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Introduction: Data driven setting and Koopman operator

Setting the scene: DS and Koopman operator

ẋ(t) = F(x(t)) ≡

(
F1(x(t))

...
FN (x(t))

)
, x(t0) = x0, (1)

with state space X (smooth N -dimensional compact manifold, with Borel
σ algebra B; X ⊂ RN ) and vector-valued nonlinear function F : X → RN .
The corresponding flow map is

x(t0 + t) = ϕt(x(t0)) = x(t0) +

∫ t0+t

t0

F(x(τ))dτ. (2)

The state may not be accessible. Instead, have observable f : X → C,
f ∈ F ; e.g. F = Lp(X , µ) (1 ≤ p ≤ ∞).

Koopman operator semigroup (Uϕt)t≥0

Uϕtf = f ◦ϕt, f ∈ F . (3)

Uϕt is linear operator. It is an infinite dimensional linearization of (1) that
takes the action into the space F of observables.
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Introduction: Data driven setting and Koopman operator

Setting the scene: DS and Koopman operator

Consider a discrete dynamical system si+1 = T(si), where T : X −→ X is
a measurable nonlinear map on a state space X and i ∈ Z. The Koopman
operator U ≡ UT for the discrete system is defined analogously by

Uf = f ◦T, f ∈ F . (4)

If we run a numerical simulation of the ODE’s (1) in a time interval [t0, t∗],
the numerical solution is obtained on a discrete equidistant grid with fixed
time lag ∆t: t0, t1 = t0 + ∆t, . . . , ti−1 = ti−2 + ∆t, ti = ti−1 + ∆t, . . .
In this case, a black-box software toolbox acts as a discrete dynamical
system si = T(si−1) that produces the discrete sequence of si ≈ x(ti);
this is sampling with noise.
For ti = t0 + i∆t we have (using ϕ∆t, Uϕ∆t and the group property)

f(x(t0 + i∆t)) = (f ◦ϕi∆t)(x(t0)) = (Uϕi∆tf)(x(t0)) = (U iϕ∆tf)(x(t0)),

where U i
ϕ∆t = Uϕ∆t ◦ . . . ◦ Uϕ∆t .
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Introduction: Data driven setting and Koopman operator

Setting the scene: DS and Koopman operator

On the other hand, using Uf = f ◦T, si ≈ x(ti),

f(si) = f(T(si−1)) = . . . = f(Ti(s0)) = (U if)(s0), (5)

where T2 = T ◦T, Ti = T ◦Ti−1. Hence, in a software simulation of (1)
with the initial condition s0 = x(t0), we have an approximation

(U if)(s0) ≈ (U iϕ∆tf)(s0), f ∈ F , s0 ∈ X , i = 0, 1, 2, . . . (6)

This can be obviously extended to vector valued observables:

for g = (g1, . . . , gd) : X −→ Cd define Udg =

(
g1◦T

...
gd◦T

)
=

( Ug1

...
Ugd

)
. (7)

The observables can be physical quantities (e.g. temperature, pressure,
energy) and mathematical constructs using suitable classes of functions
(e.g. multivariate Hermite polynomials, radial basis functions). In
particular, if we set d = N , gi(s) = eTi s, where s ∈ CN , ei = (δji)

N
j=1,

i = 1, . . . , N , then g(s) = s is full state observable and (Udg)(si) = si+1.
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Introduction: Data driven setting and Koopman operator

Data driven framework

Snapshot – a numerical value of a scalar or vector valued observable at a
specific instance in time. Explicit knowledge of the mappings F or T may
not be available.

For example, snapshots may be obtained as/by

high speed camera recording of a combustion process in a turbine

new cases of covid 19 infections, reported daily

wind tunnel measurements

numerical simulation of (1) represented by (4), (5), (6), where we can
feed an initial s0 to a software tool (representing T, or its
linearization through a numerical scheme encoded in a software
toolbox) to obtain a Krylov sequence: f(s0) = (U0

d f)(s0),

f(s1) = (Udf)(s0), f(s2) = (U2
d f)(s0), . . . , f(sM+1) = (UM+1

d f)(s0),

where f = (f1, . . . , fd)
T is a vector valued (d > 1) observable with

the action of Ud defined component-wise.
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Introduction: Data driven setting and Koopman operator

Data driven framework – snapshots. Examples.

Snapshot matrix S with columns f(s0), f(sk+1)=(Udf)(sk), sk+1 =T(sk):

S=(f(s0) f(s1) ... f(sM ) f(sM+1))=

 f1(s0) f1(s1) ... f1(sM ) f1(sM+1)
f2(s0) f2(s1) ... f2(sM ) f2(sM+1)

...
...

...
...

...
fd(s0) fd(s1) ... fd(sM ) fd(sM+1)

∈Cd×(M+2),

(i) The snapshots are generated by a nonlinear system.
(ii) The snapshots are a Krylov sequence f ,Udf ,U2

d f , . . ., driven by the
linear operator Ud and evaluated along a trajectory initialized at s0.

It makes sense to find a matrix A ∈ Cd×d such that

Af(sk) = (Udf)(sk) =

(
(Uf1)(sk)

...
(Ufd)(sk)

)
= f(T(sk)), k = 0, . . . ,M. (8)

Thus, if we set X = S(1 : d, 1 : M + 1), Y = S(1 : d, 2 : M + 2), then
such an A would satisfy Y = AX, and this could be extended linearly to
the span of the columns of X by A(Xv) = Yv, v ∈ CM+1. The action of
A outside the column space of X is not specified by the available data.
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Introduction: Data driven setting and Koopman operator

The DMD matrix A
Flexible: can use many trajectories
In general, X and Y are not necessarily extracted from a single trajectory.
The data may consist of several short bursts with different initial
conditions, arranged as a sequence of column vector pairs of snapshots
(xk,yk), where xk = f(sk), yk = f(T(sk)) column-wise so that a kth
column in Y corresponds to the value of the observable in the kth column
of X through the action of Ud.

Existence and uniqueness of A: A = YX†

Depending on the parameters d and M , the matrices X, Y can be square,
tall, or wide. Then, we can search for a linear transformation A such that
Y = AX. Such an A may not exist.
However, we can always define a particular matrix A which minimizes
‖Y − AX‖F . Clearly, if XT has a nontrivial null-space, A is not unique;
we can choose B so that BX = 0 and thus (A+B)X = AX. An
additional condition of minimality of ‖A‖F yields the well known solution
A = YX†, expressed using the Moore-Penrose pseudoinverse X† of X.
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Introduction: Data driven setting and Koopman operator

Finite dimensional compression of U
Read the information in the snapshots matrix row-wise:

Ŝ(1 : M + 1, 1 : d) =

 f1(s0) f2(s0) f3(s0) ... fd(s0)
f1(s1) f2(s1) f3(s1) ... fd(s1)

...
...

... ...
...

f1(sM ) f2(sM ) f3(sM ) ... fd(sM )

 = XT ,

Ŝ(2 : M + 2, 1 : d) =

 f1(T(s0)) f2(T(s0)) f3(T(s0)) ... fd(T(s0))
f1(T(s1)) f2(T(s1)) f3(T(s1)) ... fd(T(s1))

...
...

... ...
...

f1(T(sM )) f2(T(sM )) f3(T(sM )) ... fd(T(sM ))

 = YT ,

Consider the action of U on the space FD spanned by the dictionary of
scalar functions D = {f1, . . . , fd}. That is, we seek a matrix
representation U of the compression ΨFDU|FD : FD −→ FD, where ΨFD
is a suitable projection with the range FD. This is the standard
construction: we need a representation of Ufi of the form

(Ufi)(s) = fi(T(s)) =
d∑
j=1

ujifj(s) + ρi(s), i = 1, . . . , d, s ∈ X . (9)
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Introduction: Data driven setting and Koopman operator

Finite dimensional compression of U
Given limited information, the projection is feasible only in the discrete
(algebraic) sense: we can define the matrix U = (uji) ∈ Cd×d column-wise
by minimizing the residual ρi(s) in

(Ufi)(s) = fi(T(s)) =

d∑
j=1

ujifj(s) + ρi(s), i = 1, . . . , d, s ∈ X

over the states s = sk, using the values

(Ufi)(sk) = fi(T(sk)), i = 1, . . . , d; k = 0, . . . ,M. (10)

To that end, write the least squares residual

1

M + 1

M∑
k=0

|ρi(sk)|2 =
1

M + 1

M∑
k=0

|
d∑
j=1

ujifj(sk)− fi(T(sk))|2, (11)

which is the L2 residual with respect to the empirical measure defined as
the sum of the Dirac measures concentrated at the sk’s,
δM+1 = (1/(M + 1))

∑M
k=0 δsk .
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Introduction: Data driven setting and Koopman operator

Compression of U – matrix representation

Hence, the columns of the matrix representation U are defined as the
solutions of the least squares problems∫ ∣∣∣∣∣∣

d∑
j=1

ujifj−fi◦T

∣∣∣∣∣∣
2

dδM+1 =γM

∥∥∥∥∥
[(

f1(s0) ... fd(s0)

... ...
...

f1(sM ) ... fd(sM )

)(
u1i

...
udi

)
−

(
fi(T(s0))

...
fi(T(sM ))

)]∥∥∥∥∥
2

2

→min
u1i,...,udi

,

for i = 1, . . . , d; γM = 1/(M + 1). The solutions of the above algebraic
least squares problems for all i = 1, . . . , d are compactly written as the
matrix U ∈ Cd×d that minimizes ‖XTU−YT ‖F . Recall that we seek an A
such that AX = Y, i.e. ‖AX−Y‖F = ‖XTAT −YT ‖F → min. Hence,

U = (XT )†YT ≡ (YX†)T = AT , (12)

and the action of U can be represented, using (9), as

U
(
f1(s) . . . fd(s)

)
=
(
f1(s) . . . fd(s)

)
U+

(
ρ1(s) . . . ρd(s)

)
.

Assume U is diagonalizable: U = QΛQ−1, with Λ = diag(λi)
d
i=1,

Q = (q1, . . . ,qd), Uqi = λiqi.
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Introduction: Data driven setting and Koopman operator

Compression of U – approximate eigenfunctions

For s ∈ X ,

U
(
f1(s) . . . fd(s)

)
Q =

(
f1(s) . . . fd(s)

)
QΛ+

(
ρ1(s) . . . ρd(s)

)
Q,

and the approximate eigenfunctions of U , extracted from the span of
f1, . . . , fd, are

(
φ1(s) . . . φd(s)

)
=
(
f1(s) . . . fd(s)

)
Q, (Uφi)(s)=λiφi(s)+

d∑
j=1

ρj(s)Qji.

In a data driven framework, these eigenfunctions are accessible, as well as
the observables, only as the tabulated values for s ∈ {s0, . . . , sM}: φ1(s0) φ2(s0) ... φd(s0)

φ1(s1) φ2(s1) ... φd(s1)

...
...

...
...

φ1(sM+1) φ2(sM+1) ... φd(sM+1)

=

 f1(s0) f2(s0) ... fd(s0)
f1(s1) f2(s1) ... fd(s1)

...
...

...
...

f1(sM+1) f2(sM+1) ... fd(sM+1)

Q=STQ.
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Introduction: Data driven setting and Koopman operator

Koopman Mode Decomposition (KMD)

Let now g(s)T = (g1(s), . . . , gd(s)) be a vector valued observable and let
g(s)T = (f1(s), . . . , fd(s))Γ, Γ = (γji) ∈ Cd×d. (If gi = fi, then Γ = Id )

g(z)T =
(
f1(s) . . . fd(s)

)
QQ−1Γ =

(
φ1(s) . . . φd(s)

)
Q−1Γ, s ∈ X .

Set Z = ΓTQ−T =
(
z1 . . . zd

)
, where zi is the ith column. Theng1(s)

...
gd(s)

 = ΓTQ−T︸ ︷︷ ︸
Z

φ1(s)
...

φd(s)

 =

d∑
i=1

ziφi(s). (Here (Uφi)(s) ≈ λiφi(s).)

The Koopman mode decomposition (KMD) for k = 0, 1, . . . reads

(Ukdg)(s) =

(Ukg1)(s)
...

(Ukgd)(s)

 ≈ d∑
i=1

ziφi(s)λ
k
i . (13)

AT = U = QΛQ−1 implies AQ−T = Q−TΛ, i.e. the columns of Q−T are
the (right) eigenvectors of A. Hence, to compute the KMD, we start with
computing the eigenvalues and eigenvectors of A.
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Introduction: Data driven setting and Koopman operator

Data driven spectral analysis

Suppose we are given a sequence of snapshots fi ∈ Cn of an underlying
dynamics, that are driven by an unaccessible black box linear operator A;

fi+1 = Afi, i = 1, . . . ,m, m < n, (14)

with some initial f1 and a time lag δt. No other information is available.

The two basic tasks of the Dynamic Mode Decomposition (DMD) are

1 Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , λj = |λj |eiωjδt, j = 1, . . . , k; k ≤ m, (15)

2 Derive a spectral spatio–temporal representation of the snapshots fi:

fi ≈
∑̀
j=1

zςjαjλ
i−1
ςj ≡

∑̀
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m.

(16)
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Introduction: Data driven setting and Koopman operator

Data driven spectral analysis – deep connections to
Koopman operator theory/applications

The decomposition of the snapshots (16) reveals dynamically relevant
spatial structures, the zςj ’s, that evolve with amplitudes and frequencies
encoded in the corresponding λςj ’s. It is desirable to have small number `
of the most important modes zς1 , . . . , zς` , ςj ∈ {1, . . . , k}.

Such a sequence of snapshot (vectors of observables) can be obtained e.g.
using black–boxed high performance ODE/PDE software, or e.g. by hi
speed camera in an analysis of combustion instabilities in flame dynamics.

In a carefully designed framework with reach enough set of properly
selected observables, the DMD can be considered as a finite dimensional
spectral approximation of the Koopman operator associated with the
dynamics under study [Arbabi+Mezić]. This deep theoretical connection
gives the DMD a pivotal role in computational study of complex
phenomena in fluid dynamics, see e.g. [Rowley], [Williams].
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Introduction: Data driven setting and Koopman operator

Data driven spectral analysis - applications and software
implementations

Other successful applications of DMD include e.g. aeroacoustics
[Lele+Nichols], affective computing (analysis of videos for human emotion
recognition [Cat Le Ngo+et al.]), robotics (filtering external perturbation
using DMD based prediction [Berger+et al.]), algorithmic trading on
financial markets [Mann+Kutz], analysis of infectious disease spread
[Proctor+Eckhoff], neuroscience [Brunon+et al.] – just to name a few.

Computational aspects (for software implementation):

matrix multiplication and other simple matrix/vector operations

SVD decomposition, Moore-Penrose pseudo-inverse, least squares

eigenvalues and eigenvectors of matrices of moderate dimensions

All necessary software implementations available in state of the art
packages such as Matlab, Python (NumPy, SciPy) – LAPACK based.

So is there anything left to do for a numerical analyst?
Drmač (MS 69) Numerics of DMD and KMD 8th ECM 16 / 66



Dynamic Mode Decomposition (DMD) and RRRR-DMD

Tool: Krylov subspaces

For i = 1, 2, . . . ,m, define the Krylov matrices

Xi =
(
f1 f2 . . . fi−1 fi

)
, Yi =

(
f2 f3 . . . fi fi+1

)
≡ AXi,

and the corresponding Krylov subspaces Xi = range(Xi) ⊂ Cn.

Assume that at the index m, Xm is of full column rank. This implies

X1  X2  · · ·  Xi  Xi+1  · · ·  Xm  · · ·  X` = X`+1, ,

i.e. dim(Xi) = i for i = 1, . . . ,m, and there must be the smallest
saturation index ` at which X` = X`+1.

AX` ⊆ X`, It is well known that then X` is the smallest A-invariant
subspace that contains f1.

The action of A on Xm is known, A(Xmv) = Ymv for any v ∈ Cm.
Hence, useful spectral information can be obtained using the
computable restriction PXmA

∣∣
Xm

, that is, the Ritz values and vectors
extracted using the Rayleigh quotient of A with respect to Xm.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Tool: Krylov decomposition and Rayleigh-Ritz extraction

To that end, let the vector c = (ci)
m
i=1 be computed from the least

squares approximation

‖fm+1 −Xmc‖2 −→ min
c

(1)

and let rm+1 = fm+1 −Xmc be the corresponding residual. Recall
that, by virtue of the theorem of projection, Xmc = PXmfm+1 and
that rm+1 is orthogonal to the range of Xm, X∗mrm+1 = 0.

Let Em+1 = rm+1e
T
m, em =

(
0, . . . , 0, 1

)T
. The Krylov

decomposition reads:

AXm = XmCm + Em+1, Cm =


0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3
...

. . .
. . .

...
...

0 0 . . . 1 cm

 .
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Rayleigh–Ritz extraction – basic properties

1 Cm = (X∗mXm)−1(X∗mAXm) ≡ X†mAXm = (X∗mXm)−1(X∗mYm) is
the Rayleigh quotient, i.e. the matrix representation of PXmA

∣∣
Xm

2 If rm+1 = 0 (and thus Em+1 = 0 and m = `) then AXm = XmCm
and each eigenpair Cmw = λw of Cm yields an eigenpair of A,
A(Xmw) = λ(Xmw).

3 If rm+1 6= 0, then (λ, z ≡ Xmw) is an approximate eigenpair,
A(Xmw) = λ(Xmw) + rm+1(eTmw), i.e. Az = λz + rm+1(eTmw).
The Ritz pair (λ, z) is acceptable if the residual

‖Az − λz‖2
‖z‖2

=
‖rm+1‖2
‖z‖2

|eTmw|

is sufficiently small. It holds that z∗rm+1 = 0, and

λ =
z∗Az
z∗z

= argminζ∈C‖Az − ζz‖2

(λz is the orthogonal projection of Az onto the span of z).
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Beautiful structure and bad news

The spectral decomposition of Cm has beautiful structure. Assume for
simplicity that the eigenvalues λi, i = 1, . . . ,m, are algebraically simple. It
is easily checked that the spectral decomposition of Cm reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

The Ritz vectors are the columns of Zm = XmV−1
m .

Bad news: The Vandermonde matrix Vm is ill-conditioned!

The condition number κ2(Vm) ≡ ‖Vm‖2‖V−1
m ‖2 of any 100× 100 real

Vandermonde matrix is larger than 3 · 1028,
(κ2(Vm) ≥ 2m−2/

√
m,m = 100, [Gautschi]).

Better: Schmid’s DMD – compute the Rayleigh quotient using a POD
(truncated SVD) basis of Xm.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Schmid’s DMD

To avoid the ill-conditioning, Schmid used the thin truncated SVD
Xm = UΣV ∗ ≈ UkΣkV

∗
k , where Uk = U(:, 1 : k) is n× k orthonormal

(U∗kUk = Ik), Vk = V (:, 1 : k) is m× k, also orthonormal (V ∗k Vk = Ik),
and Σk = diag(σi)

k
i=1 contains the largest k singular values of Xm. In

brief, Uk is the POD basis for the snapshots f1, . . . , fm. Since

Ym = AXm ≈ AUkΣkV
∗
k , and AUk = YmVkΣ

−1
k , (2)

the Rayleigh quotient Sk = U∗kAUk with respect to the range of Uk can be
computed as

Sk = U∗kYmVkΣ
−1
k , (3)

which is suitable for data driven setting because it does not use A
explicitly. Clearly, (2, 3) only require that Ym = AXm; it is not necessary
that Ym is shifted Xm. Each eigenpair (λ,w) of Sk generates the
corresponding Ritz pair (λ,Ukw) for A.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Schmid’s DMD

Algorithm [Zk,Λk] = DMD(Xm,Ym)

Input: • Xm = (x1, . . . ,xm),Ym = (y1, . . . ,ym) ∈ Cn×m that define a
sequence of snapshots pairs (xi,yi ≡ Axi). (Tacit assumption is that
n is large and that m� n.)

1: [U,Σ, V ] = svd(Xm) ; {The thin SVD: Xm = UΣV ∗, U ∈ Cn×m,
Σ = diag(σi)

m
i=1, V ∈ Cm×m}

2: Determine numerical rank k.
3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)
4: Sk = ((U∗kYm)Vk)Σ

−1
k ; {Schmid’s formula for the Rayleigh quotient

U∗kAUk}
5: [Wk,Λk] = eig(Sk) {Λk = diag(λi)

k
i=1; SkWk(:, i) = λiWk(:, i);

‖Wk(:, i)‖2 = 1}
6: Zk = UkWk {Ritz vectors}

Output: Zk, Λk
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Data driven (computable) residual

Not all computed Ritz pairs will provide good approximations of eigenpairs
of the underlying A, and it is desirable that each pair is accompanied with
an error estimate that will determine whether it can be accepted and used
in the next steps of a concrete application. The residual is computationally
feasible and usually reliable measure of fitness of a Ritz pair. With a
simple modification, the DMD Algorithm can be enhanced with residual
computation, without using A explicitly.

Proposition

For the Ritz pairs (λi, Zk(:, i) ≡ UkWk(:, i)), i = 1, . . . , k, computed in
the DMD Algorithm, the residual norms can be computed as follows:

rk(i) = ‖AZk(:, i)− λiZk(:, i)‖2 = ‖(YmVkΣ
−1
k )Wk(:, i)− λiZk(:, i)‖2.

(4)
Further, if A = Sdiag(αi)

n
i=1S

−1, then minαj |λi − αj | ≤ κ2(S)rk(i) (by
the Bauer–Fike Theorem).
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Data driven (computable) residual

Example

test The well studied and understood model of laminar flow around a
cylinder is based on the two-dimensional incompressible Navier-Stokes
equations

∂v

∂t
= −(v · ∇)v + ν∆v − 1

ρ
∇p, ∇ · v = 0, (5)

where v = (vx, vy) is velocity field, p is pressure, ρ is fluid density and ν is
kinematic viscosity. The flow is characterized by the Reynolds number
Re = v∗D/ν where, for flow around circular cylinder, the characteristic
quantities are the inlet velocity v∗ and the cylinder diameter D. For a
detailed analytical treatment of the problem see [Bagheri], [Glaz+et al.];
for a more in depth description of the Koopman analysis of fluid flow we
refer to [Mezić], [Rowley].
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Data driven (computable) residual
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Figure: Left: Comparison of the residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (V-DMD, circles ◦) and with
both velocities and pressures (VP-DMD, crosses, ×). Right: Selected Ritz values
with velocities as observables (◦) and with both velocities and pressures (×).

Drmač (MS 69) Numerics of DMD and KMD 8th ECM 25 / 66



Dynamic Mode Decomposition (DMD) and RRRR-DMD

Refined Ritz vectors

The Ritz vectors are not optimal eigenvectors approximations from a given
subspace Uk = range(Uk). Hence, for a computed Ritz value λ, instead of
the associated Ritz vector, we can choose a vector z ∈ Uk that minimizes
the residual. From the variational characterization of the singular values, it
follows that

min
z∈Uk\{0}

‖Az − λz‖2
‖z‖2

= min
w 6=0

‖AUkw − λUkw‖2
‖Ukv‖2

= min
‖w‖2=1

‖(AUk − λUk)w‖2 = σmin(AUk − λUk),

where σmin(·) denotes the smallest singular value of a matrix, and the
minimum is attained at the right singular vector wλ corresponding to
σλ ≡ σmin(AUk − λUk). As a result, the refined Ritz vector corresponding
to λ is Ukwλ and the optimal residual is σλ. Detailed analysis by Jia.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Data driven refinement of Ritz vectors

The minimization of the residual can be replaced with computing the
smallest singular value with the corresponding right singular vector of
Bk − λUk, where Bk ≡ AUk = YmVkΣ

−1
k . Compute the QRF

(
Uk Bk

)
= QR, R =

( k k

k R[11] R[12]

k′ 0 R[22]

)
, k′ = min(n− k, k)

and write the pencil Bk − λUk as

Bk−λUk = Q

((
R[12]

R[22]

)
− λ

(
R[11]

0

))
≡ QRλ, Rλ =

(
R[12] − λR[11]

R[22]

)
.

Theorem

Let for the Ritz value λ = λi, wλi denote the right singular vector of the
smallest singular value σλi of the matrix Rλi . Then z = zλi ≡ Ukwλi
minimizes the residual, whose minimal value equals σλi = ‖Rλiwλi‖2.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Enhanced DMD Algorithm

[Zk,Λk, rk, ρk]=DMD RRRR(Xm,Ym; ε) {Refined Rayleigh-Ritz DMD}

1: Dx = diag(‖Xm(:, i)‖2)mi=1; X
(1)
m = XmD

†
x; Y

(1)
m = YmD

†
x

2: [U,Σ, V ] = svd(X
(1)
m ) ; numerical rank: k = max{i : σi ≥ σ1ε}.

3: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)

4: Bk = Y
(1)
m (VkΣ

−1
k ); {Schmid’s formula for AUk}

5: [Q,R] = qr(
(
Uk, Bk

)
); {The thin QR factorization}

6: Sk = diag(Rii)
k
i=1R(1 : k, k + 1 : 2k) {Sk = U∗kAUk}

7: Λk = eig(Sk) {Λk = diag(λi)
k
i=1; Ritz values, i.e. eigenvalues of Sk}

8: for i = 1, . . . , k do

9: [σλi , wλi ] = svdmin(
(
R(1:k,k+1:2k)−λiR(1:k,1:k)

R(k+1:2k,k+1:2k)

)
);

10: Wk(:, i) = wλi ; rk(i) = σλi {Optimal residual, σλi = ‖Rλiwλi‖2}
11: ρk(i) = w∗λiSkwλi {Rayleigh quotient, ρk(i) = (Ukwλi)

∗A(Ukwλi)}
12: end for
13: Zk = UkWk {Refined Ritz vectors}
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Residuals of refined selected pairs
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Figure: Comparison of the refined residuals of the Ritz pairs computed by the
DMD RRR Algorithm with velocities as observables (top 39 pairs in V-DMD,
circles ◦) and with both velocities and pressures (top 53 pairs in VP-DMD,
crosses, ×). The noticeable staircase structure on the graphs corresponds to
complex conjugate Ritz pairs.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

A synthetic example

Goal: DMD black-box software

The main goal of the modifications of the DMD algorithm is to provide a
reliable black-box, data driven software device that can estimate part of
the spectral information of the underlying linear operator, and that also
can provide an error bound.

Example (A case study)

The test matrix is generated as A = e−B
−1

where B is pseudo-random
with entries uniformly distributed in [0, 1], and then A = A/‖A‖2.
Although this example is purely synthetic, it may represent a situation with
the spectrum entirely in the unit disc, such as e.g. in the case of an
off-attractor analysis of a dynamical system, after removing the peripheral
eigenvalues, see e.g. Mohr & Mezić 2014.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Accuracy of the computed Ritz values
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Drmač (MS 69) Numerics of DMD and KMD 8th ECM 31 / 66



Dynamic Mode Decomposition (DMD) and RRRR-DMD

Comparing residuals

Ritz pairs
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Computed residuals

DMD residuals
DMD-RRR residuals

Figure: Comparison of the residuals of the Ritz pairs computed by the DMD
Algorithm (pluses +) and the DMD RRR Algorithm (crosses, ×), with the same
threshold in the truncation criterion for determining the numerical rank.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Ritz values wit k = 27 (hard coded)
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Residuals wit k = 27 (hard coded)

Ritz pairs
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ηi =
‖(YmVkΣ

−1
k )Wk(:, i)− λi(UkWk(:, i))‖2

‖A(UkWk(:, i))− λi(UkWk(:, i))‖2
≡ 1, i = 1, . . . , k.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Singular values of Xm computed three times
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used in DMD
svd(X)
svd(X(:,P))

Figure: The blue circles (◦) are the values used in the DMD Algorithm and are
computed as [U,Σ, V ] = svd(Xm,

′ econ′). The red dots (·) are computed as
Σ = svd(Xm), and the pluses (+) are the results of Σ = svd(Xm(:, P )), where
P is randomly generated permutation.
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Dynamic Mode Decomposition (DMD) and RRRR-DMD

Dicussion on the SVD

Matlab uses different algorithms in the svd() function, depending on
whether the singular vectors are requested on output.

The faster but less accurate method is used in the call
[U, S, V ] = svd(Xm,

′ econ′). It is very likely that the full SVD,
including the singular vectors, is computed using the divide and
conquer algorithm, xGESDD() in LAPACK.

For computing only the singular values S = svd(X) calls the QR
SVD, xGESVD() in LAPACK.

Note that the same fast xGESDD() subroutine is (to our best knowledge)
under the hood of the Python function numpy.linalg.svd.
Numerical robustness of both xGESVD(), xGESDD() depends on κ2(Xm),
and if one does not take advantage of the fact that scaling is allowed, the
problems illustrated in this example are likely to happen.
Better: Jacobi SVD (xGEJSV(), xGESVJ() in LAPACK, Z.D. 2009.) and
preconditioned QR (xGESVDQ(), LAPACK, Z.D. 2018.).
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Krylov decomposition + DFT

... rewind ...JJ... Beautiful structure and bad news

The spectral decomposition of Cm has beautiful structure. Assume for
simplicity that the eigenvalues λi, i = 1, . . . ,m, are algebraically simple. It
is easily checked that the spectral decomposition of Cm reads

Cm = V−1
m ΛmVm, where Λm =

(
λ1

. . .
λm

)
, Vm =


1 λ1 ... λm−1

1

1 λ2 ... λm−1
2

...
... ...

...
1 λm ... λm−1

m

 .

The Ritz vectors are the columns of Zm = XmV−1
m .

Bad news: The Vandermonde matrix Vm is ill-conditioned!

The condition number κ2(Vm) ≡ ‖Vm‖2‖V−1
m ‖2 of any 100× 100 real

Vandermonde matrix is larger than 3 · 1028,
(κ2(Vm) ≥ 2m−2/

√
m,m = 100, [Gautschi]).

Better: Schmid’s DMD – compute the Rayleigh quotient using a POD
(truncated SVD) basis of Xm.
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Krylov decomposition + DFT

Vandermonde x DFT = Cauchy; DFT = Vandermonde

Let F denote the DFT matrix, Fij = ω(i−1)(j−1)/
√
m, where ω = e2πi/m,

i =
√
−1. Now, recall that DFT transforms Vandermonde into Cauchy

matrices as follows: If λmi 6= 1, then

(VmF)ij =

[
λmi − 1√

m

] [
1

λi − ω1−j

] [
ω1−j] ≡ (D1)ii Cij (D2)jj , 1 ≤ j ≤ m.

(1)
If λi = ω1−j for some index j, write λmi − 1 =

∏m
k=1(λi − ω1−k) and

replace (1) with the equivalent formula for the i-th row

(VmF)ij =
1√
m︸︷︷︸

(D1)ii

m∏
k=1
k 6=j

(λi − ω1−k) ω1−j︸︷︷︸
(D2)jj

, (VmF)ik = 0 for k 6= j. (2)

This is the starting point for accurate computation of the SVD of Vm
[Demmel]. We use it for Zm = XmV−1

m ≡ (XmF)(VmF)−1.
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Krylov decomposition + DFT

How this transforms AXm = XmCm + rm+1e
T
m?

It is interesting to see how this transformation Vm 7→ VmF fits the
framework of the Krylov decomposition AXm = XmCm + rm+1e

T
m, where

Cm = V−1
m ΛmVm. Post-multiply this with F to obtain

A(XmF) = (XmF)F∗(V−1
m ΛmVm)F+ rm+1e

T
mF (3)

and then, using VmF = D1CD2,
F∗CmF = F∗(V−1

m ΛmVm)F = D∗2C−1D−1
1 ΛmD1CD2 = D∗2C−1ΛmCD2 and

A(XmF) = (XmF)((CD2)−1Λm(CD2)) + rm+1e
T
mF ⇐⇒ (4)

A(XmFD∗2) = (XmFD∗2)(C−1ΛmC) + rm+1e
T
mFD∗2. (5)

If we think of each row Xm(i, :) as a time trajectory of the corresponding
observable, then Xm(i, :)F represents its image in the frequency domain,
and (4, 5) is the corresponding Krylov decomposition. Possible insightful
connections (?) to the Laskar algorithm [Laskar, Arbabi+Mezić] and (data
centered) DMD and temporal DFT see [Chen+Tu+Rowley].
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Krylov decomposition + DFT

But κ2(Vandermonde x DFT) = κ2(Vandermonde) ?!

Note that the matrices D1, C, D2 are given implicitly by the parameters λi
(eigenvalues, available on input) and the m-th roots of unity ζj = ω1−j ,
j = 1, . . . ,m (easily precomputed to any desired precision and tabulated),
so that the DFT VmF is not done by actually running an FFT.
It suffices to make a note that the λi’s and the roots of unity are the
parameters (original data) that define VmF as in (1), (2).

Besides nice matrix–theoretical connection, what is the gain?

Applying the DFT to Vm in order to avoid the ill–conditioning of Vm may
seem a futile effort – since F is unitary, κ2(D1CD2) = κ2(VmF) = κ2(Vm).
Further, Cauchy matrices are also notoriously ill-conditioned, so, in
essence, we have traded one badly conditioned structure to another one.

How bad it can be? What is the meaning of bad, ill–conditioned anyway?
Is Cauchy matrix really badly conditioned?
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Krylov decomposition + DFT

Caveat ill-conditioning: Hilbert matrix example

Ill-conditioning is not always obvious in the sizes of its entries – the entries
of the innocuous-looking 100× 100 Hilbert matrix H100 range from

1/199 ≈ 5.025 · 10−3 to 1, and κ2(H100) > 10150.

condition number(condition number)=condition number [Higham]

>> cond(hilb(100))
ans = 4.6226e+19

If the computed/estimated condition number is above 1/eps (in Matlab,
1/eps=4.503599627370496e+15), it might be a severe underestimate.
This may lead to an underestimate of extra precision needed to handle the
ill–conditioning.

High acuracy numerical linear algebra :)

Accurate LU, QR, SVD of any Cauchy or Vandermonde matrix is feasible
without higher precision arithmetic. Good algorithms are available!
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Krylov decomposition + DFT

SVD(D1 × Cauchy ×D2)

Given Cauchy matrix C and any two diagonal matrices D1, D2, the SVD
of G = D1CD2 can be computed to nearly full precision as follows:

1 Compute the LDU, P1GP2 = LDU using explicit determinant based
formulas to update the Schur complement [Demmel]. This is entry
wise forward stable computation of L, D, U . Moreover, κ(L), κ(U)
are moderate. (Small ‖δL‖/‖L‖, ‖δU‖/‖U‖, |δDii|/|Dii| is also OK)

(G = hilb(100), κ2(G) > 10150, κ2(L) = κ2(U) ≈ 72.24 (see

Viswanath and Trefethen), κ2(D) ≈ 2.32 · 10149)

2 Compute the SVD of the product LDU using a Jacobi type SVD
algorithm (product SVD [Z.D.]). The forward error is determined by
max(κ(L), κ(U)), independent of κ2(D). The backward errors
‖∆L‖/‖L‖, ‖∆U‖/‖U‖, ∆Dii/Dii are small.

The key is in forward stable reparametrization, so that the new
representation is well-conditioned (for particular algorithm).
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Krylov decomposition + DFT

L L̃ = L+ δL

Vm VmF D D̃ = D + δD ΠT
1 L̃D̃ŨΠT

2

Vm + E U Ũ = U + δU

♠

N

N

N

♣

♣

♣

H

H

H
�

Figure: Legend: ♠ = the DFT of Vm using the explicit formulas (1); N = the
forward stable pivoted LDU [Demmel]; ♣ = forward errors in the computed

factors L̃, D̃, Ũ ; H = implicit representation of VmF as the product ΠT
1 L̃D̃ŨΠT

2 ;
� = direct computation with Vm, using standard algorithms, produces backward
error E that is small in matrix norm, and the condition number is κ2(Vm).

|L̃ij − Lij | ≤ ε|Lij |, |D̃ii −Dii| ≤ ε|Dii|, |Ũij − Uij | ≤ ε|Uij |, (6)

Ŵm = (((((XmF)Π2)U−1)D−1)L−1)Π1. (7)

See [Demmel], [Demmel+Koev], [Dopico+Molera] for error analysis.
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Krylov decomposition + DFT

Matlab code for Zm = XmV−1
m

function Z = X inv Vandermonde( lambda, X )
% X inv Vandermonde computes Z = X*inv(V(lambda)), where X has m
% columns and V(lambda)=fliplr(vander(lambda)) is the m x m
% Vandermonde matrix defined by the m x 1 vector lambda;
% V(lambda) {ij} = lambda(i)ˆ(j−1), i,j=1,...,m.
%..........................................................................
% Coded by Zlatko Drmac, drmac@math.hr.
%..........................................................................
%
m = length(lambda) ;
% .. pivoted LDU of V(lambda)*DFT ; p1, p2 permutations
[ L, D, U, p1, p2 ] = Vand DFT LDU( lambda, m, 'LDU' ) ;
Z = ifft(X,[],2) ;
Z = ( ( Y(:,p2) / U ) * diag(sqrt(m)./D) ) / L ;
p1i(p1) = 1:m ; Z = Z(:,p1i) ; % p1i is the inverse of p1
end

Not as simple as Zm = Xm/Vm

More accurate than Zm = Xm/Vm; independent of the distribution of
the λi’s

Drmač (MS 69) Numerics of DMD and KMD 8th ECM 44 / 66



Krylov decomposition + DFT

Numerical stress test drive: Q2D Kolmogorov flow

Example
We use the simulation data of a 2D model obtained by depth averaging
the Navier–Stokes equations for a shear flow in a thin layer of electrolyte
suspended on a thin lubricating layer of a dielectric fluid; see [Tithof+et
al], [Suri+et al] for more detailed description of the experimental setup.a

The (scalar) vorticity field data consists of nt snapshots of dimensions
nx × ny; in this particular example nt = 1201 ≡ m+ 1, nx = ny = 128.
The nx × ny × nt tensor is matricized into nx · ny × nt matrix of
snapshots (f1, . . . , fnt), and Xm is of dimensions 16384× 1200.

aWe thank Michael Schatz, Balachandra Suri, Roman Grigoriev and Logan
Kageorge from the Georgia Institute of Technology for providing us with the
data.

This is a good stress test because κ2(Vm) > 1076

Want to show that we can use Cm,Vm in working precision (IEEE 64 bit)
despite the fact that κ2(Vm) > 1076 � 1/roundoff64 ≈ 4.5 · 1015
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Krylov decomposition + DFT

Test the reconstruction potential

Reconstructing snapshots using selected modes

fi ≈
∑̀
j=1

zςjαjλ
i−1
ςj ≡

∑̀
j=1

zςjαj |λςj |i−1eiωςj (i−1)δt, i = 1, . . . ,m.

where, for simplicity, the modes are selected by taking given number of
modes with absolutely largest amplitudes |αj | (dominant modes).

1 inversion of the Vandermonde matrix by the backslash operator in
Matlab ; κ2(Vm) > 1076 � 1/roundoff64 ≈ 4.5 · 1015

2 inversion of the row scaled Vandermonde matrix by the backslash

operator in Matlab: Vm = DrV
(r)
m , Ŵm = (Xm(V(r)

m )−1)D−1
r , where

Dr = diag(‖Vm(i, :)‖)mi=1 ; κ2(V(r)
m )≈3.1 · 107≈0.45 · 1/roundoff32

3 inversion of the column scaled Vandermonde matrix by the backslash

operator in Matlab: Vm = V(c)
m Dc, Ŵm = (XmD

−1
c )(V(c)

m )−1, where

Dc = diag(‖Vm(:, i)‖)mi=1. κ2(V(c)
m ) ≈ 3.0 · 1021
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Krylov decomposition + DFT

Björck-Pereyera, DMD, DFT+Cauchy

We now test the following three methods:

1 Companion matrix formulation with the Björck-Pereyera method for
Vandermonde systems. Although forward stable in the special case of
real and ordered λi’s, this method may be very sensitive in the case of
general complex λi’s and relatively large dimension m.

2 Companion matrix formulation with the DFT and inversion of the
Cauchy matrix. Since F and D2 in (1) are unitary, the algorithm solves
linear system with the matrix D1C = VmFD∗2 of condition number
bigger than 1076. No additional scaling is used; we want to illustrate
the claim that such high condition number cannot spoil the result.

3 Schmid’s DMD method. Here we expect good reconstruction results,
provided it is feasible for given data and the parameters. The SVD is
not truncated because κ2(Xm) ≈ 5.5 · 1010 (σmax(Xm) ≈ 4.2 · 103,
σmin(Xm) ≈ 7.5 · 10−8).
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Krylov decomposition + DFT

f321 with 300 modes; similar results for other fi’s

input snapshot
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Figure: Reconstruction
of f321 using 300
dominant modes.
Björck-Pereyera method
(second plot in the first
row) failed to produce
any useful data. The
DFT+Cauchy inversion
and the Schmid’s DMD
reconstruction (second
row) succeeded in
reconstructing f321
pretty much using 300
modes with dominant
amplitudes.
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Snapshot reconstruction

On the numerical aspects of snapshot reconstruction

For given (λj , zj)’s and nonnegative weights wi, find the αj ’s to achieve

m∑
i=1

w2
i ‖fi −

∑̀
j=1

zjαjλ
i−1
j ‖

2
2 −→ min . (1)

Set W = diag(wi)
m
i=1. The weights wi > 0 are used to emphasize

snapshots whose reconstruction is more important. Let Λ = diag(λj)
`
j=1,

∆α=

( α1 0 · 0
0 α2 · ·
· · · 0
0 · 0 α`

)
, Λi =

 λi−1
1

λi−1
2·
λi−1
`

, ∆Λi =

 λi−1
1 0 · 0

0 λi−1
2 · ·

· · · 0
0 · 0 λi−1

`

 ≡ Λi−1,

and write the objective (1) as the function of α = (α1, . . . , α`)
T ,

Ω2(α) ≡ ‖
[
Xm − Z`∆α

(
Λ1 Λ2 . . . Λm

)]
W‖2F −→ min, (2)

( Λ1 Λ2 ... Λm ) =

 1 λ1 ... λ
m−1
1

...
... ...

...
1 λ` ... λ

m−1
`

 ≡ V`,m ∈ C`×m. (3)
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Explicit normal equations solution: weighted case

QRF Z` = QR; gi = Q∗fi, ~g
T = (g1, . . . ,gm). Solve equivalently

‖(W ⊗ I`) [~g − Sα] ‖2 → min, where S=(Im ⊗R)

(
∆Λ1

...
∆Λm

)
≡

(
R∆Λ1

...
R∆Λm

)
.

Observation: S = VT`,m �R (Khatri-Rao product)

Theorem

With the notation as above, the unique solution α of the LSP (1) is

α = [(R∗R) ◦ (V`,mW2V∗`,m)]−1[(V`,mW ◦ (R∗GW))e], (4)

where G =
(
g1 . . . gm

)
, e =

(
1 . . . 1

)T
. In terms of Xm, Z`,

α = [(Z∗`Z`) ◦ (V`,mW2V∗`,m)]−1[(V`,mW ◦ (Z∗`XmW))e]. (5)

This includes the DMDSP of [Jovanović+et al] and solution for scattering
coefficients in multistatic antenna array processing [Lev-Ari] as unweighted
cases. Are normal equations safe to use? What is the impact of the
Hadamard matrix product ◦? Let us experiment with a small dimension
example.
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Squaring the conditon number – losing definiteness

Let W = I. Let ` = 3, m = 4, ξ =
√
ε, λ1 = ξ, λ2 = 2ξ, λ3 = 0.2, so

that the Vandermonde section V`,m equals

V`,m =
(

1 1.490116119384766e−08 2.220446049250313e−16 3.308722450212111e−24
1 2.980232238769531e−08 8.881784197001252e−16 2.646977960169689e−23
1 2.000000000000000e−01 4.000000000000001e−02 8.000000000000002e−03

)
,

R =

1 1 1
0 ξ/2 ξ
0 0 ξ

 =
(

1 1.000000000000000e+00 1.000000000000000e+00
0 7.450580596923828e−09 1.490116119384766e−08
0 0 1.490116119384766e−08

)
.

Here κ2(V`,m) ≈ 109, κ2(R) ≈ 109 � 1/roundoff64 ≈ 4.5 · 1015.
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be ....

>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> chol((R’*R).*(Vlm*Vlm’))

Error using chol

Matrix must be positive definite.

Normal equations matrix is
not definite!
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Indefinite ◦ Indefinite = Positive Definite ?!

Use the same V`,m but change the definition of R to

R =

1 1 1
0 ξ ξ
0 0 ξ/2

 =
(

1 1.000000000000000e+00 1.000000000000000e+00
0 1.490116119384766e−08 1.490116119384766e−08
0 0 7.450580596923828e−09

)
.

If we repeat the experiment with the Cholesky factorizations, we obtain
>> chol(Vlm*Vlm’)

Error using chol

Matrix must be positive definite.
>> chol(R’*R)

Error using chol

Matrix must be positive definite.

>> TC = chol((R’*R).*(Vlm*Vlm’))

TC =

1 1.000000000000000e+00 1.000000002980232e+00

0 1.490116119384765e-08 1.999999880790710e-01

0 0 4.079214149695062e-02
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Theorem

Let A ad B be Hermitian positive semidefinite matrices with positive
diagonal entries, and let C = A ◦B. If As = (aij/

√
aiiajj),

Bs = (bij/
√
biibjj), Cs = (cij/

√
ciicjj), then

max(λmin(As), λmin(Bs)) ≤ λi(Cs) ≤ min(λmax(As), λmax(Bs)). (6)

In particular, ‖C−1
s ‖2 ≤ min(‖A−1

s ‖2, ‖B−1
s ‖2) and

κ2(Cs) ≤ min(κ2(As), κ2(Bs)). If A or B is diagonal, all inequalities in
this theorem become equalities.

Corollary

Let C ≡ (R∗R) ◦ (V`,mW2V∗`,m), Cs = (cij/
√
ciicjj). Further, let

R = Rc∆r and V`mW = ∆v(V`mW)r with diagonal scaling matrices ∆r

and ∆v such that Rc has unit columns and (V`mW)r has unit rows (in
Euclidean norm). Then κ2(Cs) ≤ min(κ2(Rc)

2, κ2((V`,mW)r)
2).

In the Q2D Kolmogorov flow example, κ2(C) > 1087 � κ2(Cs) ≈ 8.5+01.
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Numerical example: effect of weighted reconstruction

Figure: Example with 600 snapshots. Blue curve shows the effects of weighting.

Data: 2D model obtained by depth averaging the Navier–Stokes equations for a

shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a

dielectric fluid.1

1We thank M.Schatz, B. Suri, R. Grigoriev and L. Kageorge from the Georgia
Institute of Technology for providing us with the data.
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‖~g − Sα‖2 −→ min; S = QSRS, α = R−1
S (Q∗S~g)

α = R−1
S (R−∗S (S∗~g)), r = ~g − Sα

δα = R−1
S (R−∗S (S∗r)), α∗ = α+ δα (7)

Algorithm: Corrected semi-normal solution

Input: R, Λ, G, S
Output: Corrected solution α∗

1: Compute the triangular factor RS in the QR factorization of S.
2: gS = [(V`,m ◦ (R∗G))e] {Note, gS = S∗~g. Use xTRMM from BLAS 3.}
3: α = R−1

S (R−∗S gS){Use xTRSM or xTRTRS or xTRSV from LAPACK.}
4: r2 = G−R

(
α Λα Λ2α . . . Λm−1α

)
≡ G−Rdiag(α)V`,m

5: rS = [(V`,m ◦ (R∗r2))e] {Note, rS = S∗r. Use xTRMM from BLAS 3.}
6: δα = R−1

S (R−∗S rS) {Use xTRSM or xTRTRS or xTRSV from LAPACK.}
7: α∗ = α+ δα

Considerably improves over normal equations, but needs QR factorization
of S = VT`,m �R. How to compute it efficiently, using the structure of S?

Drmač (MS 69) Numerics of DMD and KMD 8th ECM 55 / 66



Snapshot reconstruction

Algorithm: Recursive QR factorization of S for m = 2p

Input: Upper triangular R ∈ c`×`; diagonal Λ ∈ c`×`; number of
snapshots m = 2p

Output: Upper triangular QR factor RS = Tp of S ∈ c2
p`×`

T4 ←− T3 ←− T2 ←− T1 ←− RΛ0

0 0 0 0 ←− RΛ1

0 0 0 ←− T1Λ2 RΛ2

0 0 0 0 RΛ3

0 0 ←− T2Λ4 T1Λ
4 RΛ4

0 0 0 0 RΛ5

0 0 0 T1Λ
6 RΛ6

0 0 0 0 RΛ7

0 ←− T3Λ8 T2Λ
8 T1Λ

8 RΛ8

0 0 0 0 RΛ9

0 0 0 T1Λ
10 RΛ10

0 0 0 0 RΛ11

0 0 T2Λ
12 T1Λ

12 RΛ12

0 0 0 0 RΛ13

0 0 0 T1Λ
14 RΛ14

0 0 0 0 RΛ15

,

1 : T0 = R
2 : for i = 1 : p do

3 :

(
Ti
0

)
= qr(

(
Ti−1

Ti−1Λ
2i−1

)
)

4 : end for
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Matlab QRF code for S = VT`,m �R, m = 2p

function T = QR Khatri Rao VTR 2p( R, Lambda, p )
% QR Khatri Rao VTR 2p computes the upper triangular factor
% in the QR factorization of the Khatri−Rao product
% S=Khatri Rao(Vlm.',R), where R is an <ell x ell> upper
% triangular matrix, and Vlm is an <ell x m> Vandermonde
% matrix V, whose columns are V(:,i) = Lambda.ˆ(i−1),
% i = 1,...,m, and m=2ˆp.
% Input:
% R upper triangular matrix
% Lambda vector, defines Vlm = Vandermonde matrix
% p integer >=0 defines m = 2ˆp
% Output:
% T triangular QR fator of Khatri Rao(Vlm.',R)
T = R ; D = Lambda ;
%
for i = 1 : p
[˜, T] = qr( [ T ; T*diag(D)], 0 ) ;
D = D.ˆ2 ;
end
end
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Input: Upper triangular R ∈ C`×`; diagonal Λ ∈ c`×`; m
Output: Upper triangular QR factor RS = Tj−1 of S.

1: Compute the binary representation of m: m ≡ b =
(bblog2 mc, . . . , b1, b0)2, m ≡

∑j∗

j=1 2ij

2: Let blog2mc = ij∗ > ij∗−1 > · · · > i2 > i1 ≥ 0
3: T0 = R
4: if i1 = 0 then
5: T1 = T0; j = 2; ℘ = 1
6: else
7: T0 = []; j = 1; ℘ = 0
8: end if
9: for k = 1 : ij∗ do

10:

(
Tk
0

)
= qr(

(
Tk−1

Tk−1Λ
2k−1

)
) {Local factor.}

11: if k = ij then
12: if Tj−1 6= [] then

13:

(
Tj
0

)
= qr(

(
Tj−1

TkΛ
℘

)
) {Global factor.}

14: else
15: Tj = Tk
16: end if
17: j := j + 1; ℘ := ℘+ 2k

18: end if
19: end for
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Comments and concluding remarks

Provably small backward error

‖δS(:, j)‖2 ≤ η‖S(:, j)‖2, j = 1, . . . , `; η ≤ f(`,m)ε,

The relevant condition number is of the column scaled S:

Corollary

κ2(Sc) =
√
κ2(Cs) ≤ min(κ2(Rc), κ2((V`,m)r))

≤
√
`min( min

D=diag
κ2(RD), min

D=diag
κ2(DV`,m)).

If the data is real, can work in real arithmetic even if the eigenvalues
are complex (conjugate pairs)

Improves the result in difficult (severely ill-conditioned) cases.

Let us, at the end, comment two examples where new highly accurate
NLA algorithms open new possibilities in some computational tasks in
rational approximations.
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Example: VF algorithm

1 Given: The sampling data H(ξi) for i = 1, . . . , ` ; maximal number of
iterations kmax.

2 Set k ← 0 and make an initial pole selection λ(k+1) ∈ Cr .
3 WHILE { stopping criterion not satisfied and k ≤ kmax }

Form A(k+1) and b.
Compute B(k+1) = Π(Q(k+1))∗A(k+1) and s(k+1) = Π(Q(k+1))∗b and
partition as required.

Solve ‖B(k+1)
[22] ϕ(k+1) − s

(k+1)
2 ‖2 −→ min for ϕ(k+1).

Set k ← k + 1 and compute

λ(k+1) = zeros(1 +
∑r

j=1 ϕ
(k)
j /(s− λ(k)j )).

4 END WHILE

5 Φ = (B
(k)
[11])

−1s
(k)
1 .

Computing Φ requires solving a sequence of weighed LS problems with
scaled Cauchy coefficient matrices.
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Ill-conditioning

Extracting residues from weighted Cauchy LS problems

‖Dρ
(
C(k+1)Φ(k+1)(u, v, :)− S(u, v, :)

)
‖2 −→ min, u = 1 : p, v = 1 : m.

To simplify the notation, write ‖DρCx− h‖2 −→ min, where C = Cξ,λ is a
Cauchy matrix, h is the corresponding scaled right-hand side, λ is closed
under conjugation and and the solution vector should also be closed under
conjugation. Consider equivalent augmented unconstrained LS∥∥∥∥(DρCξ,λDρCξ,λ

)
x−

(
h

h

)∥∥∥∥
2

≡ ‖Ĉx− ĥ‖2 −→ min

with the coefficient matrix again of the diagonally scaled Cauchy structure,
Ĉ = (Dρ ⊕Dρ)C(ξ,ξ),λ.
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Accurate regularized LS solution

Let Ĉ = WΣV ∗ be the SVD and let the unique2 LS solution be
x = V Σ†W ∗ =

∑r
i=1 vi(w

∗
i ĥ)/σi. Unfortunately, an accurate SVD is not

enough to have the LS solution computed to high relative accuracy, and
additional regularization techniques must be deployed. This is in particular
important if the right-hand side is contaminated by noise. In the Tichonov
regularization, we choose µ ≥ 0 and use the solution of
‖Ĉx− ĥ‖22 + µ2‖x‖22 → min, explicitly computable as

xµ =

r∑
i=1

σi
σ2
i + µ2

(w∗i ĥ)vi. (1)

The parameter µ can be further adjusted using the Morozov discrepancy
principle, i.e., to achieve ‖Ĉxµ − ĥ‖2 ≈ ν, where ν is the estimated level of

noise δĥ in the right-hand side, ν ≈ ‖δĥ‖2.
2Since all nodes are distinct and the poles are assumed simple, the matrix is

theoretically of full column rank, but numerically potentially severely ill-conditioned.
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Example: Rational approximation – AAK theory and
con-eigenvalues

Haut and Beylkin (2011) used Adamyan–Arov–Krein theory to show that
nearly L∞–optimal rational approximation on |z| = 1 of

f(z) =

n∑
i=1

αi
z − γi

+

n∑
i=1

αiz

1− γiz
+ α0

with max|z|=1 |f(z)− r(z)| min,

r(z) =

m∑
i=1

βi
z − ηi

+

m∑
i=1

βiz

1− ηiz
+ α0

is numerically feasible if one can accurately compute the con–eigenvalues
and con–eigenvectors

Cu = λu, Cij =

√
αi
√
αj

γ−1
i − γj
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Con–eigenvalues

Here C = (
√
αi

√
αj

γ−1
i −γj

) is positive definite Cauchy matrix C.

The con–eigenvalue problem Cu = λu is equivalent to solving

CCu = |λ|2u,

where C is factored as C = XD2X∗. The problem reduces to computing
the SVD of the product G = DXTXD. Accurate SVD via the PSVD
based on the Jacobi SVD (Z.D.). Haut and Beylkin tested the accuracy
with κ2(C) > 10200 and using Mathematica with 300 hundred digits for
reference values. Over 500 test examples of size 120, the maximal error in
IEEE 16 digit arithmetic (ε ≈ 2.2 · 10−16) was

|λ̃i − λi|
|λi|

< 5.2 · 10−12,
‖ũi − ui‖2
‖ui‖2

< 5.4 · 10−12.
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Concluding remarks

We have presented modifications of the DMD algorithm, together
with theoretical analysis and justification, discussion of the potential
weaknesses of the original method, and examples that illustrate the
advantages of the new proposed method. From the point of view of
numerical linear algebra, the deployed techniques are not new;
however, the novelty is in adapting them to the data driven setting
and turning the DMD into a more powerful tool.
Using high accuracy numerical linear algebra techniques we were able
to curb the ill-conditioning of the companion matrix’s associated
Vandermonde matrix allowing for an accurate inversion and
computing the DMD modes accurately.
Ill–conditioning can be artificial, an artifact of a particular formulation
and/or algorithm, and not the underlying problem. In many cases
accurate computation is possible, despite high classical condition
numbers. We have illustrated with two examples from rational
approximation practice.
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