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Physical derivation

Maxwell’s equations in absence of currents and magnetization:{
∇× (µ−1B) = ∂(εE+P)

∂t (Ampère’s law)

∇× E = −∂B
∂t (Faraday’s law)

where E is the electric field, B is the magnetic induction, P is the
polarization, ε is the permittivity and µ is the permeability.
Taking ∂

∂t in Ampère’s law and ε and µ constant in time,

−∇× (µ−1∇× E) = ∇×
(
µ−1

∂B
∂t

)
= ε

∂2E
∂t2

+
∂2P
∂t2

.

With monochromatic waves, i.e., E(x , t) = E (x) cos(ωt) and
P(x , t) = P(x) cos(ωt),

∇× (µ−1∇× E )− εω2E = ω2P.
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The curl-curl problem

Find infinitely many solutions to

∇×∇×U = |U|4U, U ∈ D1,2(R3,R3). (1)

∇×∇φ = 0 for every φ ∈ C∞c (R3)

∇×∇× Φ = −∆Φ +∇(∇ · Φ) for every Φ ∈ C2(R3,R3)

Solutions to (1) in 1-to-1 correspondence with critical points of

J : U ∈ D1,2(R3,R3) 7→
∫
R3

1

2
|∇ ×U|2 − 1

6
|U|6 dx ∈ R.
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From ∇×∇× to −∆

Let SO := SO(2)× {1} and define

DSO :=
{
U ∈ D1,2(R3,R3)

∣∣ U(g ·) = gU∀g ∈ SO
}

.

Theorem (A. Azzollini, V. Benci, T. D’Aprile, D. Fortunato; 2006)

For all U ∈ DSO there exist Uρ,Uτ ,Uζ ∈ DSO such that for a.e. x ∈ R3

Uρ(x) is the orthogonal projection onto span{(x1, x2, 0)},
Uτ (x) is the orthogonal projection onto span{(−x2, x1, 0)},
Uζ(x) is the orthogonal projection onto span{(0, 0, 1)},

U = Uρ + Uτ + Uζ , ∇ ·Uτ = 0, and ∇Uρ(x), ∇Uτ (x), ∇Uζ(x) are
pairwise orthogonal in R3×3 ' R9 for almost every x ∈ R3.
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From ∇×∇× to −∆
Consider S : DSO → DSO defined as

SU = S(Uρ + Uτ + Uζ) := −Uρ + Uτ −Uζ

and let

DS := {U ∈ DSO | SU = U } = {U ∈ DSO | U = Uτ }.

Since ∇ ·U = 0 for every U ∈ DS ,

∇×∇×U = |U|4U, U ∈ DS .

is equivalent to
−∆U = |U|4U, U ∈ DS .

Moreover, for every U ∈ DS

J(U) =

∫
R3

1

2
|∇U|2 − 1

6
|U|6 dx .

Jacopo Schino (IM PAS) ∞ solutions to ∇×∇× U = |U|4U in R3 24 June 2021, 8ecm 5 / 10



From ∇×∇× to −∆
Consider S : DSO → DSO defined as

SU = S(Uρ + Uτ + Uζ) := −Uρ + Uτ −Uζ

and let

DS := {U ∈ DSO | SU = U } = {U ∈ DSO | U = Uτ }.

Since ∇ ·U = 0 for every U ∈ DS ,

∇×∇×U = |U|4U, U ∈ DS .

is equivalent to
−∆U = |U|4U, U ∈ DS .

Moreover, for every U ∈ DS

J(U) =

∫
R3

1

2
|∇U|2 − 1

6
|U|6 dx .

Jacopo Schino (IM PAS) ∞ solutions to ∇×∇× U = |U|4U in R3 24 June 2021, 8ecm 5 / 10



From ∇×∇× to −∆
Consider S : DSO → DSO defined as

SU = S(Uρ + Uτ + Uζ) := −Uρ + Uτ −Uζ

and let

DS := {U ∈ DSO | SU = U } = {U ∈ DSO | U = Uτ }.

Since ∇ ·U = 0 for every U ∈ DS ,

∇×∇×U = |U|4U, U ∈ DS .

is equivalent to
−∆U = |U|4U, U ∈ DS .

Moreover, for every U ∈ DS

J(U) =

∫
R3

1

2
|∇U|2 − 1

6
|U|6 dx .

Jacopo Schino (IM PAS) ∞ solutions to ∇×∇× U = |U|4U in R3 24 June 2021, 8ecm 5 / 10



The (scalar) Yamabe Problem

Consider

−∆u = u5, u ∈ D1,2(R3),

−∆v +
3

4
v = v5, v ∈ H1(S3).

Solutions in 1-to-1 correspondence via the isometric isomorphism

v(ξ) =
u
(
π(ξ)

)
ϕ
(
π(ξ)

) , ξ ∈ S3,

u(x) = ϕ(x)v
(
π−1(x)

)
, x ∈ R3,

(2)

where π : S3 → R3 ∪ {∞} is the stereographic projection and

ϕ(x) =

√
2

1 + |x |2
.
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The (scalar) Yamabe problem

S3 ⊂ R4 = R2 × R2,

S3 =
{

(ξ1, ξ2) ∈ R2 × R2
∣∣∣ |ξ1|2 + |ξ2|2 = 1

}
.

For g = (g1, g2) ∈ SO(2)2, v ∈ H1(S3), and ξ = (ξ1, ξ2) ∈ S3 define
γgv(ξ) := v(g1ξ1, g2ξ2) and

HSO(2×2) :=
{
v ∈ H1(S3)

∣∣ γgv = v ∀g ∈ SO(2)2
}

.

Theorem (W. Ding, 1986)

HSO(2×2) ↪→↪→ L6(S3).
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The proof

What is γg for u ∈ D1,2(R3)? If v ∈ H1(S3) is defined via (2), then

v(ξ) = v(gξ)⇔ u(x)

ϕ(x)
=

u
(
π
(
gπ−1(x)

))
ϕ
(
π
(
gπ−1(x)

)) , g =
[
g1 0
0 g2

]
∈ SO(2)2.

Let DSO(2×2) :={
U ∈ D1,2(R3,R3)

∣∣∣∣∣ U(x)

ϕ(x)
=

[
g1 0
0 1

]T
U
(
π
(
gπ−1(x)

))
ϕ
(
π
(
gπ−1(x)

)) ∀g ∈ SO(2)2

}
.
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The proof

Lemma

DSO(2×2) ↪→↪→ L6(R3,R3).

DSO(2×2) ⊂ DSO.

If U ∈ DSO(2×2), then Uρ,Uτ ,Uζ ∈ DSO(2×2).
dimY =∞, where
Y :=

{
U ∈ DSO(2×2)

∣∣ SU = U
}

=
{
U ∈ DSO(2×2)

∣∣ U = Uτ

}
.

Theorem (P. H. Rabinowitz, 1986)

E Banach Space, dimE =∞, I ∈ C1(E ) even, I (0) = 0 and satisfying
(PS) at every positive level, infSr I > 0 for some r > 0. Assume for every
finite-dimensional subspace F ⊂ E there exists R(F ) > 0 such that
supF\BR(F )

I ≤ 0. Then there exists xn ∈ E such that I ′(xn) = 0 and

I (xn)→∞.
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Theorem (M. Gaczkowski, J. Mederski, J. S.; preprint)

There exists Un ∈ Y such that Un is a solution to (1) and J(Un)→∞.

Thank you for your attention!
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