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Oliver-Ricci Flow
Reimannian Manifold (M, g) Weighted Graph(G, w)
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(a) initial manifold

(a') initial network

(b) manifold after Ricci flow

(c') network after surgery

(c) manifold after surgery
Ni, CC., Lin, YY., Luo, F. et al. Community Detection on Networks with Ricci
Flow. Sci Rep 9, (2019).
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Take home message: the problem

m The Optimal Transport Problem of moving continuous
densities f™ and £~ with cost equal to Euclidean Distance

{0 = [ 5]

m The Optimal Transport Problem f* and f~ defined on
graphs with cost equal to the Shortest Path Distance

2 T
min {ﬁ(ﬂ) = (W @M)T‘VU(N)‘ + 12 W}

m The resulting minimum defines a useful distance on positive
measure, the Wasserstein-1 distance
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m Gradient Descent Dynamics

p=V(o)=02%/2 Positiveness preserved
Oio(t) = — Ve L(V(o(t))) “Classical GD”
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Time Discretization

divdiag (6°/2) V - u(t) = f
DAE { o/(t) = — V., L(V(a(t))) T = tF 4 ALK
o(0)=0°>0

m Explicit Euler (Gradient Descent) Accelerated Gradient Descent
One weighted Laplacian system div diag (fi1) Vx = b per iteration
Time step size limitation

m Implicit Euler + Inexact Newton
divdiag (1) V divD; sT\ _ [(—F
DV —ﬁl + D> Sén o —F2
divdiag (1) Vsi = b

More than 1 inexact weighted Laplacian system per iteration
Larger time step size
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Computational Cost - Scaling with graphs’ size

“Grid-like” graphs (only “local” connection)

Graphs Time | Newton | AGMG CPU Errors
g V| |€] | steps steps Iters. (s) err,, = (i)
Go 11-10® 3.1-10° 9 29 335 0.0963 | 3.3e-15
G 42-10° 1.2-10* 6 25 359 0.226 2.7e-13
G, 17-10 4.9-10* 7 26 399 0.902 | 9.0e-14
Gy 6.6-10* 2.0-10° 7 28 456 4.43 3.3e-15
Gy 26-10° 7.9-10° 7 31 545 24.2 6.7e-16
Gs 1.1-10% 3.1-108 8 34 646 136 5.0e-14

#Newton-step ~ O(1) CPU =~ O(|5‘0'11)

AGMG=AGgregation-based algebraic MultiGrid (Notay et al.)
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“Grid-like” graphs (only “local” connection)

Graphs Time | Newton | AGMG CPU Errors

g V| |€] | steps steps Iters. (s) err,, = (i)
Go 11-10® 3.1-10° 9 29 335 0.0963 | 3.3e-15
G 42-10° 1.2-10* 6 25 359 0.226 2.7e-13
G, 17-10 4.9-10* 7 26 399 0.902 | 9.0e-14
Gy 6.6-10* 2.0-10° 7 28 456 4.43 3.3e-15
Gy 26-10° 7.9-10° 7 31 545 24.2 6.7e-16
Gs 1.1-10% 3.1-108 8 34 646 136 5.0e-14

#Newton-step ~ O(1) CPU =~ O(|5‘0'11)

AGMG=AGgregation-based algebraic MultiGrid (Notay et al.)
“Watts-Strogatz ” graphs

#Newton-step ~ O(|€|>%1)/O(|€*¥°)  CPU ~ O(|€]'1*)/O(|€[**)

LAMG=Lean Algebraic MultiGrid (Livne et al.)



Computational Cost - Errors evolution
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Take home messages on the numerical solution

m Using the u = 02/2 positiveness is preserved and purely
Gradient Descent approaches can be used

m Explicit (or 1%-order) schemes (GD or AGD) are cheap but
requires many iterations to converge

m Implicit Euler 4 Inexact Newton (2"?-order schemes) more
expensive requires less time iterations

m “And the winner is": Implicit Euler 4+ Inexact Newton

m The weighted Laplacian systems are solved efficiently by
algebraic Multigrid Solvers (AGMG and LAMG)

m Selection of “active” edges can drastically improve efficiency
The paper: E. Facca and M. Benzi, “Fast iterative solution of the
optimal transport problem on graphs” SIAM J. Sci. Comput.

(2021).
The code : https://gitlab.com/enrico_facca/dmk _solver



