Closures of solvable permutation groups

(based on the paper with E. A. O'Brien, I. Ponomarenko, and E. Vdovin)

Andrey V. Vasil'ev

Sobolev Institute of Mathematics and Novosibirsk State University

GRAPHS AND GROUPS, GEOMETRIES AND GAP – G2G2 8ECM, 20 - 26 June 2021, Portorož, Slovenia Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$

 $Orb_m(G)$ is the set of orbits of this action (*m*-orbits).

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer

G acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ Orb_m(G) is the set of orbits of this action (*m*-orbits).

G and H from Sym(Ω) are *m*-equivalent if $Orb_m(G) = Orb_m(H)$.

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). G and H from $\text{Sym}(\Omega)$ are *m*-equivalent if $\text{Orb}_m(G) = \text{Orb}_m(H)$.

If G and H are m-equivalent, then $\langle G, H \rangle$ is m-equivalent to them.

Definition (H. Wielandt, 1969)

The *m*-closure $G^{(m)}$ of G is the largest subgroup of Sym (Ω) *m*-equivalent to G.

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). G and H from $\text{Sym}(\Omega)$ are *m*-equivalent if $\text{Orb}_m(G) = \text{Orb}_m(H)$.

If G and H are m-equivalent, then $\langle G, H \rangle$ is m-equivalent to them.

Definition (H. Wielandt, 1969) The *m*-closure $G^{(m)}$ of G is the largest subgroup of Sym(Ω) *m*-equivalent to G.

Equivalently,

 $G^{(m)} = \{g \in \mathsf{Sym}(\Omega) : \Delta^g = \Delta, \Delta \in \mathsf{Orb}_m(G)\}$

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts componentwisely on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$ $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). G and H from $\text{Sym}(\Omega)$ are *m*-equivalent if $\text{Orb}_m(G) = \text{Orb}_m(H)$.

If G and H are m-equivalent, then $\langle G, H \rangle$ is m-equivalent to them.

Definition (H. Wielandt, 1969) The *m*-closure $G^{(m)}$ of G is the largest subgroup of Sym(Ω) *m*-equivalent to G.

Equivalently,

$$G^{(m)} = \{g \in \mathsf{Sym}(\Omega) : \Delta^g = \Delta, \Delta \in \mathsf{Orb}_m(G)\} = \mathsf{Aut}(\mathsf{Orb}_m(G)).$$

 $G^{(m)}$ is the full automorphism group of specific (induced by group) combinatorial structure on Ω consisting of (colored) *m*-ary relations.

$$G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|)} = G.$$

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

H. Wielandt (1969):

Suppose $m \ge 2$. Then

- **①** G is abelian \Rightarrow $G^{(m)}$ is abelian
- 2 *G* is a *p*-group \Rightarrow *G*^(*m*) is a *p*-group
- 3 G is of odd order \Rightarrow $G^{(m)}$ is of odd order.

$$G^{(1)} \ge G^{(2)} \ge \ldots \ge G^{(m)} \ge \ldots \ge G^{(|\Omega|)} = G.$$

How far can $G^{(m)}$ be from G?

The *m*-closure of *m*-transitive group $G \leq \text{Sym}(\Omega)$ is $\text{Sym}(\Omega)$, so if $\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}}$, then $G^{(1)} = \text{Sym}(\Delta_1) \times \ldots \times \text{Sym}(\Delta_s)$.

H. Wielandt (1969):

Suppose $m \ge 2$. Then

1 G is abelian
$$\Rightarrow G^{(m)}$$
 is abelian

- 2 G is a p-group \Rightarrow $G^{(m)}$ is a p-group
- 3 G is of odd order \Rightarrow $G^{(m)}$ is of odd order.

D. Churikov, I. Ponomarenko (2020): G is nilpotent $\Rightarrow G^{(m)}$ is nilpotent.

Primitive case

M. Liebeck, C. Praeger, J. Saxl 1988; and C. P and J. S. 1992: If $m \geq 2$ and $G \leq \text{Sym}(\Omega)$ is primitive, then either $Soc(G) = Soc(G^{(m)})$, or one of the following holds: 1) G is m-transitive for 2 < m < 5; ② m = 3, $|\Omega| = 15$, and $A_7 \simeq G < G^{(3)} \simeq A_8$: 3 m = 2 and G and $G^{(2)}$ are known almost simple groups; (4) G and $G^{(m)}$ preserve a product decomposition $\Omega = \Delta^k$. k > 2, and G^{Δ} and $(G^{(m)})^{\Delta}$ are groups from (1)–(3). In particular, if $m \ge 6$, then $Soc(G) = Soc(G^{(m)})$.

The socle Soc(G) of G is the subgroup of G generated by all its minimal normal subgroups.

Solvable Permutation Groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable $\neq G^{(2)}$ is solvable.

Solvable Permutation Groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable \Rightarrow $G^{(2)}$ is solvable.

A. Seress (1995):

If G is a solvable primitive group, then $G = G^{(5)}$.

If $G = G^{(m)}$, then G is called *m*-closed.

Solvable Permutation Groups

There are 2-transitive solvable groups, say, $AGL(1, p)^{(2)} = Sym(p)$ for a prime p, so assuming $p \ge 5$, we get

G is solvable \Rightarrow $G^{(2)}$ is solvable.

A. Seress (1995):

If G is a solvable primitive group, then $G = G^{(5)}$.

If $G = G^{(m)}$, then G is called *m*-closed.

Main Result

E. O'Brien, I. Ponomarenko, A. V., and E. Vdovin (2020):

If $m \ge 3$ and G is solvable, then $G^{(m)}$ is solvable.

Basic facts on m-closures

Below $G, H \leq \text{Sym}(\Omega)$.

Lemma 1

 $G \leq G^{(m)}, \ G^{(m)} = (G^{(m)})^{(m)}, \ \text{and} \ G \leq H \ \text{implies} \ G^{(m)} \leq H^{(m)}.$

Basic facts on m-closures

Below $G, H \leq \text{Sym}(\Omega)$.

Lemma 1

 $G \leq G^{(m)}, \ G^{(m)} = (G^{(m)})^{(m)}, \ \text{and} \ G \leq H \ \text{implies} \ G^{(m)} \leq H^{(m)}.$

Lemma 2

Suppose that $m \geq 2$. Then

- (1) G is m-closed, if there is an (m-1)-closed one-point stabilizer;
- ² G is (m + 1)-closed, if an (m 1)-point stabilizer has a faithful regular orbit.

Corollary

A point stabilizer of G has a faithful regular orbit \Rightarrow G is 3-closed.

Closures of products of permutation groups

Let $K \leq \text{Sym}(\Gamma)$ and $L \leq \text{Sym}(\Delta)$.

Lemma 3 (folklore)

If $K \times L$ acts on $\Gamma \sqcup \Delta$, then $(K \times L)^{(m)} = K^{(m)} \times L^{(m)}$, $m \ge 1$.

Closures of products of permutation groups

Let
$$K \leq \operatorname{Sym}(\Gamma)$$
 and $L \leq \operatorname{Sym}(\Delta)$.

Lemma 3 (folklore)

If $K \times L$ acts on $\Gamma \sqcup \Delta$, then $(K \times L)^{(m)} = K^{(m)} \times L^{(m)}$, $m \ge 1$.

Remark. $(K \times L)^{(m)} = K^{(m)} \times L^{(m)}$ even if $K \times L$ acts on $\Gamma \times \Delta$ but starting from $m \ge 2$.

Closures of products of permutation groups

Let
$$K \leq \operatorname{Sym}(\Gamma)$$
 and $L \leq \operatorname{Sym}(\Delta)$.

Lemma 3 (folklore)

If $K \times L$ acts on $\Gamma \sqcup \Delta$, then $(K \times L)^{(m)} = K^{(m)} \times L^{(m)}$, $m \ge 1$.

Remark. $(K \times L)^{(m)} = K^{(m)} \times L^{(m)}$ even if $K \times L$ acts on $\Gamma \times \Delta$ but starting from $m \ge 2$.

Lemma 4 (L. A. Kalužnin, M. Klin, 1976)

If $K \wr L$ acts on $\bigsqcup_{\delta \in \Delta} \Gamma_{\delta}$, then $(K \wr L)^{(m)} = K^{(m)} \wr L^{(m)}, \ m \ge 2$.

Does the same hold for the case when $K \wr L$ acts on $\Gamma^{\Delta} = \prod_{\delta \in \Delta} \Gamma_{\delta}$?

Does the same hold for the case when $K \wr L$ acts on $\Gamma^{\Delta} = \prod_{\delta \in \Delta} \Gamma_{\delta}$?

If m = 2, the answer is 'No', even if we replace '=' by ' \leq ': (Sym(2) \wr Alt(3))⁽²⁾ = Sym(2) \wr Sym(3) \leq Sym(2) \wr Alt(3).

S. Evdokimov, I. Ponomarenko (2001): $(K \wr L)^{(2)} \le K^{(2)} \wr L^{(2)}$ unless $K^{(2)} = \text{Sym}(\Gamma)$. Does the same hold for the case when $K \wr L$ acts on $\Gamma^{\Delta} = \prod_{\delta \in \Delta} \Gamma_{\delta}$?

If m = 2, the answer is 'No', even if we replace '=' by ' \leq ': (Sym(2) \wr Alt(3))⁽²⁾ = Sym(2) \wr Sym(3) \leq Sym(2) \wr Alt(3).

S. Evdokimov, I. Ponomarenko (2001): $(K \wr L)^{(2)} \le K^{(2)} \wr L^{(2)}$ unless $K^{(2)} = \text{Sym}(\Gamma)$.

Lemma 5 (New) If $K \wr L$ acts on Γ^{Δ} primitively, then $(K \wr L)^{(3)} \leq K^{(3)} \wr L^{(3)}$.

Outline of the proof

Since $G^{(m)} \leq G^{(3)}$ for $m \geq 3$, it suffices to prove

Theorem

If G is solvable, then $G^{(3)}$ is solvable.

Outline of the proof

Since $G^{(m)} \leq G^{(3)}$ for $m \geq 3$, it suffices to prove

Theorem If G is solvable, then $G^{(3)}$ is solvable.

Let G be a counterexample of the least possible degree.

Claim 1

G is basic, i. e. G is primitive and does not preserve any product decomposition of Ω .

Hint: Apply Lemmas 3–5.

Since G is a primitive solvable group, G is affine, that is Ω can be identified with a vector space of size p^d ,

$$G \leq AGL(d, p)$$
 $H \leq GL(d, p)$,

where H is the stabilizer of zero vector in G; and H is irreducible.

Since G is a primitive solvable group, G is affine, that is Ω can be identified with a vector space of size p^d ,

$$G \leq AGL(d, p)$$
 $H \leq GL(d, p)$,

where H is the stabilizer of zero vector in G; and H is irreducible.

Claim 2

G is neither subgroup of $A\Gamma L(1, p^d)$, nor 2-transitive.

- $\Gamma L(1, p^d)$ is 2-closed (J. Xu et al., 2011) + Lemma 2.
- By Huppert's classification of solvable 2-transitive groups, if $G \leq A\Gamma L(1, p^d)$, then $p^d \in \{3^2, 5^2, 7^2, 11^2, 23^2, 3^4\}$.

An irreducible group $H \leq GL(V)$ is imprimitive (as a linear group) if there is a subspace $U \subset V$ such that V is a direct sum of U^h , $h \in H$, and primitive otherwise.

Since G is basic, H is primitive (as a linear group).

An irreducible group $H \leq GL(V)$ is imprimitive (as a linear group) if there is a subspace $U \subset V$ such that V is a direct sum of U^h , $h \in H$, and primitive otherwise.

Since G is basic, H is primitive (as a linear group).

Since the *m*-closure operator preserves the inclusion, we may assume that a point stabilizer H of G is a maximal solvable primitive subgroup of GL(d, p).

Suprunenko's theory (1972) shows that any such group H is characterized (in some precise sense) by four integers, which we refer to as parameters of G.

An irreducible group $H \leq GL(V)$ is imprimitive (as a linear group) if there is a subspace $U \subset V$ such that V is a direct sum of U^h , $h \in H$, and primitive otherwise.

Since G is basic, H is primitive (as a linear group).

Since the *m*-closure operator preserves the inclusion, we may assume that a point stabilizer H of G is a maximal solvable primitive subgroup of GL(d, p).

Suprunenko's theory (1972) shows that any such group H is characterized (in some precise sense) by four integers, which we refer to as parameters of G.

Claim 3

There are only 102 possible sets of parameters of G.

Claim 3

There are only 102 possible sets of parameters of G.

- Claim 2 \Rightarrow G is neither subgroup of A Γ L(1, p^d), nor 2-trans.
- *H* has a faithful regular orbit \Rightarrow *G* is 3-closed by Lemma 2.
- Otherwise there are only 102 sets of parameters of G (Al. Vasil'ev (not me!), E. Vdovin, Y. Yang, 2020).

Claim 3

There are only 102 possible sets of parameters of G.

- Claim 2 \Rightarrow G is neither subgroup of A Γ L(1, p^d), nor 2-trans.
- *H* has a faithful regular orbit \Rightarrow *G* is 3-closed by Lemma 2.
- Otherwise there are only 102 sets of parameters of *G* (Al. Vasil'ev (not me!), E. Vdovin, Y. Yang, 2020).

In order to complete the proof of the main theorem, we check with the help of computer computations that G is 3-closed for the remaining 102 sets of parameters.

Tools: GAP packages IRREDSOL and COCO2, and for some large cases additional computations in MAGMA.

Theorem (E. A. O'Brien, I. Ponomarenko, A. V., and E. Vdovin) If $m \ge 3$ and G is solvable, then $G^{(m)}$ is solvable.

- E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, and E. Vdovin, *The 3-closure of a solvable permutation group is solvable*, 2020, arXiv:2012.14166, subm. to J. Algebra.
- Y. Yang, A. S. Vasil'ev, and E. Vdovin, *Regular orbits of finite primitive solvable groups, III*, 2020, arXiv:1612.05959, subm. to J. Algebra.