Topology of symplectic fillings of contact 3-manifolds

Burak Özbağcı

8ECM

25 June 2021

Burak Özbağcı (Koç University)

25 June 2021 1/55

A b

At the turn of the century there were two groundbreaking results about symplectic and contact topology in low-dimensions.

- Donaldson's result about the existence of Lefschetz pencils on closed symplectic 4-manifolds, and
- Giroux's correspondence between open books and contact structures on closed 3-manifolds.

Topological characterization of symplectic 4-manifolds

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lefschetz fibrations

Suppose that X and Σ are compact, oriented and smooth manifolds of dimensions **four** and **two**, respectively, *possibly with nonempty boundaries*.

Definition : A Lefschetz fibration $\pi: X \to \Sigma$ is a submersion except for finitely many points $\{p_1, \ldots, p_k\}$ in the interior of X, such that around each p_i and $\pi(p_i)$, there are orientation-preserving complex charts, on which π is of the form

$$\pi(z_1, z_2) = z_1^2 + z_2^2.$$

Lefschetz critical points can be viewed as complex analogs of **Morse critical points**, and they correspond to 2-handles. As a result one obtains a **handle decomposition** of *X*.

Lefschetz fibrations can also be described *combinatorially* by means of their **monodromy**.

Locally :

The fiber of the map $(z_1, z_2) \rightarrow z_1^2 + z_2^2$ above $0 \neq t \in \mathbb{C}$ is smooth *(topologically an annulus)*, while the fiber above the origin has a **transverse double point** *(nodal singularity)* and is obtained from the nearby fibers by *collapsing an embedded simple closed loop* called the **vanishing cycle**.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Burak Özbağcı (Koç University)

▶ < ≣ ▶ ≣ ৩৭৫ 25 June 2021 6/55

<ロ> (日) (日) (日) (日) (日)

Monodromy : Given a Lefschetz fibration $\pi: X \to \Sigma$. Fix a **loop** in Σ enclosing a single critical value, whose critical fiber has a single node. Then π restricts to surface fibration over this **loop** whose monodromy (a diffeomorphism of the fiber) is given by the **right-handed Dehn twist** about the **vanishing cycle.**

For the purposes of this talk, we restrict our attention to the cases where either

- Σ is the 2-sphere S^2 , and the fibres are closed surfaces (thus $\partial X = \emptyset$), or
- Σ is the 2-disk D², and the fibres have nonempty boundaries (thus ∂X ≠ ∅).

We also assume that

(i) each singular fiber carries a **unique singularity** and

(ii) there are *no homotopically trivial vanishing cycles*.

First case, $\Sigma = S^2$, $\partial X = \emptyset$: If $q_1, \ldots, q_k \in S^2$ are the **critical** values of a **genus** *g* Lefschetz fibration $\pi: X \to S^2$, then by fixing a point q_0 in S^2 , we can characterize $\pi: X \to S^2$ by means of its **monodromy** morphism $\psi: \pi_1(S^2 - \{q_1, \ldots, q_k\}) \to Map_g$, where Map_g is the **mapping class group** of an oriented closed genus *g* surface.

Upshot : A Lefschetz fibration $\pi: X \rightarrow S^2$ is characterized by a positive Dehn twist factorization of the identity element in Map_g (uniquely determined up to some natural equivalences).

Second case, $\Sigma = D^2$, $\partial X \neq \emptyset$: This case is simpler, since the global monodromy is a product of **positive Dehn twists** in $Map_{g,r}$ (with no other constraints).

In this case, ∂X inherits a natural **open book decomposition**, which we will discuss in details later.

Lefschetz pencils

Definition : A Lefschetz pencil on a closed and oriented 4-manifold *X* is a map π : $X - \{b_1, \ldots, b_n\} \rightarrow S^2$, submersive except for a finite set $\{p_1, \ldots, p_k\}$, conforming to local models

(i) $(z_1, z_2) \rightarrow z_1/z_2$ near each b_i and

(ii) $(z_1, z_2) \rightarrow z_1^2 + z_2^2$ near each p_j .

Lefschetz pencil

2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

By blowing up X at the base points $\{b_1, \ldots, b_n\}$, we obtain a Lefschetz fibration

 $X \# n \overline{\mathbb{C}P^2} \to S^2$

with *n* **disjoint sections**, which are the exceptional spheres in the blow-up.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

< (□) < 三 > (□)

In 1924, **Lefschetz** showed that **projective surfaces** admit Lefschetz pencils —which was extended by Donaldson, to closed **symplectic** 4-manifolds (i.e. those admitting **closed non-degenerate 2-forms**).

Theorem (Donaldson 1999)

Any closed symplectic 4-manifold admits a Lefschetz pencil.

Conversely, **Gompf' 99** (generalizing a similar result of **Thurston' 76** on surface bundle over surfaces) showed that if $\pi : X \to \Sigma$ is a Lefschetz fibration for which the fiber represents a non-torsion homology class, then X admits a symplectic structure with symplectic fibers.

The hypothesis is satisfied if the fiber genus is not equal to one.

As a corollary, he showed that any closed 4-manifold which admits a Lefschetz pencil, is **symplectic**.

3

イロト 不得 トイヨト イヨト

This **topological characterization** of symplectic 4-manifolds has lead to a renewed interest in **Lefschetz pencils/fibrations** and hundreds of papers have been devoted to the study of various aspects and *(generalizations of)* Lefschetz fibrations. Here is one of the earlier results :

Theorem [O. & Stipsicz' 00, independently Smith' 00] There are infinitely many (pairwise non-homeomorphic) closed 4-manifolds, which admit genus two Lefschetz fibrations over S^2 but do not carry complex structure with either orientation.

These examples are obtained by fiber sums of genus two Lefschetz fibrations $S^2 \times T^2 # 4\overline{\mathbb{C}P^2} \to S^2$ of Matsumoto' 95.

 \implies fiber sums of holomorphic Lefschetz fibrations is *not necessarily* holomorphic.

Topological characterization of contact 3-manifolds

A .

Open book decompositions

Definition : An open book decomposition of a closed and oriented 3-manifold *Y* is a pair (B, π) consisting of an oriented link $B \subset Y$, and a **locally-trivial fibration** $\pi: Y - B \to S^1$ such that *B* has a trivial tubular neighborhood $B \times D^2$ in which π is given by the angular coordinate in the D^2 -factor.

Here *B* is called the **binding** and the closure of each fiber, which is a Seifert surface for *B*, is called a **page**.

I am an open book ! < _ , < _ ,

ъ

æ

Example : (Milnor's fibration)

Consider the polynomial $f: \mathbb{C}^2 \to \mathbb{C}$ given by $f(z_1, z_2) = z_1^p + z_2^q$, where $p, q \ge 2$ are relatively prime. Then $B = f^{-1}(0) \cap S^3$ is the (p, q)-torus knot in S^3 whose complement fibers over S^1 :

$$\pi: S^3 - B \to S^1 := \frac{f(z_1, z_2)}{|f(z_1, z_2)|}$$

 (B, π) is an **open book** for S^3 with connected binding.

The topology of an open book is determined by the topology of its page and its monodromy : Choose a vector field which is **transverse** to the pages and meridional near the binding. The isotopy class of the **first return map** on a fixed page is the **monodromy** of the open book.

Suppose that $\pi : X \to D^2$ is a Lefschetz fibration such that the regular fiber *F* has **nonempty boundary** ∂F . Then ∂X is the union of two pieces :

- the horizontal boundary, $\partial F \times D^2$ and
- the vertical boundary, $\pi^{-1}(\partial D^2)$,

glued together along the tori $\partial F \times \partial D^2$.

It follows that ∂X inherits a natural **open book**, whose page is the fiber *F* and whose monodromy coincides with the monodromy of the Lefschetz fibration $\pi : X \to D^2$.

The vertical boundary : $\pi^{-1}(\partial D^2)$

æ

The horizontal boundary : $\partial F \times D^2$

Burak Özbağcı (Koç University)

25 June 2021 26/55

æ

• • • • • • • • • • • •

Contact 3-manifolds

A differential 1-form α on a 3-manifold Y is a called a **contact form** if $\alpha \wedge d\alpha$ is a volume form.

A 2-dimensional distribution ξ in *TY* is called a **contact structure** if it can be given as the **kernel** of a contact form α .

The pair (Y, ξ) is called a *contact* 3-*manifold*.

Darboux's Theorem : Any point in a contact 3-manifold has a neighborhood isomorphic to a neighborhood of the origin in the standard contact structure $\xi = \ker(dz + xdy)$ in **R**³.

A (10) A (10)

The standard contact structure $\xi = \ker(dz + xdy)$ in \mathbb{R}^3

э

The standard contact structure $\xi = \ker(dz + xdy)$ in \mathbb{R}^3

э

A B > A B >

Open books and contact structures on 3-manifolds

- Alexander' 23 : Every closed oriented 3-manifold has an open book decomposition.
- Martinet' 71 : Every closed oriented 3-manifold has a contact structure.
- Thurston & Winkelnkemper' 75 constructed contact forms on closed 3-manifolds using open books, *giving an alternate proof of Martinet's theorem.*

Definition : We say that a contact structure ξ on a 3-manifold *Y* is **supported** by an open book (B, π) if ξ can be given by a contact form α such that $\alpha(B) > 0$ and $d\alpha > 0$ on every page.

Thurston & Winkelnkemper' 75 : Every open book on a closed oriented 3-manifold supports a contact structure.

3

The converse (i.e. *every contact structure on Y is supported by an open book*) was proven by **Giroux' 00**. In fact he proved the following theorem.

Theorem (Giroux's correspondence)

On a closed oriented 3-manifold, there is a **one-to-one correspondence** between the set of isotopy classes of contact structures and the open books up to positive stabilization.

Stein manifolds

2

• • • • • • • • • • • •

Definition : A **Stein manifold** is an affine complex manifold, i.e., a complex manifold that admits a proper holomorphic embedding into some \mathbb{C}^N .

If $\phi: X \to \mathbb{R}$ is a smooth function on a complex manifold (X, J), then $\omega_{\phi} := -d(d\phi \circ J)$ is a 2-form. The map $\phi: X \to \mathbb{R}$ is called *J*-convex (aka *strictly plurisubharmonic*) if $\omega_{\phi}(u, Ju) > 0$ for all nonzero vectors $u \in TX$.

It follows that ω_{ϕ} is an **exact symplectic** form on *X*.

Grauert's characterization : A complex manifold (X, J) is Stein if and only if it admits a proper *J*-convex function $\phi: X \to [0, \infty)$.

For the purposes of this talk, we now restrict our attention to **Stein surfaces** (complex 2-dimensional)

Let (X, J) be a Stein surface. For any *J*-convex *Morse* function $\phi: X \to [0, \infty)$, each **regular level set** *Y* of ϕ is a contact 3-manifold, where the contact structure is given by the kernel of $\alpha_{\phi} = -d\phi \circ J$ (or equivalently, by the *complex tangencies* $TY \cap JTY$).

For any regular value c of ϕ , the sublevel set $W = \phi^{-1}([0, c])$ is called a **Stein domain**. We also say that the compact 4-manifold (W, J) is a **Stein filling** of its contact boundary $(\partial W, \xi = \ker \alpha_{\phi})$.

Topological characterization of Stein domains (of complex dimension two)

By the work of **Eliashberg' 90**, and **Gompf' 98**, a handle decomposition of a Stein domain (W, J) is well-understood :

It consists of

- a 0-handle,
- some 1-handles and
- some 2-handles attached along Legendrian knots (those tangent to the contact planes) with framing -1 relative to the contact planes.

Theorem [Akbulut & O.' 01 and Loi & Piergallini' 01]

A Stein domain admits an **allowable**^{*} Lefschetz fibration over D² and conversely, an allowable Lefschetz fibration over D² admits a Stein structure.

*allowable : the vanishing cycles are homologically non-trivial.

Idea of proof : Stein 2-handle \Leftrightarrow Lefschetz 2-handle

Moreover, by slightly modifying the proof of Akbulut and myself, **Plamenevskaya' 04** showed that the **contact structure** induced on the boundary of the Stein domain is supported by the **open book** inherited by the Lefschetz fibration.

A criterion* for Stein fillability : A contact 3-manifold is Stein fillable if and only if it admits a supporting open book whose monodromy can be factorized into **positive Dehn twists**.

*This was independently proved by Giroux.

An active line of research topic in symplectic/contact topology is to **classify** *all Stein fillings*, or more generally *all minimal symplectic fillings* of a given contact 3-manifold, up to diffeomorphism.

Definition : A compact symplectic 4-manifold (X, ω) is a (strong) symplectic filling of a contact 3-manifold (Y, ξ) if $\partial X = Y$ (as oriented manifolds), ω is exact near the boundary and its primitive α can be chosen so that ker $(\alpha|_Y) = \xi$.

A symplectic filling is called **minimal** if it does not contain any symplectically embedded sphere of self-intersection -1.

Every Stein filling is a minimal symplectic filling.

Converse is *not true* as shown by **Ghiggini**' 05, using **Ozsváth-Szabó** contact invariants.

The *classification* of **Stein/minimal symplectic fillings** of a given contact 3-manifold is difficult in general. Nevertheless, this problem has been solved for many contact 3-manifolds, each of which has finitely many fillings.

The first example of a contact 3-manifold which admits **infinitely many distinct Stein fillings** was given by **Stipsicz** and myself :

Let Y_g denote the closed 3-manifold, which is the total space of the open book whose page is a genus g surface with connected boundary and whose monodromy is the **square of the boundary Dehn twist.** Let ξ_g denote the contact structure on Y_g supported by this open book.

Theorem [O. & Stipsicz' 04]

For each odd integer $g \ge 3$, the contact 3-manifold (Y_g, ξ_g) admits infinitely many pairwise non-homeomorphic Stein fillings.

Outline of proof :

A positive word in *Map_g*, for g ≥ 3 (generalizing Matsumoto's genus two word), was discovered by Cadavid' 01 and Korkmaz' 01, independently : For g odd, (c₀c₁c₂...c_ga²b²)² = 1

- Take (twisted) fibers sums of Lefschetz fibrations over S²
- Remove a section and a fiber, to get Stein fillings of the common contact boundary
- Distinguish the Stein fillings by torsion in first homology coming from the twisting.

Burak Özbağcı (Koç University)

Baykur & Van Horn-Morris' 15 : There are vast families of contact 3-manifolds each member of which admits infinitely many Stein fillings with arbitrarily large Euler characteristics and arbitrarily small signature.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Canonical contact structures on the links of isolated complex surface singularities

A (1) > A (2) > A

A fruitful source of Stein fillable contact 3-manifolds is given by the **links of isolated complex surface singularities**.

Let $(X, 0) \subset (\mathbb{C}^N, 0)$ be an isolated complex surface singularity. Then for a sufficiently small sphere $S_{\epsilon}^{2N-1} \subset \mathbb{C}^N$ centered at the origin, $Y = X \cap S_{\epsilon}^{2N-1}$ is a closed, oriented and smooth 3-dimensional manifold, which is called **the link of the singularity**.

If *J* denotes the complex structure on *X*, then the complex tangencies $\xi := TY \cap JTY$ is a contact structure on *Y*— called the **canonical** (aka **Milnor fillable**) contact structure on the singularity link. We refer to (Y, ξ) as the **contact singularity link**, in short.

Note that ξ is determined uniquely, up to isomorphism, by a theorem of **Caubel & Némethi & Popescu-Pampu' 06**.

The **minimal resolution** of the singularity provides a Stein filling of the contact singularity link (Y, ξ) (by the work of **Bogomolov & de Oliveira**' **97**)

 \implies (*Y*, ξ) is Stein fillable.

Moreover, if the singularity is smoothable, the general fiber *X* of a **smoothing** is called a **Milnor fiber**, which is a compact smooth 4-manifold such that $\partial X = Y$. Furthermore, *X* has a natural Stein structure so that it provides a **Stein** *(hence minimal symplectic)* filling of (Y, ξ) .

Question : Does there exist a **contact singularity link** which admits Stein (or minimal symplectic) fillings other than the Milnor fibers (and the minimal resolution)?

No, for simple and simple elliptic singularities Ohta & Ono' 03 + 05

No, for cyclic quotient singularities

McDuff' 90 + Christophersen' 91 + Stevens' 91 + Lisca' 08 + Némethi & Popescu-Pampu' 10

No, for non-cyclic quotient singularities

Stevens' 93 + Bhupal & Ono' 12 + H. Park & J. Park & Shin & Urzua' 18

Yes, for some Seifert fibered singularity links, as shown by Akhmedov and myself.

Theorem [Akhmedov & O.' 14]

There exists an infinite family of Seifert fibered contact singularity links such that each member of this family admits infinitely many exotic* Stein fillings. Moreover, none of these Stein fillings are homeomorphic to Milnor fibers.

*exotic : homeomorphic but pairwise not diffeomorphic

Our examples are not simply-connected. The first examples of infinitely many exotic simply-connected Stein fillings were discovered by Akhmedov & Etnyre & Mark & Smith' 08.

Recently, **Plamenevskaya & Starkston' 21** showed that many **rational singularities** admit *(simply-connected)* Stein fillings that are not diffeomorphic to any Milnor fibers.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Theorem [Akhmedov & O.' 18]

For any finitely presented group G, there exists a **contact singularity link** which admits **infinitely many exotic** Stein fillings such that the **fundamental group** of each filling is G.

Some key ingredients in the proofs :

Luttinger surgery

symplectic sum

Fintushel-Stern knot surgery

SW-invariants.

< 回 > < 三 > < 三 >

Lefschetz fibrations on minimal symplectic fillings of lens spaces

Let ξ denote the canonical contact structure on the lens space L(p, q), which is the link of a **cyclic quotient surface singularity**. The minimal symplectic fillings of $(L(p,q),\xi)$ has been classified by Lisca' 08 (and McDuff' 90 for $(L(p,1),\xi)$).

Theorem [Bhupal & O.' 16] There is an algorithm to describe any minimal symplectic filling of $(L(p,q),\xi)$ as an explicit genus-zero allowable Lefschetz fibration over D^2 . Moreover, any minimal symplectic filling of $(L(p,q),\xi)$ is obtained by a sequence of rational blowdowns* starting from the minimal resolution of the corresponding cyclic quotient singularity.

*rational blowdown is a surgery operation discovered by Fintushel & Stern'
97, where a negative definite linear plumbing submanifold is replaced by a rational 4-ball.

The result of **Bhupal & O.' 16** was extended to cover the case of non-cyclic quotient singularities as well by **H. Choi & J. Park' 20.**

Although we have not used it, it also follows by a theorem of **Wendl' 10**, that each minimal symplectic filling of $(L(p, q), \xi)$ is deformation equivalent to a genus-zero allowable Lefschetz fibration over D^2 . This is because $(L(p, q), \xi)$ is known to be planar (Schönenberger' **05**), i.e., it admits a planar open book that supports ξ .

Lefschetz fibrations and trisections

A **handlebody** is a compact manifold admitting a handle decomposition with a single 0-handle and some 1-handles.

Definition : A **trisection** of a closed 4-manifold *X* is a decomposition of *X* into **three** 4D-handlebodies, whose **pairwise** intersections are 3D-handlebodies and whose **triple** intersection is a closed embedded surface.

This is analogous to a **Heegaard splitting** of a closed 3-manifold, which is a decomposition into two 3D-handlebodies whose intersection is an embedded surface.

Trisections can be presented by **trisection diagrams** (similar to the Heegaard diagrams).

Every closed oriented 4-manifold admits a trisection.

Gay' **16** also constructed a **trisection** directly from a given **Lefschetz pencil**, *without describing an explicit trisection diagram*.

In a joint work with **Castro**, we obtained an alternate proof of the theorem of **Gay and Kirby**' **16** using *Lefschetz fibrations* and *contact geometry* and we proved the following.

Theorem [Castro & O.' 19] Suppose that *X* is a closed, oriented 4-manifold which admits a Lefschetz fibration over S^2 with a **section** of square -1. Then, an explicit trisection of *X* can be described by a corresponding trisection diagram, which is determined by the vanishing cycles of the Lefschetz fibration.

Baykur and Saeki' 18 obtained an alternate proof of the theorem of **Gay and Kirby' 16**, setting up a correspondence between **broken** Lefschetz fibrations and trisections, *using a method which is very different from ours.* They also proved a stronger version of our result.

Example : A trisection diagram for the Horikawa surface H'(1), a simply-connected **complex surface of general type** which admits a genus two Lefschetz fibration over S^2 . Note that H'(1) is an **exotic copy** of $5\mathbb{C}P^2 \# 29\overline{\mathbb{C}P^2}$.

