Infinitely many entire solutions to the curl-curl problem with critical exponent

Jacopo Schino

Institute of Mathematics of the Polish Academy of Sciences

24 June 2021, Eighth European Congress of Mathematics
arXiv:2006.03565v2

Joint work with Michał Gaczkowski and Jarosław Mederski

Physical derivation

Maxwell's equations in absence of currents and magnetization:

$$
\left\{\begin{array}{l}
\nabla \times\left(\mu^{-1} \mathcal{B}\right)=\frac{\partial(\varepsilon \mathcal{E}+\mathcal{P})}{\partial t} \quad \text { (Ampère's law) } \\
\nabla \times \mathcal{E}=-\frac{\partial \mathcal{B}}{\partial t} \quad \text { (Faraday's law) }
\end{array}\right.
$$

where \mathcal{E} is the electric field, \mathcal{B} is the magnetic induction, \mathcal{P} is the polarization, ε is the permittivity and μ is the permeability.

With monochromatic waves, i.e., $\mathcal{E}(x, t)=E(x) \cos (\omega t)$ and $\mathcal{P}(x, t)=P(x) \cos (\omega t)$,

Physical derivation

Maxwell's equations in absence of currents and magnetization:

$$
\left\{\begin{array}{l}
\nabla \times\left(\mu^{-1} \mathcal{B}\right)=\frac{\partial(\varepsilon \mathcal{E}+\mathcal{P})}{\partial t} \quad \text { (Ampère's law) } \\
\nabla \times \mathcal{E}=-\frac{\partial \mathcal{B}}{\partial t} \quad \text { (Faraday's law) }
\end{array}\right.
$$

where \mathcal{E} is the electric field, \mathcal{B} is the magnetic induction, \mathcal{P} is the polarization, ε is the permittivity and μ is the permeability. Taking $\frac{\partial}{\partial t}$ in Ampère's law and ε and μ constant in time,

$$
-\nabla \times\left(\mu^{-1} \nabla \times \mathcal{E}\right)=\nabla \times\left(\mu^{-1} \frac{\partial \mathcal{B}}{\partial t}\right)=\varepsilon \frac{\partial^{2} \mathcal{E}}{\partial t^{2}}+\frac{\partial^{2} \mathcal{P}}{\partial t^{2}}
$$

With monochromatic waves, i.e., $\mathcal{E}(x, t)=E(x) \cos (\omega t)$ and

$$
\nabla \times\left(\mu^{-1} \nabla \times E\right)-\varepsilon \omega^{2} E=\omega^{2} P .
$$

Physical derivation

Maxwell's equations in absence of currents and magnetization:

$$
\left\{\begin{array}{l}
\nabla \times\left(\mu^{-1} \mathcal{B}\right)=\frac{\partial(\varepsilon \mathcal{E}+\mathcal{P})}{\partial t} \quad \text { (Ampère's law) } \\
\nabla \times \mathcal{E}=-\frac{\partial \mathcal{B}}{\partial t} \quad \text { (Faraday's law) }
\end{array}\right.
$$

where \mathcal{E} is the electric field, \mathcal{B} is the magnetic induction, \mathcal{P} is the polarization, ε is the permittivity and μ is the permeability. Taking $\frac{\partial}{\partial t}$ in Ampère's law and ε and μ constant in time,

$$
-\nabla \times\left(\mu^{-1} \nabla \times \mathcal{E}\right)=\nabla \times\left(\mu^{-1} \frac{\partial \mathcal{B}}{\partial t}\right)=\varepsilon \frac{\partial^{2} \mathcal{E}}{\partial t^{2}}+\frac{\partial^{2} \mathcal{P}}{\partial t^{2}}
$$

With monochromatic waves, i.e., $\mathcal{E}(x, t)=E(x) \cos (\omega t)$ and $\mathcal{P}(x, t)=P(x) \cos (\omega t)$,

$$
\nabla \times\left(\mu^{-1} \nabla \times E\right)-\varepsilon \omega^{2} E=\omega^{2} P
$$

The curl-curl problem

Find infinitely many solutions to

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) . \tag{1}
\end{equation*}
$$

- $\nabla \times \nabla \phi=0$ for every $\phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$
- $\nabla \times \nabla \times \Phi=-\Delta \Phi+\nabla(\nabla \cdot \Phi)$ for every $\Phi \in C^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$

Solutions to (1) in 1-to-1 correspondence with critical points of

The curl-curl problem

Find infinitely many solutions to

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \tag{1}
\end{equation*}
$$

- $\nabla \times \nabla \phi=0$ for every $\phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$

Solutions to (1) in 1-to-1 correspondence with critical points of

The curl-curl problem

Find infinitely many solutions to

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \tag{1}
\end{equation*}
$$

- $\nabla \times \nabla \phi=0$ for every $\phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$
- $\nabla \times \nabla \times \Phi=-\Delta \Phi+\nabla(\nabla \cdot \Phi)$ for every $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$

Solutions to (1) in 1-to-1 correspondence with critical points of

The curl-curl problem

Find infinitely many solutions to

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \tag{1}
\end{equation*}
$$

- $\nabla \times \nabla \phi=0$ for every $\phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$
- $\nabla \times \nabla \times \Phi=-\Delta \Phi+\nabla(\nabla \cdot \Phi)$ for every $\Phi \in \mathcal{C}^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$

Solutions to (1) in 1-to-1 correspondence with critical points of

$$
J: \mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \mapsto \int_{\mathbb{R}^{3}} \frac{1}{2}|\nabla \times \mathbf{U}|^{2}-\frac{1}{6}|\mathbf{U}|^{6} \mathrm{~d} x \in \mathbb{R} .
$$

From $\nabla \times \nabla \times$ to $-\Delta$

Let $\mathcal{S O}:=\mathcal{S O}(2) \times\{1\}$ and define

$$
\mathcal{D}_{\mathcal{S O}}:=\left\{\mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \mid \mathbf{U}(g \cdot)=g \mathbf{U} \forall g \in \mathcal{S O}\right\} .
$$

Theorem (A. Azzollini, V. Benci, T. D'Aprile, D. Fortunato; 2006)
For all $\mathbf{\|} \in \mathcal{D}_{\text {SO }}$ there exist $\mathbf{U}^{\mathbf{U}} \mathbf{U}_{-} \mathbf{U}_{-} \in \mathcal{D}_{\text {So }}$ such that for a e $x \in \mathbb{R}^{3}$

- $\mathbf{U}_{\rho}(x)$ is the orthogonal projection onto $\operatorname{span}\left\{\left(x_{1}, x_{2}, 0\right)\right\}$,
- $\mathbf{U}_{\tau}(x)$ is the orthogonal projection onto $\operatorname{span}\left\{\left(-x_{2}, x_{1}, 0\right)\right\}$,
- $\mathbf{U}_{C}(x)$ is the orthogonal projection onto span $\{(0,0,1)\}$,
pairwise orthogonal in $\mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{9}$ for almost every $x \in \mathbb{R}^{3}$.

From $\nabla \times \nabla \times$ to $-\Delta$

Let $\mathcal{S O}:=\mathcal{S O}(2) \times\{1\}$ and define

$$
\mathcal{D}_{\mathcal{S O}}:=\left\{\mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \mid \mathbf{U}(g \cdot)=g \mathbf{U} \forall g \in \mathcal{S O}\right\}
$$

Theorem (A. Azzollini, V. Benci, T. D'Aprile, D. Fortunato; 2006)

For all $\mathbf{U} \in \mathcal{D}_{\mathcal{S O}}$ there exist $\mathbf{U}_{\rho}, \mathbf{U}_{\tau}, \mathbf{U}_{\zeta} \in \mathcal{D}_{\mathcal{S O}}$ such that for a.e. $x \in \mathbb{R}^{3}$

- $\mathbf{U}_{\rho}(x)$ is the orthogonal projection onto $\operatorname{span}\left\{\left(x_{1}, x_{2}, 0\right)\right\}$,
- $\mathbf{U}_{\tau}(x)$ is the orthogonal projection onto $\operatorname{span}\left\{\left(-x_{2}, x_{1}, 0\right)\right\}$,
- $\mathbf{U}_{\zeta}(x)$ is the orthogonal projection onto $\operatorname{span}\{(0,0,1)\}$,
$\mathbf{U}=\mathbf{U}_{\rho}+\mathbf{U}_{\tau}+\mathbf{U}_{\zeta}, \nabla \cdot \mathbf{U}_{\tau}=0$, and $\nabla \mathbf{U}_{\rho}(x), \nabla \mathbf{U}_{\tau}(x), \nabla \mathbf{U}_{\zeta}(x)$ are pairwise orthogonal in $\mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{9}$ for almost every $x \in \mathbb{R}^{3}$.

From $\nabla \times \nabla \times$ to $-\Delta$
Consider $\mathcal{S}: \mathcal{D}_{\mathcal{S O}} \rightarrow \mathcal{D}_{\mathcal{S O}}$ defined as

$$
\mathcal{S} \mathbf{U}=\mathcal{S}\left(\mathbf{U}_{\rho}+\mathbf{U}_{\tau}+\mathbf{U}_{\zeta}\right):=-\mathbf{U}_{\rho}+\mathbf{U}_{\tau}-\mathbf{U}_{\zeta}
$$

and let

$$
\mathcal{D}_{\mathcal{S}}:=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathcal{S} \mathbf{U}=\mathbf{U}\right\}=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathbf{U}=\mathbf{U}_{\tau}\right\}
$$

Since $\nabla \cdot \mathbf{U}=0$ for every $\mathbf{U} \in \mathcal{D}_{\mathcal{S}}$,
is equivalent to

Moreover, for every $\mathbf{U} \in \mathcal{D}_{\mathcal{S}}$

From $\nabla \times \nabla \times$ to $-\Delta$
Consider $\mathcal{S}: \mathcal{D}_{\mathcal{S O}} \rightarrow \mathcal{D}_{\mathcal{S O}}$ defined as

$$
\mathcal{S} \mathbf{U}=\mathcal{S}\left(\mathbf{U}_{\rho}+\mathbf{U}_{\tau}+\mathbf{U}_{\zeta}\right):=-\mathbf{U}_{\rho}+\mathbf{U}_{\tau}-\mathbf{U}_{\zeta}
$$

and let

$$
\mathcal{D}_{\mathcal{S}}:=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathcal{S} \mathbf{U}=\mathbf{U}\right\}=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathbf{U}=\mathbf{U}_{\tau}\right\}
$$

Since $\nabla \cdot \mathbf{U}=0$ for every $\mathbf{U} \in \mathcal{D}_{\mathcal{S}}$,

$$
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}_{\mathcal{S}}
$$

is equivalent to

$$
-\Delta \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}_{\mathcal{S}}
$$

Moreover, for every $U \in \mathcal{D}_{\mathcal{S}}$

From $\nabla \times \nabla \times$ to $-\Delta$
Consider $\mathcal{S}: \mathcal{D}_{\mathcal{S O}} \rightarrow \mathcal{D}_{\mathcal{S O}}$ defined as

$$
\mathcal{S} \mathbf{U}=\mathcal{S}\left(\mathbf{U}_{\rho}+\mathbf{U}_{\tau}+\mathbf{U}_{\zeta}\right):=-\mathbf{U}_{\rho}+\mathbf{U}_{\tau}-\mathbf{U}_{\zeta}
$$

and let

$$
\mathcal{D}_{\mathcal{S}}:=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathcal{S} \mathbf{U}=\mathbf{U}\right\}=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}} \mid \mathbf{U}=\mathbf{U}_{\tau}\right\}
$$

Since $\nabla \cdot \mathbf{U}=0$ for every $\mathbf{U} \in \mathcal{D}_{\mathcal{S}}$,

$$
\nabla \times \nabla \times \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}_{\mathcal{S}}
$$

is equivalent to

$$
-\Delta \mathbf{U}=|\mathbf{U}|^{4} \mathbf{U}, \quad \mathbf{U} \in \mathcal{D}_{\mathcal{S}}
$$

Moreover, for every $\mathbf{U} \in \mathcal{D}_{\mathcal{S}}$

$$
J(\mathbf{U})=\int_{\mathbb{R}^{3}} \frac{1}{2}|\nabla \mathbf{U}|^{2}-\frac{1}{6}|\mathbf{U}|^{6} \mathrm{~d} x
$$

The (scalar) Yamabe Problem

Consider

$$
\begin{aligned}
-\Delta u=u^{5}, & u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right), \\
-\Delta v+\frac{3}{4} v & =v^{5},
\end{aligned} \quad v \in H^{1}\left(\mathbb{S}^{3}\right) .
$$

Solutions in 1-to-1 correspondence via the isometric isomorphism

The (scalar) Yamabe Problem

Consider

$$
\begin{aligned}
-\Delta u & =u^{5}, \quad u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right) \\
-\Delta v+\frac{3}{4} v & =v^{5}, \quad v \in H^{1}\left(\mathbb{S}^{3}\right)
\end{aligned}
$$

Solutions in 1-to-1 correspondence via the isometric isomorphism

$$
\begin{align*}
v(\xi)=\frac{u(\pi(\xi))}{\varphi(\pi(\xi))}, & \xi \in \mathbb{S}^{3} \tag{2}\\
u(x)=\varphi(x) v\left(\pi^{-1}(x)\right), & x \in \mathbb{R}^{3}
\end{align*}
$$

where $\pi: \mathbb{S}^{3} \rightarrow \mathbb{R}^{3} \cup\{\infty\}$ is the stereographic projection and
$\varphi(x)=\sqrt{\frac{2}{1+|x|^{2}}}$.

The (scalar) Yamabe problem

$$
\begin{aligned}
& \mathbb{S}^{3} \subset \mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2} \\
& \qquad \mathbb{S}^{3}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \times\left.\mathbb{R}^{2}| | \xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}=1\right\} \\
& \text { For } g=\left(g_{1}, g_{2}\right) \in S O(2)^{2}, v \in H^{1}\left(\mathbb{S}^{3}\right), \text { and } \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{S}^{3} \text { define } \\
& \gamma_{g} v(\xi):=v\left(g_{1} \xi_{1}, g_{2} \xi_{2}\right) \text { and } \\
& \\
& H_{S O(2 \times 2)}:=\left\{v \in H^{1}\left(\mathbb{S}^{3}\right) \mid \gamma_{g} v=v \forall g \in S O(2)^{2}\right\}
\end{aligned}
$$

The (scalar) Yamabe problem

$$
\begin{aligned}
& \mathbb{S}^{3} \subset \mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2}, \\
& \mathbb{S}^{3}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \times\left.\mathbb{R}^{2}| | \xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}=1\right\} .
\end{aligned}
$$

For $g=\left(g_{1}, g_{2}\right) \in \mathcal{S O}(2)^{2}, v \in H^{1}\left(\mathbb{S}^{3}\right)$, and $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{S}^{3}$ define $\gamma_{g} v(\xi):=v\left(g_{1} \xi_{1}, g_{2} \xi_{2}\right)$ and

$$
H_{\mathcal{S O}(2 \times 2)}:=\left\{v \in H^{1}\left(\mathbb{S}^{3}\right) \mid \gamma_{g} v=v \forall g \in \mathcal{S O}(2)^{2}\right\} .
$$

The (scalar) Yamabe problem

$$
\begin{aligned}
& \mathbb{S}^{3} \subset \mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2} \\
& \qquad \mathbb{S}^{3}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \times\left.\mathbb{R}^{2}| | \xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}=1\right\}
\end{aligned}
$$

For $g=\left(g_{1}, g_{2}\right) \in \mathcal{S O}(2)^{2}, v \in H^{1}\left(\mathbb{S}^{3}\right)$, and $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{S}^{3}$ define $\gamma_{g} v(\xi):=v\left(g_{1} \xi_{1}, g_{2} \xi_{2}\right)$ and

$$
H_{\mathcal{S O}(2 \times 2)}:=\left\{v \in H^{1}\left(\mathbb{S}^{3}\right) \mid \gamma_{g} v=v \forall g \in \mathcal{S O}(2)^{2}\right\} .
$$

Theorem (W. Ding, 1986)
$H_{S O(2 \times 2)} \hookrightarrow \hookrightarrow L^{6}\left(\mathbb{S}^{3}\right)$.

The proof

What is γ_{g} for $u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$? If $v \in H^{1}\left(\mathbb{S}^{3}\right)$ is defined via (2), then

$$
v(\xi)=v(g \xi) \Leftrightarrow \frac{u(x)}{\varphi(x)}=\frac{u\left(\pi\left(g \pi^{-1}(x)\right)\right)}{\varphi\left(\pi\left(g \pi^{-1}(x)\right)\right)}, \quad g=\left[\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right] \in \mathcal{S O}(2)^{2} .
$$

The proof

What is γ_{g} for $u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$? If $v \in H^{1}\left(\mathbb{S}^{3}\right)$ is defined via (2), then

$$
v(\xi)=v(g \xi) \Leftrightarrow \frac{u(x)}{\varphi(x)}=\frac{u\left(\pi\left(g \pi^{-1}(x)\right)\right)}{\varphi\left(\pi\left(g \pi^{-1}(x)\right)\right)}, \quad g=\left[\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right] \in \mathcal{S O}(2)^{2} .
$$

Let $\mathcal{D}_{\mathcal{S O}(2 \times 2)}:=$

$$
\left\{\mathbf{U} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) \left\lvert\, \frac{\mathbf{U}(x)}{\varphi(x)}=\frac{\left[\begin{array}{cc}
g_{1} & 0 \\
0 & 1
\end{array}\right]^{T} \mathbf{U}\left(\pi\left(g \pi^{-1}(x)\right)\right)}{\varphi\left(\pi\left(g \pi^{-1}(x)\right)\right)} \forall g \in \mathcal{S O}(2)^{2}\right.\right\}
$$

The proof

Lemma

- $\mathcal{D}_{\mathcal{S O}(2 \times 2)} \hookrightarrow \hookrightarrow L^{6}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$.
- $\mathcal{D}_{\mathcal{S O}(2 \times 2)} \subset \mathcal{D}_{\mathcal{S O}}$.
- If $\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)}$, then $\mathbf{U}_{\rho}, \mathbf{U}_{\tau}, \mathbf{U}_{\zeta} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)}$.
- $\operatorname{dim} Y=\infty$, where

$$
Y:=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)} \mid \mathcal{S} \mathbf{U}=\mathbf{U}\right\}=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)} \mid \mathbf{U}=\mathbf{U}_{\tau}\right\} .
$$

Theorem (P. H. Rabinowitz, 1986)

E Banach Space, $\operatorname{dim} E-\infty, I \in C^{1}(E)$ even, $I(0)=0$ and satisfying (PS) at every positive level, $\inf _{S_{r}} I>0$ for some $r>0$. Assume for every finite-dimensional subspace $F \subset E$ there exists $R(F)>0$ such that $\sup _{F \backslash B_{R(F)}} I \leq 0$. Then there exists $x_{n} \in E$ such that $I^{\prime}\left(x_{n}\right)=0$ and

The proof

Lemma

- $\mathcal{D S O}_{(2 \times 2)} \hookrightarrow \hookrightarrow L^{6}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$.
- $\mathcal{D}_{\mathcal{S O}(2 \times 2)} \subset \mathcal{D}_{\mathcal{S O}}$.
- If $\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)}$, then $\mathbf{U}_{\rho}, \mathbf{U}_{\tau}, \mathbf{U}_{\zeta} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)}$.
- $\operatorname{dim} Y=\infty$, where

$$
Y:=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)} \mid \mathcal{S} \mathbf{U}=\mathbf{U}\right\}=\left\{\mathbf{U} \in \mathcal{D}_{\mathcal{S O}(2 \times 2)} \mid \mathbf{U}=\mathbf{U}_{\tau}\right\}
$$

Theorem (P. H. Rabinowitz, 1986)

E Banach Space, $\operatorname{dim} E=\infty, I \in \mathcal{C}^{1}(E)$ even, $I(0)=0$ and satisfying (PS) at every positive level, $\inf _{S_{r}} I>0$ for some $r>0$. Assume for every finite-dimensional subspace $F \subset E$ there exists $R(F)>0$ such that $\sup _{F \backslash B_{R(F)}} I \leq 0$. Then there exists $x_{n} \in E$ such that $I^{\prime}\left(x_{n}\right)=0$ and $I\left(x_{n}\right) \rightarrow \infty$.

Theorem (M. Gaczkowski, J. Mederski, J. S.; preprint)
There exists $\mathbf{U}_{n} \in Y$ such that \mathbf{U}_{n} is a solution to (1) and $J\left(\mathbf{U}_{n}\right) \rightarrow \infty$.

Theorem (M. Gaczkowski, J. Mederski, J. S.; preprint)
There exists $\mathbf{U}_{n} \in Y$ such that \mathbf{U}_{n} is a solution to (1) and $J\left(\mathbf{U}_{n}\right) \rightarrow \infty$.

Thank you for your attention!

