NUI Galway OÉ Gaillimh

Nash Equilibria in certain two-choice multi-player games played on the ladder graph

Victoria Sánchez Muñoz

v.sanchezmunoz1@nuigalway.ie

* Jointly with Michael Mc Gettrick michael.mogettrick@nuigalway.ie
$8^{\text {th }}$ Eiuropean Congress of Mathematics

GRAPHICAL GAMES*

- M. Kearns et al. ${ }^{1}$ (2001)
- Graph and Game
- Vertices/nodes ~ players
- Edges/lines ~ connections btw players to play the game Find the equilibrium configuration/s and analyse ther

GRAPHICAL GAMES

- Applications
- (Evolutionary) Biology \rightarrow Allen et al. ${ }^{2}$ (2019)
- Economics \rightarrow Leduc et al. ${ }^{3}$ (2017)
- Sociology \rightarrow Eger et al. ${ }^{4}$ (2016)
- Computer Science \rightarrow Cibulka et al. ${ }^{5}$ (2013)

OUR GAME

OUR GRAPH/S

NE in ladder

How many NE do we have now?
 What's best response for Player i ?

- Average payoff when playing
depend on payoff parameters (r, p, q, s)
- Average payoff when playing B

NE in ladder

Given opponent's strategy s_{-i}

- Average payoff when playing A depend on payoff parameters Which payoff is higher? \rightarrow best response
 - Average payoff when playing B

Further assumptions on payoff parameters in addition to $\begin{gathered}r>p \\ q>s\end{gathered}$
Ladder best response Player \boldsymbol{i}
4 cases to define best reponse

$$
\begin{aligned}
& x \equiv r-p>0 \\
& y \equiv q-s>0
\end{aligned}
$$

$x / 2>y$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
aab	b
abb	b
aa	b
bb	a
ab	b

$x>y>x / 2$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
$\mathrm{a} a \mathrm{~b}$	b
abb	a
aa	b
bb	a
ab	b

$2 x>y>x$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
aab	b
abb	a
aa	b
bb	a
ab	a

$y>2 x$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
aab	a
abb	a
aa	b
bb	a
ab	a

Best response case 1

$$
\begin{aligned}
& x \equiv r-p>0 \\
& y \equiv q-s>0
\end{aligned}
$$

$x>y>x / 2$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
aab	b
abb	a
aa	b
bb	a
ab	b

Block 0

Block 2

three NE solutions for ladder with $4 \mathrm{k}=12$ players $\quad(k=3)$

CASE 1: NE in ladder

Block 0 Block 1 Block 2 Block 3
© (b)
(b) ©

(b) b
(b) a

(a)

Best response case 1

$$
\begin{aligned}
& x \equiv r-p>0 \\
& y \equiv q-s>0
\end{aligned}
$$

$r, p, q, s \rightarrow$ payoff parameters

$x>y>x / 2$	
s_{-i}	s_{i}^{*}
aaa	b
bbb	a
aab	b
abb	a
aa	b
bb	a
ab	b

rules to at

$0,1,3$	\rightarrow	$\mathbf{0}$	\rightarrow	$0,1,2$
$0,1,2$	\rightarrow	$\mathbf{1}$	\rightarrow	$0,1,3$
0,3	\rightarrow	$\mathbf{2}$	\rightarrow	3,1
1,2	\rightarrow	$\mathbf{3}$	\rightarrow	0,2

CASE 1: NE in ladder

Example of one solution for case 1 using $k=7$ blocks (28 players)

2-choice 2-player game with 2 NE	Define best response	CASE 1		
+ payoff parameters			\quad	All NE solutions are built
:---:				
out of 4 elementary				
blocks				

CASE 1: NE in ladder (recap

2-choice 2-player game with 2 NE

+ payoff parameters
Ladder graph

How many NE do we have now?

Define best response
Depending on inequalities btw payoff parameters
2 different cases when
we want to count no. NE

How many NE do we have now?

count how many combinations of blocks given the rules are possible

CASE 1: NE in ladder

For simplicity, assume no. players is a multiple of 4 (i. e. $4 k$)
Total no. NE

$$
N_{. . j}(k) \quad j \in\{0,1,2,3\}
$$

$$
N(k)=N_{.0}(k)+N_{.1}(k)+N_{. .2}(k)+N_{.3}(k)
$$

using the rules to attach the blocks

$$
\begin{aligned}
& N_{.0}(k)=N_{.0}(k-1)+N_{. .1}(k-1)+N_{.3}(k-1) \\
& N_{.1}(k)=N_{.0}(k-1)+N_{. .1}(k-1)+N_{. .2}(k-1) \\
& N_{.2}(k)=N_{. .0}(k-1)+N_{. .3}(k-1) \\
& N_{. .3}(k)=N_{. .1}(k-1)+N_{. .2}(k-1)
\end{aligned}
$$

$N(k)=3 N(k-1)-N(k-2)$

$$
N(k)=3 N(k-1)-N(k-2)
$$

golden ratio

$$
N(k)=\alpha \varphi^{2 k}+\beta \varphi^{-2 k}
$$

$$
\varphi=\frac{1+\sqrt{5}}{2} \approx 1,62
$$

$$
\begin{aligned}
& \alpha, \beta \rightarrow \text { initial } \\
& \text { conditions }
\end{aligned}
$$

Total no. NE

$$
N_{\text {ladder }}(4 k)=\frac{2}{\sqrt{5}}\left[\varphi^{2 k-1}+\varphi^{-(2 k-1)}\right]
$$

CASE 1: NE in circular ladder

CASE 1: NE in circular ladder

We need to count the number of allowed combinations when matching endings:

- $0+\cdots+0 ; 0+\cdots+1 ; 0+\cdots+3$;
- $1+\cdots+0 ; 1+\cdots+1 ; 1+\cdots+2$;
- $2+\cdots+0 ; 2+\cdots+3$
- $3+\cdots+1 ; 3+\cdots+2$

Total no. NE

$$
\begin{aligned}
\left(N_{\text {circ }}\right) & =N_{0 . .0}(k)+N_{0 . .1}(k)+N_{0 . .3}(k) \\
& +N_{1 . .0}(k)+N_{1.1}(k)+N_{1 . .2}(k) \\
& +N_{2 . .0}(k)+N_{2 . .3}(k) \\
& +N_{3 . .1}(k)+N_{3.2}(k)
\end{aligned}
$$

CASE 1: NE in circular ladder

$$
\begin{aligned}
N_{\text {circ }}(k) & =N_{0.00}(k)+N_{0 . .1}(k)+N_{0 . .3}(k) \\
& +N_{1 . .0}(k)+N_{1.1 .}(k)+N_{1.2}(k) \\
& +N_{2 . .0}(k)+N_{2 . .3}(k) \\
& +N_{3.11}(k)+N_{3 . .2}(k)
\end{aligned}
$$

$4 k \rightarrow$ no. players
$k \rightarrow$ no. blocks used

...some technical details $\rightarrow N_{i . . j}(k)+$ initial condifions/solutions

$$
\begin{gathered}
\text { golden ratio } \\
\varphi=\frac{1+\sqrt{5}}{2} \approx 1,62
\end{gathered}
$$

CASE 2: NE in ladder and circular ladder

+ other rules to attach the blocks

Same procedure as before \rightarrow find same recurrence relation...

Comparison of results

Comparison of NE both cases

CASE 1

$$
N_{l a d d e r}(4 k)=\frac{2}{\sqrt{5}}\left[\varphi^{2 k-1}+\varphi^{-(2 k-1)}\right]
$$

$$
N_{\text {circular }}(4 k)=\varphi^{2 k}+\varphi^{-2 k}+2
$$

CASE 2

$N_{\text {ladder }}(4 k)=\frac{2}{\sqrt{5}}\left[\varphi^{2 k}+\varphi^{-(2 k)}\right]$
$N_{\text {circular }}(4 k)=\varphi^{2 k}+\varphi^{-2 k}$

Comparison of results

Comparison of NE both cases

golden ratio $\varphi=\frac{1+\sqrt{5}}{2} \approx 1,62 \ldots$

CASE 1

$N_{\text {ladder }}(4 k)=\frac{2}{\sqrt{5}}\left[\varphi^{2 k-1}+\varphi^{-(2 k-1)}\right]$
$N_{c i r c u l a r}(4 k)=\varphi^{2 k}+\varphi^{-2 k}+2$

CASE 2

$N_{\text {ladder }}(4 k)=\frac{2}{\sqrt{5}}\left[\varphi^{2 k}+\varphi^{-(2 k)}\right]$
$N_{\text {circular }}(4 k)=\varphi^{2 k}+\varphi^{-2 k}$

Conclusions

For 2-choice 2-player anti-coordination game and (circular) ladder

- Found explicit analytic formulae for NE
- Golden ratio base of exponential growth
- NE circular > NE ladder
- NE ladder changes with case (relation btw payoff parameters)
- NE circular \approx const regardless of case \rightarrow topology of graph plays a role?

Further work/open questions

- Are the NE configurations Pareto Optimal?
- What if coordination game, same results?
- Same game but another regular graph

Nash Equilibria in certain two-choice multiplayer games played on the ladder graph
published Jan 2021. Available in
https://doi.org/10.1142/S0219198920500206 http://arxiv.org/abs/2101.09103

Victoria Sánchez Muñoz v.sanchezmunoz1@nuigalway.ie

Michael Mc Gettrick michael.mcgettrick@nuigalway.ie

College of Science at NUIG School of Maths at NUIG

