],∆N,RnN).
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A system of functions
z[t, λ] = (z1(t, λ1), . . . , zN(t, λN))

is called a solution to the Cauchy problems with parameters (4),
(5).
If the system of functions x̃[t] = (x̃1(t), x̃2(t), ..., x̃N(t)) belongs
to C([0,T],∆N,RnN), and the functions x̃r(t), r = 1, N, satisfy
equations (3), then the system of functions

z[t, λ̃] = (z1(t, λ̃1), z2(t, λ̃2), . . . , zN(t, λ̃N)) with elements
zr(t, λ̃r) = x̃r(t)− λ̃r, λ̃r = x̃r(ζr−1), r = 1,N,
is a solution to the Cauchy problem with parameters (4), (5) with
λr = λ̃r.

Conversely, if a system of functions
z[t, λ∗] = (z1(t, λ∗1), z2(t, λ∗2), . . . , zN(t, λ∗N))

is a solution to problem (4), (5) with λr = λ∗r, r = 1,N, then
system of functions x∗[t] = (x∗1(t),x∗2(t), . . . ,x∗N(t)) with
x∗r(t) = λ∗r + zr(t, λ

∗
r), r = 1,N, belongs to C([0,T],∆N,RnN)

and the functions x∗r(t), r = 1,N, satisfy equations (3).
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4. The concept of new general solution to system (1)
We use the new concept of the general solution proposed in 9 to
introduce the new general solution to the system of DEPCAG (1).

Definition 1.

Let z[t, λ] = (z1(t, λ1), z2(t, λ2), . . . , zN(t, λN)) be a solution of
the Cauchy problem (4),(5) with parameters
λ = (λ1, λ2, ..., λN) ∈ RnN. Then the function x(∆N, t, λ),
defined by the equalities
x(∆N, t, λ) = λr + zr(t, λr) for t ∈ [θr−1, θr], r = 1,N, and
x(∆N,T, λ) = λN + lim

t→T−0
zN(t, λN),

is called the ∆N-general solution to the system of DEPCAG (1).

It follows from Definition 1 that the ∆N-general solution depends
on N arbitrary vectors λr ∈ Rn and satisfies the system of
DEPCAG (1) for all t ∈ (0,T)\{θp,p = 1,N− 1}.
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Let Xr(t) be a fundamental matrix of the system of ODEs

dzr
dt

= A(t)zr(t), t ∈ [θr−1, θr], r = 1,N.

Hence, the solutions to the Cauchy problems with parameters
(4),(5) can be represented as

zr(t) = Xr(t)

t∫
ζr−1

X−1r (τ)[A(τ) + A0(τ)]dτλr+

+Xr(t)

t∫
ζr−1

X−1r (τ)f(τ)dτ,

t ∈ [θr−1, θr], r = 1,N.
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We consider the Cauchy problems on the partition subintervals

dx

dt
= A(t)x + P(t), x(ζr−1) = 0, t ∈ [θr−1, θr], (6)

r = 1,N,
where P(t) is a square matrix of order n or an n-dimensional
vector, continuous on [0,T], θr−1 ≤ ζr−1 ≤ θr for all
r = 1,2, . . . ,N.
Let Ar(P, t) denote the unique solution of the Cauchy problem (6)
on each rth subinterval. It follows from the unique solvability of the
Cauchy problem for linear ODEs that

Ar(P, t) = Xr(t)

t∫
ζr−1

X−1r (τ)P(τ)dτ, t ∈ [θr−1, θr],

r = 1,N.
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We can now represent the ∆N-general solution of system of
DEPCAG (1) in the form

x(∆N, t, λ) = λr + Ap(A + A0, t)λr + Ap(f , t), (7)

t ∈ [θr−1, θr], r = 1,N− 1,

x(∆N, t, λ) = λN + AN(A + A0, t)λN + AN(f , t), (8)

t ∈ [θN−1, θN].

The following statement justifies the fact that the function
x(∆N, t, λ) can be considered as the general solution of system
(1).
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Theorem 1.

Let x̃(t) be a pointwise continuous on [0,T] function with possible
discontinuity points t = θp, p = 1,N− 1,
and let x(∆N, t, λ) be the ∆N-general solution of the system of
DEPCAG (1).
Suppose that the function x̃(t) has a continuous derivative and
satisfies equation (1) for all t ∈ (0,T)\{θp,p = 1,N− 1}.
Then there exists a unique λ̃ = (λ̃1, λ̃2, ..., λ̃N) ∈ RnN such that
the equality

x(∆N, t, λ̃) = x̃(t) holds for all t ∈ [0,T].
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Lemma 1.

Let x∗(t) be a solution to the system of DEPCAG (1),
and let x(∆N, t, λ) be the ∆N-general solution to equation (1).
Then there exists a unique λ∗ = (λ∗1, . . . , λ

∗
N) ∈ RnN such that

x(∆N, t, λ
∗) = x∗(t) for all t ∈ [0,T].

If x(t) is a solution to system (1) and
x[t] = (x1(t),x2(t), . . . ,xN(t)) is the system of functions
composed of its restrictions to the subintervals [θr−1, θr], r = 1,N,
then the following equalities hold:

lim
t→θp−0

xp(t) = xp+1(θp), p = 1,N− 1. (9)

These equations express the conditions for the continuity of the
solution to system (1) at the interior points of the partition ∆N.
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Theorem 2.

Let a system of functions x[t] = (x1(t),x2(t), . . . ,xN(t)) belong
to the space C([0,T],∆N,RnN).

Suppose that the functions xr(t), r = 1,N, satisfy the systems of
equations (3) and the continuity conditions (9).
Then the function x∗(t), defined by the equalities

x∗(t) = xr(t), t ∈ [θr−1, θr), r = 1,N,

and
x∗(T) = lim

t→T−0
xN(t),

is continuous on [0,T], continuously differentiable on (0,T) and
satisfies the system of DEPCAG (1).
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5. Solvability of problem (1), (2)
The introduction of the ∆N-general solution allows one to reduce
the solvability of the boundary value problem under consideration
to that of a system of linear algebraic equations in arbitrary vectors
λr ∈ Rn, r = 1,N.
By substituting the expressions (7), (8) of the ∆N-general solution
into the boundary condition (2) and the continuity conditions (9),
we obtain the system of linear algebraic equations

Bλ1 + BA1(A + A0, θ0)λ1 + CλN + CAN(A + A0,T)λN =

= d−BA1(f , θ0)−CAN(f ,T), (10)

λp + Ap(A, θp)λp − λp+1 −Ap+1(A + A0, θp)λp+1 =

= −Ap(f , θp) + Ap+1(f , θp), p = 1,N− 1. (11)
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Let Q∗(∆N) denote the square matrix of order nN composed of
coefficients of λr, r = 1,N. We can now rewrite system (10), (11)
in the form

Q∗(∆N)λ = −F∗(∆N), λ ∈ RnN, (12)

where
F∗(∆N) =

(
−d + BA1(f , θ0) + CAN(f ,T),

A1(f , θ1)−A2(f , θ1),A2(f , θ2)−A3(f , θ2),

. . . ,AN−1(f , θN−1)−AN(f , θN−1)
)
∈ RnN.

Theorems 1 and 2 imply that for any partition ∆N the following
statement holds true.
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Lemma 2.

If x∗(t) is a solution to problem (1), (2), and
λ∗r = x∗(ζr−1), r = 1,N,
then the vector λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
N) ∈ RnN is a solution to

system (12).
Conversely, if λ̃ = (λ̃1, . . . , λ̃N) ∈ RnN is a solution to (12) and
z[t, λ̃] = (z1(t, λ̃1), . . . , zN(t, λ̃N)) is the solution to the Cauchy
problem (4), (5) with λ̃ ∈ RnN,
then the function x̃(t) defined by the equalities

x̃(t) = λ̃r + zr(t, λ̃r), t ∈ [θr−1, θr), r = 1,N,
and

x̃(T) = λ̃N + lim
t→T−0

zN(t, λ̃N),

is the solution to problem (1), (2).
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Definition 2.

The boundary value problem (1), (2) is called uniquely solvable if it
has a unique solution for any pair (f(t),d) with
f(t) ∈ C([0,T],Rn) and d ∈ Rn.

Lemma 2 and well-known theorems of linear algebra imply the
following statements.
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Theorem 3.

The boundary value problem (1), (2) has a solution if and only if
the vector F∗(∆N) is orthogonal to the kernel of the transposed
matrix (Q∗(∆N))

′
, i.e. the equality

(F∗(∆N), η) = 0

holds for all η ∈ Ker(Q∗(∆N))
′
, where (·, ·) is the dot product in

RnN.

Theorem 4.

The boundary value problem (1), (2) is uniquely solvable if and
only if the matrix Q∗(∆N) is invertible.
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6. Algorithm for finding solution of problem (1), (2)

Based on the results obtained in Section 5, we propose Algorithm
A for solving the linear boundary value problem (1), (2).

Step 1 On the partition subintervals [θr−1, θr], r = 1,N, solve the
Cauchy problems

dz

dt
= A(t)z + A(t) + A0(t), z(ζr−1) = 0,

and

dz

dt
= A(t)z + f(t), z(ζr−1) = 0,

to find the functions Ar(A + A0, θr) and Ar(f , θr),
respectively.
Here ζr−1 ∈ [θr−1, θr], r = 1,N.
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Step 2 Construct the system of linear algebraic equations (12)
using the matrices and vectors found in Step 1.

Step 3 Find the solution λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
N) ∈ RnN to the

system constructed in Step 2.
Note that the components of λ∗ are the values of the solution
to problem (1), (2) at the points ζr−1 of the partition
subintervals: λ∗r = x∗(ζr−1), r = 1,N.

Step 4 Find the values of the solution x∗(t) at the remaining
points of the subintervals by solving the Cauchy problems

dz

dt
= A(t)z + f(t), z(ζr−1) = λ∗r, t ∈ [θr−1, θr).

The accuracy of the proposed algorithm depends on that of
calculating the coefficients and right-hand parts of system (12).
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7. Two-point boundary value problem for second order DEPCAG
Particular attention was paid to periodic, two-point and multipoint
BVPs for second order DEPCA due to their wide application in
natural sciences and engineering (see References).

On [0,T] consider two-point BVP for second order DEPCAG

ü = a1(t)u̇(t) + a2(t)u(t)+

+a3(t)u̇(γ(t)) + a4(t)u(γ(t)) + f(t), (13)

b11u̇(0) + b21u(0) + c11u̇(T) + c21u(T) = d1, (14)

b12u̇(0) + b22u(0) + c12u̇(T) + c22u(T) = d2, (15)

where u(t) is unknown function,

the functions ai(t), i = 1,4 and f(t) are continuous on [0,T];
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γ(t) = ζj if t ∈ [θj, θj+1), j = 0,N− 1;

θj ≤ ζj ≤ θj+1 for all j = 0,1, ...,N− 1;

0 = θ0 < θ1 < ... < θN−1 < θN = T,

bsp, csp and ds are constants, where s,p = 1,2.

A function u(t) is a solution to problem (13)-(15) if:
(i) u(t) is continuously differentiable on [0,T];
(ii) the second derivative ü(t) exists at each point t ∈ [0,T] with
the possible exception of the points θj, j = 0,N− 1, where the
one-sided derivatives exist;
(iii) equation (13) is satisfied for u(t) on each interval (θj, θj+1),
j = 0,N− 1, and it holds for the right second derivative of u(t) at
the points θj, j = 0,N− 1;
(iv) boundary conditions (14), (15) are satisfied for u(t) and u̇(t)
at the points t = 0, t = T.

Anar Assanova Institute of Mathematics and Mathematical Modeling anartasan@gmail.comA BOUNDARY VALUE PROBLEM FOR SYSTEM OF DIFFERENTIAL EQUATIONS WITH PIECEWISE-CONSTANT ARGUMENT OF GENERALIZED TYPE [0.2cm] 8th EUROPEAN CONGRESS OF MATHEMATICS [0.2cm] 20 - 26 June 2021, Portorož, Slovenia [0.2cm] Differential equations, dynamical systems and applications (MS - ID 52)



We can reduce the two-point boundary value problem for second
order DEPCAG (13)–(15) to a problem for system of two DEPCAG.

For this we introduce a new functions x(1)(t) = u(t),
x(2)(t) = u̇(t), and rewrite of problem (13)–(15) in the form:

ẋ = A(t)x(t) + A0(t)x(γ(t)) + g(t), (16)

Bx(0) + Cx(T) = d. (17)

where x(t) = col(x(1)(t),x(2)(t)) is unknown vector function,

A(t) =

(
0 1

a2(t) a1(t)

)
, A0(t) =

(
0 0

a4(t) a3(t)

)
,

B =

(
b21 b11
b22 b12

)
, C =

(
c21 c11
c22 c12

)
,

g(t) =

(
0
f(t)

)
, d =

(
d1
d2

)
.
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A vector function x(t) = col(x(1)(t),x(2)(t)) is a solution to
problem (16), (17) if:

(i) x(t) is continuous on [0,T];

(ii) the derivative ẋ(t) exists at each point t ∈ [0,T] with the
possible exception of the points θj, j = 0,N− 1, where the
one-sided derivatives exist;

(iii) equation (16) is satisfied for x(t) on each interval (θj, θj+1),
j = 0,N− 1, and it holds for the right derivative of x(t) at the
points θj, j = 0,N− 1;

(iv) boundary condition (17) is satisfied for x(t) at the points
t = 0, t = T.

For problem (16), (17) we can apply the results in Sections 5 and 6.
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Now, we establish solvability conditions of problem (13)–(15) in the
terms of initial data. We apply parametrization method to problem
(13)–(15).
Let ur(t) denote the restriction of the function u(t) to the rth
subinterval [θr−1, θr), i.e.

ur(t) = u(t) for t ∈ [θr−1, θr), r = 1,N.

We also have that u̇r(t) is the restriction of the function u̇(t) to
the rth subinterval [θr−1, θr), and

u̇r(t) = u̇(t) for t ∈ [θr−1, θr), r = 1,N.
Then the system u[t] = (u1(t),u2(t), . . . ,uN(t)) belongs to the
space C([0,T],∆N,RN), and its elements ur(t), r = 1,N, satisfy
the following second order DEPCAG

ür = a1(t)u̇r(t) + a2(t)ur(t) + a3(t)u̇r(ζr−1)+

+a4(t)ur(ζr−1) + f(t), t ∈ [θr−1, θr), r = 1,N. (18)
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Conditions (14) and (15) have the form

b11u̇1(0)+b21u1(0)+c11 lim
t→T−0

u̇N(t)+c21 lim
t→T−0

uN(t) = d1,

(19)

b12u̇1(0)+b22u1(0)+c12 lim
t→T−0

u̇N(t)+c22 lim
t→T−0

uN(t) = d2,

(20)
And, we have continuity conditions of functions up(t) and u̇p(t) at
the interior points t = θp, p = 1,2, ...,N− 1:

lim
t→θp−0

up(t) = up+1(θp), p = 1,N− 1, (21)

lim
t→θp−0

u̇p(t) = u̇p+1(θp), p = 1,N− 1. (22)

Anar Assanova Institute of Mathematics and Mathematical Modeling anartasan@gmail.comA BOUNDARY VALUE PROBLEM FOR SYSTEM OF DIFFERENTIAL EQUATIONS WITH PIECEWISE-CONSTANT ARGUMENT OF GENERALIZED TYPE [0.2cm] 8th EUROPEAN CONGRESS OF MATHEMATICS [0.2cm] 20 - 26 June 2021, Portorož, Slovenia [0.2cm] Differential equations, dynamical systems and applications (MS - ID 52)



We introduce parameters
λr = ur(ζr−1), µr = u̇r(ζr−1), r = 1,N.

By making the substitution
zr(t) = ur(t)− λr − (t− ζr−1)µr, żr(t) = u̇r(t)− µr

on each subinterval [θr−1, θr), r = 1,N,
we get the second order ODEs with parameters

z̈r = a1(t)żr(t) + a2(t)zr(t) + a1(t)µr + a2(t)λr+

+a2(t)(t− ζr−1)µr + a3(t)µr + a4(t)λr + f(t), (23)

t ∈ [θr−1, θr), r = 1,N,

subject to the initial conditions

zr(ζr−1) = 0, żr(ζr−1) = 0, r = 1,N. (24)

Thus we obtain the Cauchy problems (23), (24) for second order
ODEs with parameters on the subintervals [θr−1, θr), r = 1,N.
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Conditions (19)–(22) have following form

[b11+b21(0−ζ0)]µ1+b21λ1+[c11+c21(T−ζN−1)]µN+c21λN =

= d1−b11ż1(0)−b21z1(0)−c11 lim
t→T−0

żN(t)−c21 lim
t→T−0

zN(t),

(25)
[b12+b22(0−ζ0)]µ1+b22λ1+[c12+c22(T−ζN−1)]µN+c22λN =

= d2−b12ż1(0)−b22z1(0)−c12 lim
t→T−0

żN(t)−c22 lim
t→T−0

zN(t),

(26)

λp + (θp − ζp−1)µp − λp+1 + (θp − ζp)µp+1 =

= − lim
t→θp−0

zp(t) + zp+1(θp), p = 1,N− 1, (27)

µp−µp+1 = − lim
t→θp−0

żp(t)+ żp+1(θp), p = 1,N− 1. (28)
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Let αr(t) =
t∫

ζr−1

a1(τ)dτ, r = 1,N.

For t ∈ [θr−1, θr), r = 1,N, the Cauchy problem (23), (24) is
equivalent to Volterra integral equation second kind :

zr(t) =

t∫
ζr−1

eαr(τ)

τ∫
ζr−1

e−αr(s)a2(s)zr(s)
]
dsdτ+

+

t∫
ζr−1

eαr(τ)

τ∫
ζr−1

e−αr(s)
[
a2(s) + a4(s)

]
dsdτλr+

+

t∫
ζr−1

eαr(τ)

τ∫
ζr−1

e−αr(s)
[
a1(s)+a2(s)(s−ζr−1)+a3(s)

]
dsdτµr+

+

t∫
ζr−1

eαr(τ)

τ∫
ζr−1

e−αr(s)f(s)dsdτ. (29)
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From (29), we find z1(0), ż1(0), lim
t→T−0

zN(t), lim
t→T−0

żN(t),

lim
t→θp−0

zp(t), zp+1(θp), lim
t→θp−0

żp(t), żp+1(θp), p = 1,N− 1.

Substituting them into (25)–(28), we get the system of algebraic
equations in unknown parameters λr, and µr, r = 1,N:

Q(∆N)

(
λ
µ

)
= −F(∆N)−G(∆N, z). (30)

The matrix Q(∆N ) composed by coefficients of parameters and has
a special block-banded structure, maps R2N into R2N .

We construct Algorithm B for finding solution to problem
(23)–(28). The algorithm consists of two parts:
(1) the values of the unknown parameters λr and µr are found
from the system of algebraic equations (30);
(2) the unknown function zr(t) are found from the Cauchy
problems (23), (24) for second order ODEs.
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Introduce notation
α1 = max

(
1, max

t∈[0,T]
|a1(t)|+ max

t∈[0,T]
|a2(t)|

)
,

α2 = max
t∈[0,T]

|a3(t)|+ max
t∈[0,T]

|a4(t)|,

θ = max
{

max
r=1,N

(θr − ζr−1), max
r=1,N

(ζr−1 − θr−1)
}
.

β = max
(
|b21|+ |b11|, |b22|+ |b12|

)
,

γ = max
(
|c21|+ |c11|, |c22|+ |c12|

)
.

The following statement is true.

Theorem 5.

Suppose that, the matrix Q(∆N ) : R2N → R2N is invertible and
the following inequalities hold:
(a) ||[Q(∆N )]−1|| ≤ χ(∆N ), where χ(∆N ) is a positive constant;
(b) q(∆N ) = χ(∆N ) max(β + γ, 2)

[
eα1θ − 1− α1θ

]
< 1.

Then problem (13)–(15) has a unique solution.
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