Self-regulating processes

Kenneth Falconer & Jacques Lévy Véhel[†]

June 22, 2021

[†]jacques.levy-vehel@inria.fr

1/32

Outline

1. Motivation

2. Recalls on localizable processes

3. Case where $\alpha: \mathbb{R} \to (0, 1)$ Deterministic jump functions defined by plane point sets Random case

4. Case where $\alpha : \mathbb{R} \to (0, 2)$ Deterministic jump points with random signs Poisson point process

Motivation

- Modelling phenomena with varying local regularity is important in various applications: finance, geophysics, internet traffic modelling, ...
- 2. Often, local regularity varies as a function not of time or space but as a function of the value of the process itself.
- 3. When local regularity is measured in terms of Hölder exponents, this gives rise to *self-regulating processes*.
- 4. However, when dealing with discontinuous processes, it is necessary to account for an intensity of jumps that would depend on the value of the process. We refer to those processes as *self-regulating processes*.

0 0 0

Motivation

More precisely, we construct jump processes of a self-regulating nature, that is variants on α -stable processes where the stability index α around time *t* depends on the value of the process at time *t*.

The construction utilizes the Poisson sum representation of α -stable processes as a sum over a point set in the plane.

Symmetric α -stable Lévy motion

 $\{L_{\alpha}(t), t \geq 0\}(0 < \alpha \leq 2)$, is the stochastic process with stationary independent increments such that $L_{\alpha}(0) = 0$ almost surely, and $L_{\alpha}(t) - L_{\alpha}(s)$ has the distribution of $S_{\alpha}((t-s)^{1/\alpha}, 0, 0)$, where $S_{\alpha}(c, \beta, \mu)$ denotes a stable random variable with stability-index α , with scale parameter c, skewness parameter β , and shift μ .

 L_{α} admits a version with càdlàg sample paths. It may be represented as:

$$L_{\alpha}(t) = C_{\alpha} \sum_{(\mathbf{X}, \mathbf{Y}) \in \Pi} \mathbb{1}_{(0, t]}(\mathbf{X}) \mathbf{Y}^{\langle -1/\alpha \rangle}$$
(2.1)

where C_{α} is a normalising constant, Π is a Poisson point process on $\mathbb{R}^+ \times \mathbb{R}$ with plane Lebesgue measure \mathcal{L}^2 as mean measure, and

 $r^{\langle s \rangle} = \operatorname{sign}(r) |r|^s, \quad r \in \mathbb{R}, s \in \mathbb{R}.$

We are interested in processes where the intensity of jumps α varies. The simplest version of such a process is the *multistable symmetric Lévy motion* { $M_{\alpha}(t), t \ge 0$ } with following representation:

$$M_{\alpha}(t) = C_{\alpha}(t) \sum_{(\mathsf{X},\mathsf{Y})\in\Pi} \mathbb{1}_{(0,t]}(\mathsf{X})\mathsf{Y}^{\langle -1/\alpha(t)\rangle}$$
(2.2)

where α is a suitable function from \mathbb{R}^+ to (0, 2).

 $\{M_{\alpha}(t), t \geq 0\}$ is *localizable* in the following sense: for each t > 0 and $u \in \mathbb{R}$,

$$\frac{M_{\alpha}(t+ru) - M_{\alpha}(t)}{r^{1/\alpha(t)}} \stackrel{\text{dist}}{\to} L_{\alpha(t)}(u)$$

as $r \searrow 0$, where convergence is in distribution with respect to the Skorohod metric.

Thus *M* 'looks like' $\alpha(t)$ -stable process near *t*.

With multistable motion, the local stability parameter depends on the time t.

Our aim is to construct a process Z where the local stability parameter at time t depends instead on the value of the process at time t: for suitable $\alpha : \mathbb{R} \to (0, 2), Z(t)$ would be localizable in the sense that for all $t \in [t_0, t_1)$ and u > 0

$$\frac{Z(t+ru) - Z(t)}{r^{1/\alpha(Z(t))}} \left| \mathcal{F}_t \stackrel{\text{dist}}{\to} L^0_{\alpha(Z(t))}(u) \right|$$

as $r \searrow 0$, where \mathcal{F}_t indicates conditioning on the process up to time t.

We first deal with the case where the local jump intensity function ranges in (0, 1) and start by a deterministic construction.

Given a countable discrete point set Π in the plane we define real valued functions f on an interval $[t_0, t_1)$ such that f(t) 'jumps' when t = x for each $(x, y) \in \Pi$, the magnitude of the jump depending both on y and on the value of $\lim_{t \neq x} f(t)$.

For $t_0 < t_1$ let $D[t_0, t_1)$ denote the càdlàg functions on $[t_0, t_1)$. The space $D[t_0, t_1)$ is complete under the supremum norm $\|\cdot\|_{\infty}$.

Fix 0 < a < b < 1. Let $\alpha : \mathbb{R} \to [a, b]$ be continuously differentiable with bounded derivative and let $\Pi \subset (t_0, t_1) \times \mathbb{R}$ be a set of points such that

$$\sum_{x,y)\in\Pi} |y|^{-1/b'} < \infty$$
 (3.3)

for some b < b' < 1.

Let $a_0 \in \mathbb{R}$. Define K on $D[t_0, t_1)$ by $K(f)(t) = a_0 + \sum_{(x,y)\in\Pi} 1_{(t_0,t]}(x) y^{\langle -1/\alpha(f(x_-))\rangle} \qquad (t_0 \le t < t_1),$ (3.4)

where the sum is absolutely convergent by (3.3).

Lemma The operator K maps $D[t_0, t_1)$ into itself.

Theorem With a_0, α and Π as above, there exists a unique $f \in D[t_0, t_1)$ such that

 $f(t) = a_0 + \sum_{(x,y)\in\Pi} \mathbf{1}_{(t_0,t]}(x) y^{\langle -1/\alpha(f(x_-))\rangle} \qquad (t_0 \le t < t_1).$ (3.5)

In particular $f(t_0) = a_0$. Moreover, for each s and t with $t_0 \le s < t < t_1$, f(t) is completely determined given f(s) and the points of the set $\Pi \cap ((s, t] \times \mathbb{R})$.

Idea of proof:

We would like to use that *K* is a contracting operator on $D[t_0, t_1)$ and apply Banach's contraction theorem. However, *K* is contracting only if the value of |y| is not too small at points $(x, y) \in \Pi$.

We use that K is contracting in intervals where |y| is not too small and incorporate the jumps at these points 'by hand'.

The function f may be approximated as follows: define a sequence of functions f_n $(n \in \mathbb{N})$ by restricting the sums to points with $|y| \le n$, that is :

 $f_n(t) = a_0 + \sum_{(x,y)\in\Pi: |y|\le n} 1_{(t_0,t]}(x) y^{\langle -1/\alpha(f_n(x_-))\rangle}$ (3.6)

for $t_0 \le t < t_1$. Then $f_n \in D[t_0, t_1)$ is uniquely defined as a sum over a finite set of points and is piecewise constant, so it may be evaluated using a finite number of inductive steps.

Theorem $\{f_n\}$ is a Cauchy sequence in $(D[t_0, t_1), \|\cdot\|_{\infty})$. Moreover, $f_n \to f$ in $\|\cdot\|_{\infty}$ and we have:

$$||f_n - f||_{\infty} \le \exp\left(M \sum_{(x,y) \in \Pi, |y| \le n} |y|^{-1/(a,b)}\right) \sum_{(x,y) \in \Pi : |y| > n} |y|^{-1/b},$$

where

$$M = \sup_{\xi \in \mathbb{R}} \frac{|\alpha'(\xi)|}{\alpha(\xi)^2}.$$

3. Case where $lpha:\mathbb{R}
ightarrow(0,1)$

Idea of proof:

The main difficulty with the sequence of functions $f_n(t)$ is that when, as n increases, a new point (x, y) enters the sum then, for all existing (x', y') with x' > x and smaller |y'|, the summands $y'^{\langle -1/\alpha(f(x'_{-}))\rangle}$ will change, leading to a change in $f_n(t)$ for t > x that is amplified as tincreases past larger x with $(x, y) \in \Pi$.

We deal with this difficulty by carefully controlling these changes.

Going back to the random case, we have the following result:

Theorem

Let $\Pi \subset (t_0, t_1) \times \mathbb{R}$ be a Poisson point process with \mathcal{L}^2 as mean measure. Then there exists a Markov process Z on $[t_0, t_1)$ such that, almost surely, the sample paths are in $D[t_0, t_1)$ with $Z(t_0) = a_0$ and

$$Z(t) = a_0 + \sum_{(\mathsf{X},\mathsf{Y})\in\Pi} \mathbb{1}_{(t_0,t]}(\mathsf{X}) \, \mathsf{Y}^{\langle -1/\alpha(Z(\mathsf{X}_-))\rangle} \qquad (t_0 \le t < t_1).$$
(3.7)

Writing

$$Z_n(t) = a_0 + \sum_{(\mathbf{X}, \mathbf{Y}) \in \Pi: |\mathbf{Y}| \le n} \mathbf{1}_{(t_0, t]}(\mathbf{X}) \, \mathbf{Y}^{\langle -1/\alpha(Z_n(\mathbf{X}_-)) \rangle} \qquad (t_0 \le t < t_1)$$

then almost surely, $||Z_n - Z||_{\infty} \to 0$ as $n \to \infty$.

(3.8)

We investigate the local properties of Z.

Proposition

Given $0 < \epsilon < 1/b$, for each $t \in [t_0, t_1)$ there exists almost surely a random C > 0 such that for all $0 < h < t_1 - t$,

$$|Z(t+h) - Z(t)| \le Ch^{1/\alpha(Z(t)) - \epsilon}.$$
(3.9)

Idea of proof:

The main ingredient is a comparison with the α -stable subordinator S_{α} , for constant $0 < \alpha < 1$:

$$S_{\alpha}(t) := \sum_{(\mathsf{X},\mathsf{Y})\in\Pi} 1_{(0,t]}(\mathsf{X}) \, |\mathsf{Y}|^{-1/\alpha}$$

 S_{α} is a self-similar process with stationary increments such that for all $0 < \epsilon < 1/\alpha$ there is almost surely a random constant $C < \infty$ such that

$$S_{\alpha}(t) \leq Ct^{(1/\alpha) - \epsilon} \qquad (t \geq 0).$$
(3.10)

Theorem *Z* is right-localizable at each $t \in [t_0, t_1)$, in the sense that

$$\frac{Z(t+ru) - Z(t)}{r^{1/\alpha(Z(t))}} \bigg| \mathcal{F}_t \stackrel{\text{dist}}{\to} L^0_{\alpha(Z(t))}(u)$$
(3.11)

as $r \searrow 0$, where convergence is in distribution with respect to $(D[0, t_1), \rho_S)$, with ρ_S the Skorohod metric.

Idea of proof:

We compare Z(t+ru) - Z(t) and $L^0_{\alpha(Z(t))}(t+ru) - L^0_{\alpha(Z(t))}(t)$, where

$$L^{0}_{\alpha}(t) = \sum_{(\mathsf{X},\mathsf{Y})\in\Pi} \mathbb{1}_{(0,t]}(\mathsf{X})\mathsf{Y}^{\langle -1/\alpha \rangle} \qquad (t \ge 0).$$
(3.12)

Figure: left : self-stabilizing function $\alpha(z) = 0.57 + 0.4 \cos(z)$. Right: corresponding realization of a self-stabilizing process.

Figure: left : self-stabilizing function $\alpha(z) = 0.15 + \frac{0.8}{1+5z^2}$. Right: corresponding realization of a self-stabilizing process.

When $\alpha : \mathbb{R}^+ \to (0, 1)$, we started by showing that there exists a deterministic function $f \in D[t_0, t_1)$ satisfying the relation

$$f(t) = a_0 + \sum_{(x,y)\in\Pi} \mathbf{1}_{(t_0,t]}(x) y^{\langle -1/\alpha(f(x_-))\rangle}$$

for a fixed point set Π , and then randomising to get a random function Z such that

$$Z(t) = a_0 + \sum_{(\mathbf{X}, \mathbf{Y}) \in \Pi} \mathbf{1}_{(t_0, t]}(\mathbf{X}) \, \mathbf{Y}^{\langle -1/\alpha(Z(\mathbf{X}_-)) \rangle} \qquad (t_0 \le t < t_1)$$

However, this approach depends on the infinite sums being absolutely convergent, which need not be the case if $\alpha(t) \ge 1$ for some *t*.

The general case is more involved.

We show first that for a *fixed* point set $\Pi^+ \subset (t_0, t_1) \times \mathbb{R}^+$ and independent random 'signs' $S(x, y) = \pm 1$ there exists almost surely a random function $Z^p \in D[t_0, t_1)$ satisfying

$$Z^{p}(t) = a_{0} + \sum_{(x,y)\in\Pi^{+}} \mathbf{1}_{(t_{0},t]}(x)S(x,y)y^{-1/\alpha(Z^{p}(x_{-}))} \qquad (t_{0} \le t < t_{1}).$$

To achieve this we work with partial sums

 $Z_n^p(t) = a_0 + \sum_{(x,y)\in\Pi^+:|y|\le n} \mathbf{1}_{(t_0,t]}(x)S(x,y)y^{-1/\alpha(Z_n^p(x_-))} \qquad (t_0 \le t < t_1)$

and show that the limit as $n \to \infty$ exists in a norm given by $\mathbb{E}(\|\cdot\|_{\infty}^2)^{1/2}$, where \mathbb{E} denotes expectation.

0 0 0

Theorem

$$\mathbb{E}\left(\|Z_n^p - Z^p\|_{\infty}^2\right) \leq 4 \prod_{(x,y)\in\Pi^+} (1 + M^2 y^{-2/(a,b)}) \sum_{(x,y)\in\Pi^+: y>n} y^{-2/b} \to 0.$$
(4.13)

4. Case where $lpha:\mathbb{R} o (0,2)$

Proposition

Let $Z \in \mathcal{D}$ be the random function given by Theorem 4.1 and let $t \in [t_0, t_1)$. Suppose that for some $\beta > 0$,

 $\overline{\sum_{(x,y)\in\Pi^+:t < x \le t+h} y^{-2/\alpha(Z(t))}} = O(h^\beta) \qquad (0 < h < t_1 - t).$ (4.14)

Then, conditional on \mathcal{F}_t , given $0 < \epsilon < \beta$ there exist almost surely a random number $C_1 < \infty$ such that for all $0 \le h < t_1 - t$,

$$|Z(t+h) - Z(t)| \le C_1 h^{(\beta - \epsilon)/2}.$$
(4.15)

We now randomise the construction further by taking Π^+ to be a Poisson point process on $(t_0, t_1) \times \mathbb{R}^+$ with mean measure $2\mathcal{L}^2$.

The key idea is that the distribution of the point sets $\{(X, Y) \in \Pi\}$ where $\Pi \subset (t_0, t_1) \times \mathbb{R}$ is a Poisson point process with plane Lebesgue measure \mathcal{L}^2 as mean measure, is identical to that of $\{(X, S(X, Y)Y) : (X, Y) \in \Pi_2^+, S(X, Y) = \pm 1\}$, where Π_2^+ is a Poisson point process on $(t_0, t_1) \times \mathbb{R}^+$ with double Lebesgue measure $2\mathcal{L}^2$ as mean measure and with the S(X, Y) independently taking the values ± 1 with equal probability $\frac{1}{2}$ for each $(X, Y) \in \Pi_2^+$ (this follows from the superposition property of Poisson processes).

Hence Π can be realised by first sampling (X, Y) from Π_2^+ and then assigning random signs to the Y coordinates.

0 0 0

Theorem

Let $\Pi \subset (t_0, t_1) \times \mathbb{R}$ be a Poisson point process with mean measure \mathcal{L}^2 , let $\alpha : \mathbb{R} \to [a, b]$ where 0 < a < b < 2 and let $a_0 \in \mathbb{R}$. Then there exists $Z \in \mathcal{D}$ such that $\lim_{n\to\infty} \mathbb{E}(||Z_n - Z||_{\infty}^2) = 0$ where Z_n is defined as

$$Z_n(t) = a_0 + \sum_{(\mathbf{X}, \mathbf{Y}) \in \Pi: |\mathbf{Y}| \le n} \mathbf{1}_{(t_0, t]}(\mathbf{X}) \, \mathbf{Y}^{\langle -1/\alpha(Z_n(\mathbf{X}_-)) \rangle} \qquad (t_0 \le t < t_1).$$

Theorem

Let $y_0 > 0$ and let Π be a Poisson point process on $(t_0, t_1) \times (-\infty, -y_0] \cup [y_0, \infty)$ with mean measure \mathcal{L}^2 restricted to this domain. Then,

$$\mathbb{E}\big(\|Z_n - Z\|_{\infty}^2\big) \le \frac{8b(t_1 - t_0)}{2 - b} \exp\left(2M^2(t_1 - t_0) \int_{y_0}^{\infty} y^{-2/(a,b)} \, dy\right) n^{-(2-b)/(a,b)} dy$$

Proposition

Conditional on \mathcal{F}_t , given $0 < \epsilon < 1/b$, there exist almost surely random numbers $C_1, C_2 < \infty$ such that for all $0 \le h < t_1 - t$,

$$|Z(t+h) - Z(t)| \le C_1 h^{1/\alpha(Z(t)) - \epsilon}$$

and

 $\left| \left(Z(t+h) - Z(t) \right) - \left(L^0_{\alpha(t)}(t+h) - L^0_{\alpha(t)}(t) \right) \right| \leq C_2 h^{1/\alpha(Z(t)) + 1/b - \epsilon}$

where $L^0_{\alpha(t)}$ is the $\alpha(t)$ -stable process defined using the same realisations of Π as Z.

Theorem

Let $t \in [t_0, t_1)$. Then, conditional on \mathcal{F}_t , almost surely Z is right-localisable at t, in the sense that

$$\frac{Z(t+ru) - Z(t)}{r^{1/\alpha(Z(t))}} \left| \mathcal{F}_t \xrightarrow{\text{dist}} L^0_{\alpha(Z(t))}(u) \qquad (0 \le u \le 1) \right|$$

as $r \searrow 0$, where convergence is in distribution with respect to $(D[0,1], \rho_S)$, with ρ_S the Skorohod metric.