

School of Mathematics, Statistics and Applied Mathematics

Nash Equilibria in certain two-choice multi-player games played on the ladder graph *

Victoria Sánchez Muñoz

v.sanchezmunoz1@nuigalway.ie

*Jointly with Michael Mc Gettrick michael.mcgettrick@nuigalway.ie

Article published Jan 2021. Available in https://doi.org/10.1142/S0219198920500206 http://arxiv.org/abs/2101.09103

8th European Congress of Mathematics

24th of June 2021

GRAPHICAL GAMES*

*Different than graph games!

2

- M. Kearns et al. 1 (2001)
- Graph and Game
 - Vertices/nodes ~ players
 - Edges/lines ~ connections btw players to play the game

Find the equilibrium configuration/s and analyse them

¹ Graphical Models for Game Theory, Proceedings of 17th Conference of Uncertainty in Artificial Intelligence

NE in certain two-choice multi-player games...

GRAPHICAL GAMES

- Applications
 - (Evolutionary) Biology \rightarrow Allen et al. ² (2019)
 - Economics \rightarrow Leduc et al. ³ (2017)
 - Sociology \rightarrow Eger et al. ⁴ (2016)
 - Computer Science \rightarrow Cibulka et al. ⁵ (2013)
- ² Evolutionary games on isothermal graphs, Nature Communications
- ³ Strategic investment in protection in networked systems, Network Science
- ⁴ Opinion dynamics and wisdom under out-group discrimination, Mathematical Social Sciences
- ⁵ Graph sharing games: Complexity and connectivity, Theoretical Computer Science

OUR GAME

2 Nash Equilibrium (NE) solutions

(anti-coordination game)

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

OUR GRAPH/S

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

NE in ladder

How many NE do we have now?

What's best response for Player i?

Ladder graph

depend on payoff parameters (r,p,q,s)

Average payoff when playing
Average payoff when playing
B

Which payoff is higher? \rightarrow best response

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

Thursday, 24th June 2021

NE in ladder

Given opponent's strategy s_{-i}

- Average payoff when playing (A) - Average payoff when playing B

Which payoff is higher? \rightarrow best response

Further assumptions on payoff parameters in addition to

Ladder best response Player i

CASE 1: NE in ladder

Best response case 1

s_{-i}	s_i^*
aaa	b
bbb	a
aab	b
abb	a
aa	b
bb	a
ab	b

 $r, p, q, s \rightarrow payoff parameters$

Block 0 Block 1 b b a a b b a a Block 2 **Block 3** C a b b b b a a

NE in certain two-choice multi-player games...

8

Victoria Sánchez Muñoz

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

Thursday, 24th Jure 2021

 $r, p, q, s \rightarrow payoff parameters$

aab b abb a b aa bb a ab b

1, 2

3

NE in certain two-choice multi-player games...

0, 2

CASE 1: NE in ladder

CASE 1: NE in ladder

Example of one solution for case 1 using k = 7 blocks (28 players)

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

CASE 1: NE in ladder (recap)

2-choice 2-player game with 2 NE

+ payoff parameters

Ladder graph

How many NE do we have now?

Define best response

Depending on inequalities btw payoff parameters

2 different cases when we want to count no. NE

CASE 1

All NE solutions are built out of 4 elementary blocks + some rules to attach them

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

CASE 1: NE in ladder (recap)

2-choice 2-player game with 2 NE

+ payoff parameters

Ladder graph

How many NE do we have now?

Define best response

Depending on inequalities btw payoff parameters

2 different cases when we want to count no. NE CASE 1

How many NE do we have now?

count how many combinations of blocks given the rules are possible

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

CASE 1: NE in ladder

For simplicity, assume no. players is a multiple of 4 (i. e. 4k) $N_{..j}(k) \quad j \in \{0,1,2,3\}$ 13

 $4k \rightarrow \text{no. players}$ $k \rightarrow \text{no. blocks used}$

$N(k) = N_{..0}(k) + N_{..1}(k) + N_{..2}(k) + N_{..3}(k)$

using the rules to attach the blocks

Total no. NE

Example of one solution for case 1 using k = 7 blocks (28 players)

$$\begin{split} N_{..0}(k) &= N_{..0}(k-1) + N_{..1}(k-1) + N_{..3}(k-1) \\ N_{..1}(k) &= N_{..0}(k-1) + N_{..1}(k-1) + N_{..2}(k-1) \\ N_{..2}(k) &= N_{..0}(k-1) + N_{..3}(k-1) \\ N_{..3}(k) &= N_{..1}(k-1) + N_{..2}(k-1) \end{split}$$

N(k) = 3N(k-1) - N(k-2)

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

CASE 1: NE in circular ladder

15

 $4k \rightarrow no. \ players$ blocks used

Victoria Sánchez Muñoz

Circular ladder

NE in certain two-choice multi-player games...

Thursday, 24th Jury 202

 $0 + \cdots + 0$

We need to count the number of allowed combinations when matching endings:

- $0 + \dots + 0$; $0 + \dots + 1$; $0 + \dots + 3$;
- $1 + \dots + 0$; $1 + \dots + 1$; $1 + \dots + 2$;
- $2 + \dots + 0; 2 + \dots + 3$

rules to attach the blocks

Example of one solution for case 1 using k = 7 blocks (28 players)

• $3 + \dots + 1; 3 + \dots + 2$

 $N_{circ}(k) = N_{0..0}(k) + N_{0..1}(k) + N_{0..3}(k) + N_{1..0}(k) + N_{1..1}(k) + N_{1..2}(k) + N_{2..0}(k) + N_{2..3}(k) + N_{3..1}(k) + N_{3..2}(k)$

 $0 + + 2 \quad 0 + \dots + 3$

CASE 1: NE in circular ladder 16

 $0 + \dots + 1$

Total no. NE

CASE 1: NE in circular ladder 17

 $N_{circ}(k) = N_{0.0}(k) + N_{0.1}(k) + N_{0.3}(k)$ $+N_{1,0}(k) + N_{1,1}(k) + N_{1,2}(k)$ $+ N_{2,0}(k) + N_{2,3}(k)$ $+N_{3,1}(k) + N_{3,2}(k)$

 $4k \rightarrow \text{no. players}$ $k \rightarrow \text{no.}$ blocks used

 $N_{i_i}(k)$ $i, j \in \{0, 1, 2, 3\}$ $N_i(k)$

λI

 $N_{..j}(k)$ Building solutions attaching blocks to the right of last block

Building solutions attaching blocks to the left of last block

golden ratio $\varphi=\frac{1+\sqrt{5}}{2}\approx 1,62$

$$N_{circular}(4k) = \varphi^{2k-1} + \varphi^{-(2k-1)} + 2$$

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

CASE 2: NE in ladder and circular ladder

+ other rules to attach the blocks

Same procedure as before \rightarrow find same recurrence relation...

NE in certain two-choice multi-player games...

NE in certain two-choice multi-player games...

Victoria Sánchez Muñoz

NE in certain two-choice multi-player games...

Conclusions

For 2-choice 2-player anti-coordination game and (circular) ladder

- Found explicit analytic formulae for NE
- Golden ratio base of exponential growth
- NE circular > NE ladder
- NE ladder changes with case (relation btw payoff parameters)
- ► NE circular ~ const regardless of case → topology of graph plays a role?

Further work/open questions

- Are the NE configurations Pareto Optimal?
- What if coordination game, same results?
- Same game but another regular graph

Nash Equilibria in certain two-choice multiplayer games played on the ladder graph

published Jan 2021. Available in https://doi.org/10.1142/S0219198920500206 http://arxiv.org/abs/2101.09103

Victoria Sánchez Muñoz v.sanchezmunoz1@nuigalway.ie

Michael Mc Gettrick michael.mcgettrick@nuigalway.ie

THANKS TO:

- College of Science at NUIG
- School of Maths at NUIG

* The showed images have been extracted from Google, they belong to their owners

NE in certain two-choice multi-player games...