A priori error estimates of regularized elliptic problems

Wenyu Lei

Mathematics Area SISSA-International School for Advanced Studies Joint work with Prof. Luca Heltai (SISSA)

Tuesday, 22, 2021 • 8ECM • Portorož, Slovenia

000		

Backgrounds

Non-matching methods

Singular forcing term

$$\int_{B} fv = \int_{\Omega} \int_{B} \delta(x - y) f(y) v(x) \, \mathrm{d}y \, \mathrm{d}x.$$

000		

An interface problem

- Ω : bounded Lipschitz domain in \mathbb{R}^d (d = 2 or 3);
- $\Gamma \subset \Omega$: a closed Lipschitz interface with co-dimension one;
- Γ is away from $\partial \Omega$, i.e.

 $\operatorname{dist}(\Gamma,\partial\Omega) > c_0;$

• $f \in L^2(\Gamma)$.

Model problem

$$\begin{split} &-\Delta u=0, \quad \text{ in } \Omega \backslash \Gamma, \\ &\llbracket u \rrbracket=0, \quad \text{ on } \Gamma, \\ &\llbracket \frac{\partial u}{\partial \nu} \rrbracket=f, \quad \text{ on } \Gamma, \\ &u=0, \quad \text{ on } \partial \Omega. \end{split}$$

Immersed interface method ○○●		

Weak formulation

Find $u \in V := H_0^1(\Omega)$ satisfying

$$\mathcal{A}(u,v) = \int_{\Gamma} f v \, \mathrm{d}\sigma := \langle F, v \rangle_{V',V}, \qquad \text{for all } v \in V.$$

Here

• \mathcal{A} is the Dirichlet form,

$$\mathcal{A}(v,w) = \int_{\Omega} \nabla v^{\mathsf{T}} \nabla w \, \mathrm{d}x, \quad \text{ for all } v, w \in V.$$

• The forcing data

$$F = \mathcal{M}f := \int_{\Gamma} \delta(x - y) f(y) \, \mathrm{d}\sigma_y,$$

with δ denoting the d-dimensional Dirac delta distribution.

0000		

Dirac delta approximation

Given $k \in \mathbb{N}$, let $\psi(x)$ in $L^{\infty}(\mathbb{R}^d)$ such that

① Compact supported:

 $supp(\psi) \subset B_{r_0}(0)$

2 *k*-th order moments condition:

$$\int_{\mathbb{R}^d} y_i^{\alpha} \psi(x-y) \, \mathrm{d}y = x_i^{\alpha} \qquad i = 1 \dots d, \quad 0 \le \alpha \le k, \quad \text{ for all } x \in \mathbb{R}^d;$$

Define the Dirac delta approximation

$$\delta^{\varepsilon} := \frac{1}{\varepsilon^d} \psi\left(\frac{x}{\varepsilon}\right)$$

0000		

Dirac delta approximation

${\cal L}^1$ growth control

$$|||x|^m \delta^{\varepsilon}(x)||_{L^1(\mathbb{R}^d)} \preceq \varepsilon^m, \qquad 0 \le m \in \mathbb{R}.$$

Examples of ψ in 1d:

- C^1 : $\psi(x) = (1 + \cos(\pi x))\chi_{(-1,1)}(x)/2;$
- C^{∞} : $\psi(x) = e^{1-1/(1-x^2)}\chi_{(-1,1)}(x);$
- L^{∞} : $\psi(x) = \frac{1}{2}\chi_{(-1,1)}(x);$
- Polynomial class $\psi^{k,s}$: [Tornberg, 2002].

Generating ψ from \mathbb{R} to \mathbb{R}^d :

- Radially symmetric: ψ_{ρ} is supported in [0, 1] and set $\psi(x) := I_d \psi_{\rho}(|x|)$.
- Tensor product: $\psi(x) := \prod_{i=1}^{d} \psi_{1d}(x_i)$, for $x = (x_1, \cdots, x_d) \in \mathbb{R}^d$.

0000		

Data regularization/mollification

Regularization of $L^1(\Omega)$ functions

$$v^{\varepsilon}(x):=\int_{\Omega}\delta^{\varepsilon}(x-y)v(y)\,\mathrm{d} y,\qquad\text{for all }x\in\Omega,$$

Regularization of functionals in negative Sobolev spaces

$$\langle F^{\varepsilon}, v \rangle_{H^{-s}(\Omega), H^{s}(\Omega)} := \langle F, v^{\varepsilon} \rangle_{H^{-s}(\Omega), H^{s}(\Omega)}.$$

Regularized data for the interface problem

For $F=\mathcal{M}f:=\int_{\Gamma}\delta(x-y)f(y)\,\mathrm{d}\sigma_y$, then

$$F^{\varepsilon}(x) = \int_{\Gamma} f(y) \delta^{\varepsilon}(y-x) \,\mathrm{d}y.$$

If
$$\psi(-x) = \psi(x)$$
, $F^{\varepsilon}(x) = \int_{\Gamma} f(y) \delta^{\varepsilon}(x-y) \, \mathrm{d}y$.

0000		

Regularized formulation and its FE approximation

Regularized problem

Find $\mathbf{u}^{\varepsilon} \in V$ satisfying

$$\mathcal{A}(\mathbf{u}^{\varepsilon}, v) = \langle F^{\varepsilon}, v \rangle_{V', V}, \quad \text{for all } v \in V.$$

Finite element approximation

Finite element space \mathbb{V}_h :

- subordinate to a quasi-uniform mesh with the mesh size h;
- $\mathbb{V}_h \subset \mathbb{V};$
- set of continuous piecewise linear functions.

Find $\mathbf{u}_h^{\varepsilon} \in \mathbb{V}_h$ satisfying

$$\mathcal{A}(\mathbf{u}_h^\varepsilon, v_h) = \langle F^\varepsilon, v_h \rangle_{V', V}, \qquad \text{for all } v_h \in \mathbb{V}_h.$$

	Error analysis ••••••	

Strang's Lemma

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{H^1(\Omega)} \preceq \inf_{v_h \in \mathbb{V}_h} \|u - v_h\|_{H^1(\Omega)} + \sup_{w_h \in \mathbb{V}_h} \frac{\langle F - F^{\varepsilon}, w_h \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}}{\|w_h\|_{H^1_0(\Omega)}}$$

Regularity

For
$$f \in L^2(\Gamma)$$
, $F \in H^{s-1}(\Omega)$ with $0 \le s < 1/2$.

$$\begin{split} \left| \int_{\Gamma} f(y) v(y) \, \mathrm{d}\sigma_{y} \right| &\leq \|f\|_{L^{2}(\Gamma)} \|v\|_{L^{2}(\Gamma)} \\ & \leq \|f\|_{L^{2}(\Gamma)} \|v\|_{H^{1-s}(\omega)} \leq \|f\|_{L^{2}(\Gamma)} \|v\|_{H^{1-s}(\Omega)}. \end{split}$$

So $u \in H^{1+s}(\Omega) \cap H^1_0(\Omega)$ by elliptic regularity.

Estimate of the space approximation using Scott-Zhang interpolant

$$\inf_{v_h \in \mathbb{V}_h} \|u - v_h\|_{H^1(\Omega)} \le \|u - I_h u\|_{H^1(\Omega)} \le h^s \|u\|_{H^{1+s}(\Omega)}.$$

	Error analysis 00000	

Data consistancy

For $v \in H^1(\Omega)$,

$$\langle F - F^{\varepsilon}, v \rangle = \langle F, v - v^{\varepsilon} \rangle \preceq ||f||_{L^{2}(\Gamma)} ||v - v^{\varepsilon}||_{H^{1-s}(\omega)}.$$

Proposition [L. Heltai & WL, 2020]

If δ^{ε} has k-th order moment condition, for $v \in H^{k+1}(\Omega)$,

$$\|v - v^{\varepsilon}\|_{H^{1-s}(\omega)} \preceq \varepsilon^{k+s} \|v\|_{H^{k+1}(\omega^{\varepsilon_0})}.$$

Here $\varepsilon < \varepsilon_0$ and

$$\omega^{\varepsilon} := \bigcup_{x \in \omega} B_{\varepsilon}(x).$$

Idea of the proof: Using Taylor expansion (with the moment condition), Young's inequality for convolution and the L^1 growth control.

	00000	

Error estimates

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{H^1(\Omega)} \preceq \inf_{v_h \in \mathbb{V}_h} \|u - v_h\|_{H^1(\Omega)} + \sup_{w_h \in \mathbb{V}_h} \frac{\langle F - F^{\varepsilon}, w_h \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}}{\|w_h\|_{H^1_0(\Omega)}}$$

Theorem [L. Heltai & WL, 2020]

If δ^{ε} has the 0th order moment condition (i.e. $\int_{\mathbb{R}} \delta^{\varepsilon} = 1$),

$$\|u - \mathbf{u}^{\varepsilon}\|_{H^1(\Omega)} \leq \varepsilon^s \|f\|_{L^2(\Gamma)}$$

and

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{H^1(\Omega)} \preceq (h^s + \varepsilon^s) \|f\|_{L^2(\Gamma)},$$

where $s \in [0, \frac{1}{2})$.

	000000	

L^2 error estimate for regularization

Theorem [L. Heltai & WL, 2020]

If δ^{ε} has the first order moment condition,

$$\|u - \mathbf{u}^{\varepsilon}\|_{L^{2}(\Omega)} \preceq \varepsilon^{s+1} \|f\|_{L^{2}(\Gamma)}.$$

Regularization estimates. If δ^{ε} has the first order moment condition,

$$\|v - v^{\varepsilon}\|_{H^{1-s}(\omega)} \preceq \varepsilon^{1+s} \|v\|_{H^{2}(\omega^{\varepsilon_{0}})}$$

 H^2_{loc} regularity. Given $g\in L^2(\Omega),$ let $T:V'\to V$ be the solution operator satisfying

$$\mathcal{A}(Tg, v) = (g, v)_{L^2}, \qquad \text{for all } v \in V.$$

Then,

$$||Tg||_{H^2(\omega^{\varepsilon_0})} \preceq ||g||_{L^2(\Omega)}.$$

	000000	

Proof: a duality argument

The dual problem: find $z \in V$ such that

$$\mathcal{A}(v,z) = (u - \mathbf{u}^{\varepsilon}, v)_{\Omega}, \qquad \text{for all } v \in V.$$

Hence, we choose $v = u - \mathbf{u}^{\varepsilon}$ and obtain that

$$\|u - \mathbf{u}^{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \mathcal{A}(z, u - \mathbf{u}^{\varepsilon})$$

= $\langle F - F^{\varepsilon}, z \rangle = \langle F, z - z^{\varepsilon} \rangle.$ (1)

Due to the interior regularity of $z,\,u-{\tt u}^\varepsilon\in H^1_0(\Omega)\subset L^2(\Omega)$ implies that

$$||z||_{H^2(\omega^{\varepsilon_0})} \leq ||u - \mathbf{u}^{\varepsilon}||_{L^2(\Omega)}.$$

We continue to estimate the right hand side of (1) by

$$\begin{aligned} \langle F, z - z^{\varepsilon} \rangle &\preceq \|f\|_{L^{2}(\Gamma)} \|z - z^{\varepsilon}\|_{H^{1-s}(\omega)} \\ &\preceq \varepsilon^{s+1} \|f\|_{L^{2}(\Gamma)} \|z\|_{H^{2}(\omega^{\varepsilon_{0}})} \\ &\preceq \varepsilon^{s+1} \|f\|_{L^{2}(\Gamma)} \|u - \mathbf{u}^{\varepsilon}\|_{L^{2}(\Omega)} \end{aligned}$$

	000000	

 L^2 error estimate for the finite element approximation

Elliptic regularity for polygonal domain

 $\mathcal{A}(Tg, v) = \langle g, v \rangle_{V', V}, \qquad \text{for all } v \in V.$

There exists $r \in (1/2, 1]$ and a positive constant C_r satisfying

 $||Tg||_{H^{1+r}(\Omega)} \le C_r ||g||_{H^{-1+r}(\Omega)}.$

Theorem [L. Heltai & WL, 2020]

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{L^2(\Omega)} \preceq (h^{r+s} + h^r \varepsilon^s + \varepsilon^{1+s}) \|f\|_{L^2(\Gamma)}.$$

If $h \sim \epsilon$ and r = 1,

$$||u - \mathbf{u}_h^{\varepsilon}||_{L^2(\Omega)} \leq h^{3/2^-} ||f||_{L^2(\Gamma)}.$$

Proof: Bound $||u - u^{\varepsilon}||_{L^2}$ (previous theorem) and $||u^{\varepsilon} - u^{\varepsilon}_h||_{L^2}$ (duality argument) separately.

	00000	

Test problem: square domain

- $\Gamma = \partial B_R(\mathbf{c})$ with $\mathbf{c} = (0.3, 0.3)^{\mathsf{T}}$ and R = 0.2;
- $f = \frac{1}{R}$ and non-homogeneous boundary condition $g = \ln(|x \mathbf{c}|)$;
- The analytic solution:

$$u(x) = \begin{cases} -\ln(|x - \mathbf{c}|), & \text{if } |x - \mathbf{c}| > R, \\ -\ln(R), & \text{if } |x - \mathbf{c}| \le R. \end{cases}$$

• Setting $\varepsilon = h$ yields

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{H^1(\Omega)} \preceq h^{1/2} \sim \#\mathsf{DoFs}^{-0.25},$$

and

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{L^2(\Omega)} \preceq h^{3/2} \sim \#\mathsf{DoFs}^{-0.75}$$

	00000	

Test: coarse mesh and solution (744705 DoFs)

	00000	

Test: L^2 and H^1 convergence tables

	Numerical illustration	

Test 2: unit cube

- $\Gamma = \partial B_R(\mathbf{c})$ with $\mathbf{c} = (0.3, 0.3, 0.3)^{\mathsf{T}}$ and R = 0.2;
- $f = \frac{1}{R^2}$ and nonhomogeneous boundary condition $g = 1/|x \mathbf{c}|;$
- The analytic solution:

$$u(x) = \begin{cases} 1/|x - \mathbf{c}|, & \text{if } |x - \mathbf{c}| > R, \\ 1/R, & \text{if } |x - \mathbf{c}| \le R. \end{cases}$$

• Setting $\varepsilon = h$ yields

$$\|u - \mathbf{u}_h^{\varepsilon}\|_{H^1(\Omega)} \preceq h^{1/2} \sim \#\mathsf{DoFs}^{-1/6},$$

and

$$\|u - \mathfrak{u}_h^{\varepsilon}\|_{L^2(\Omega)} \preceq h^{3/2} \sim \#\mathsf{DoFs}^{-1/2}.$$

	000000	

Test 2: coarse mesh of the unit cube and solution (2324113 DoFs)

	000000	

Test 2: L^2 convergence table using regularization ${\tt tensorproduct}\ C^1$ and without using regularization

Conclusion and Outlook

We have shown that the convergence rate of FEM for the regularized problem is the same as the direct approach if $\varepsilon \sim h.$

Outlook

- Adaptive finite element methods and its quasi-optimality (in preparation).
- Error analysis if the interface attaching the boundary, or even the corner.
- Fictitious domain methods using regularization.
- Time dependent problems.

