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Motivation

1. Modelling phenomena with varying local regularity is important in
various applications: finance, geophysics, internet traffic
modelling, …

2. Often, local regularity varies as a function not of time or space but
as a function of the value of the process itself.

3. When local regularity is measured in terms of Hölder exponents,
this gives rise to self-regulating processes.

4. However, when dealing with discontinuous processes, it is
necessary to account for an intensity of jumps that would depend
on the value of the process. We refer to those processes as
self-regulating processes.
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Motivation

More precisely, we construct jump processes of a self-regulating
nature, that is variants on α-stable processes where the stability index
α around time t depends on the value of the process at time t.

The construction utilizes the Poisson sum representation of α-stable
processes as a sum over a point set in the plane.
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Symmetric α-stable Lévy motion
{Lα(t), t ≥ 0}(0 < α ≤ 2), is the stochastic process with stationary
independent increments such that Lα(0) = 0 almost surely, and
Lα(t)− Lα(s) has the distribution of Sα((t− s)1/α, 0, 0), where
Sα(c, β, µ) denotes a stable random variable with stability-index α,
with scale parameter c, skewness parameter β, and shift µ.

Lα admits a version with càdlàg sample paths. It may be represented
as:

Lα(t) = Cα

∑
(X,Y)∈Π

1(0,t](X)Y⟨−1/α⟩ (2.1)

where Cα is a normalising constant, Π is a Poisson point process on
R+ × R with plane Lebesgue measure L2 as mean measure, and

r⟨s⟩ = sign(r)|r|s, r ∈ R, s ∈ R.
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We are interested in processes where the intensity of jumps α varies.
The simplest version of such a process is the multistable symmetric
Lévy motion {Mα(t), t ≥ 0} with following representation:

Mα(t) = Cα(t)
∑

(X,Y)∈Π
1(0,t](X)Y⟨−1/α(t)⟩ (2.2)

where α is a suitable function from R+ to (0, 2).
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{Mα(t), t ≥ 0} is localizable in the following sense: for each t > 0 and
u ∈ R,

Mα(t+ ru)−Mα(t)

r1/α(t)
dist→ Lα(t)(u)

as r ↘ 0, where convergence is in distribution with respect to the
Skorohod metric.

ThusM ‘looks like’ α(t)-stable process near t.
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With multistable motion, the local stability parameter depends on the
time t.

Our aim is to construct a process Z where the local stability parameter
at time t depends instead on the value of the process at time t: for
suitable α : R → (0, 2), Z(t) would be localizable in the sense that for
all t ∈ [t0, t1) and u > 0

Z(t+ ru)− Z(t)

r1/α(Z(t))

∣∣∣∣Ft
dist→ L0

α(Z(t))(u)

as r ↘ 0, where Ft indicates conditioning on the process up to time t.
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We first deal with the case where the local jump intensity function
ranges in (0, 1) and start by a deterministic construction.

Given a countable discrete point set Π in the plane we define real
valued functions f on an interval [t0, t1) such that f(t) ‘jumps’ when
t = x for each (x, y) ∈ Π, the magnitude of the jump depending both
on y and on the value of limt↗x f(t).
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For t0 < t1 let D[t0, t1) denote the càdlàg functions on [t0, t1). The
space D[t0, t1) is complete under the supremum norm ∥ · ∥∞.

Fix 0 < a < b < 1. Let α : R → [a, b] be continuously differentiable with
bounded derivative and let Π ⊂ (t0, t1)×R be a set of points such that∑

(x,y)∈Π

|y|−1/b′ < ∞ (3.3)

for some b < b′ < 1.
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Let a0 ∈ R. DefineK on D[t0, t1) by

K(f)(t) = a0 +
∑

(x,y)∈Π

1(t0,t](x)y
⟨−1/α(f(x−))⟩ (t0 ≤ t < t1), (3.4)

where the sum is absolutely convergent by (3.3).

Lemma
The operatorK maps D[t0, t1) into itself.

3. Case whereα : R → (0, 1) 11/32



Theorem
With a0, α and Π as above, there exists a unique f ∈ D[t0, t1) such
that

f(t) = a0 +
∑

(x,y)∈Π

1(t0,t](x)y
⟨−1/α(f(x−))⟩ (t0 ≤ t < t1). (3.5)

In particular f(t0) = a0. Moreover, for each s and t with
t0 ≤ s < t < t1, f(t) is completely determined given f(s) and the
points of the set Π ∩ ((s, t]× R).
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Idea of proof:

We would like to use thatK is a contracting operator on D[t0, t1) and
apply Banach’s contraction theorem. However,K is contracting only if
the value of |y| is not too small at points (x, y) ∈ Π.

We use thatK is contracting in intervals where |y| is not too small and
incorporate the jumps at these points ’by hand’.
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The function f may be approximated as follows: define a sequence of
functions fn (n ∈ N) by restricting the sums to points with |y| ≤ n, that
is :

fn(t) = a0 +
∑

(x,y)∈Π : |y|≤n

1(t0,t](x)y
⟨−1/α(fn(x−))⟩ (3.6)

for t0 ≤ t < t1. Then fn ∈ D[t0, t1) is uniquely defined as a sum over a
finite set of points and is piecewise constant, so it may be evaluated
using a finite number of inductive steps.
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Theorem
{fn} is a Cauchy sequence in (D[t0, t1), ∥ · ∥∞). Moreover, fn → f in
∥ · ∥∞ and we have:

∥fn − f∥∞ ≤ exp
(
M

∑
(x,y)∈Π,|y|≤n

|y|−1/(a,b)
) ∑

(x,y)∈Π : |y|>n

|y|−1/b,

where
M = sup

ξ∈R

|α′(ξ)|
α(ξ)2

.
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Idea of proof:

The main difficulty with the sequence of functions fn(t) is that when,
as n increases, a new point (x, y) enters the sum then, for all existing
(x′, y′) with x′ > x and smaller |y′|, the summands y′⟨−1/α(f(x′−))⟩ will
change, leading to a change in fn(t) for t > x that is amplified as t
increases past larger x with (x, y) ∈ Π.

We deal with this difficulty by carefully controlling these changes.
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Going back to the random case, we have the following result:
Theorem
Let Π ⊂ (t0, t1)× R be a Poisson point process with L2 as mean
measure. Then there exists a Markov process Z on [t0, t1) such that,
almost surely, the sample paths are in D[t0, t1) with Z(t0) = a0 and

Z(t) = a0 +
∑

(X,Y)∈Π
1(t0,t](X)Y⟨−1/α(Z(X−))⟩ (t0 ≤ t < t1). (3.7)

Writing

Zn(t) = a0 +
∑

(X,Y)∈Π:|Y|≤n

1(t0,t](X)Y⟨−1/α(Zn(X−))⟩ (t0 ≤ t < t1)

(3.8)
then almost surely, ∥Zn − Z∥∞ → 0 as n → ∞.
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We investigate the local properties of Z.
Proposition
Given 0 < ϵ < 1/b, for each t ∈ [t0, t1) there exists almost surely a
random C > 0 such that for all 0 < h < t1 − t,

|Z(t+ h)− Z(t)| ≤ Ch1/α(Z(t))− ϵ. (3.9)
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Idea of proof:

The main ingredient is a comparison with the α-stable subordinator
Sα, for constant 0 < α < 1:

Sα(t) :=
∑

(X,Y)∈Π
1(0,t](X) |Y|−1/α.

Sα is a self-similar process with stationary increments such that for all
0 < ϵ < 1/α there is almost surely a random constant C < ∞ such
that

Sα(t) ≤ Ct(1/α)− ϵ (t ≥ 0). (3.10)
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Theorem
Z is right-localizable at each t ∈ [t0, t1), in the sense that

Z(t+ ru)− Z(t)

r1/α(Z(t))

∣∣∣∣Ft
dist→ L0

α(Z(t))(u) (3.11)

as r ↘ 0, where convergence is in distribution with respect to
(D[0, t1), ρS), with ρS the Skorohod metric.
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Idea of proof:

We compare Z(t+ ru)−Z(t) and L0
α(Z(t))(t+ ru)−L0

α(Z(t))(t), where

L0
α(t) =

∑
(X,Y)∈Π

1(0,t](X)Y⟨−1/α⟩ (t ≥ 0). (3.12)
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Figure: left : self-stabilizing function α(z) = 0.57 + 0.4 cos(z). Right:
corresponding realization of a self-stabilizing process.
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Figure: left : self-stabilizing function α(z) = 0.15 + 0.8
1+5z2 . Right:

corresponding realization of a self-stabilizing process.
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When α : R+ → (0, 1), we started by showing that there exists a
deterministic function f ∈ D[t0, t1) satisfying the relation

f(t) = a0 +
∑

(x,y)∈Π

1(t0,t](x)y
⟨−1/α(f(x−))⟩

for a fixed point set Π, and then randomising to get a random function
Z such that

Z(t) = a0 +
∑

(X,Y)∈Π
1(t0,t](X)Y⟨−1/α(Z(X−))⟩ (t0 ≤ t < t1).

However, this approach depends on the infinite sums being absolutely
convergent, which need not be the case if α(t) ≥ 1 for some t.

The general case is more involved.
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We show first that for a fixed point set Π+ ⊂ (t0, t1)× R+ and
independent random ‘signs’ S(x, y) = ±1 there exists almost surely a
random function Zp ∈ D[t0, t1) satisfying

Zp(t) = a0 +
∑

(x,y)∈Π+

1(t0,t](x)S(x, y)y
−1/α(Zp(x−)) (t0 ≤ t < t1).

To achieve this we work with partial sums

Zp
n(t) = a0+

∑
(x,y)∈Π+:|y|≤n

1(t0,t](x)S(x, y)y
−1/α(Zp

n(x−)) (t0 ≤ t < t1)

and show that the limit as n → ∞ exists in a norm given by
E
(
∥ · ∥2∞

)1/2, where E denotes expectation.

4. Case whereα : R → (0, 2) 25/32



Theorem

E
(
∥Zp

n−Zp∥2∞
)
≤ 4

∏
(x,y)∈Π+

(1+M2y−2/(a,b))
∑

(x,y)∈Π+:y>n

y−2/b → 0.

(4.13)
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Proposition
Let Z ∈ D be the random function given by Theorem 4.1 and let
t ∈ [t0, t1). Suppose that for some β > 0,∑

(x,y)∈Π+ : t<x≤t+h

y−2/α(Z(t)) = O(hβ) (0 < h < t1 − t). (4.14)

Then, conditional on Ft, given 0 < ϵ < β there exist almost surely a
random number C1 < ∞ such that for all 0 ≤ h < t1 − t,

|Z(t+ h)− Z(t)| ≤ C1h
(β−ϵ)/2. (4.15)
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We now randomise the construction further by taking Π+ to be a
Poisson point process on (t0, t1)× R+ with mean measure 2L2.

The key idea is that the distribution of the point sets {(X,Y) ∈ Π}
where Π ⊂ (t0, t1)× R is a Poisson point process with plane
Lebesgue measure L2 as mean measure, is identical to that of
{(X, S(X,Y)Y) : (X,Y) ∈ Π+

2 , S(X,Y) = ±1}, where Π+
2 is a Poisson

point process on (t0, t1)× R+ with double Lebesgue measure 2L2 as
mean measure and with the S(X,Y) independently taking the values
±1 with equal probability 1

2 for each (X,Y) ∈ Π+
2 (this follows from the

superposition property of Poisson processes).

Hence Π can be realised by first sampling (X,Y) from Π+
2 and then

assigning random signs to the Y coordinates.
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Theorem
Let Π ⊂ (t0, t1)× R be a Poisson point process with mean measure
L2, let α : R → [a, b] where 0 < a < b < 2 and let a0 ∈ R. Then there
exists Z ∈ D such that limn→∞ E

(
∥Zn − Z∥2∞

)
= 0 where Zn is

defined as

Zn(t) = a0 +
∑

(X,Y)∈Π:|Y|≤n

1(t0,t](X)Y⟨−1/α(Zn(X−))⟩ (t0 ≤ t < t1).
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Theorem
Let y0 > 0 and let Π be a Poisson point process on
(t0, t1)× (−∞,−y0] ∪ [y0,∞) with mean measure L2 restricted to this
domain. Then,

E
(
∥Zn−Z∥2∞

)
≤ 8b(t1 − t0)

2− b
exp

(
2M2(t1−t0)

∫ ∞

y0

y−2/(a,b) dy

)
n−(2−b)/b → 0.
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Proposition
Conditional on Ft, given 0 < ϵ < 1/b, there exist almost surely random
numbers C1, C2 < ∞ such that for all 0 ≤ h < t1 − t,

|Z(t+ h)− Z(t)| ≤ C1h
1/α(Z(t))− ϵ

and∣∣(Z(t+ h)− Z(t)
)
−

(
L0
α(t)(t+ h)− L0

α(t)(t)
)∣∣ ≤ C2h

1/α(Z(t))+1/b− ϵ,

where L0
α(t) is the α(t)-stable process defined using the same

realisations of Π as Z.
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Theorem
Let t ∈ [t0, t1). Then, conditional on Ft, almost surely Z is
right-localisable at t, in the sense that

Z(t+ ru)− Z(t)

r1/α(Z(t))

∣∣∣∣Ft
dist→ L0

α(Z(t))(u) (0 ≤ u ≤ 1)

as r ↘ 0, where convergence is in distribution with respect to
(D[0, 1], ρS), with ρS the Skorohod metric.
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