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Ω is a finite set, G ≤ Sym(Ω), and m is a positive integer

G acts componentwisely on Ωm: (α1, . . . , αm)g = (αg
1 , . . . , α

g
m)

Orbm(G ) is the set of orbits of this action (m-orbits).

G and H from Sym(Ω) are m-equivalent if Orbm(G ) = Orbm(H).

If G and H are m-equivalent, then 〈G ,H〉 is m-equivalent to them.

Definition (H.Wielandt, 1969)

The m-closure G (m) of G is the largest subgroup of Sym(Ω)
m-equivalent to G .

Equivalently,

G (m) = {g ∈ Sym(Ω) : ∆g = ∆,∆ ∈ Orbm(G )} = Aut(Orbm(G )).

G (m) is the full automorphism group of specific (induced by group)
combinatorial structure on Ω consisting of (colored) m-ary relations.
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It follows from the definition that

G (1) ≥ G (2) ≥ . . . ≥ G (m) ≥ . . . ≥ G (|Ω|) = G .

How far can G (m) be from G?

The m-closure of m-transitive group G ≤ Sym(Ω) is Sym(Ω), so
if Ω = ∆1 ∪ . . . ∪∆s︸ ︷︷ ︸

1−orbits

, then G (1) = Sym(∆1)× . . .× Sym(∆s).

H.Wielandt (1969):
Suppose m ≥ 2. Then

1 G is abelian ⇒ G (m) is abelian
2 G is a p-group ⇒ G (m) is a p-group
3 G is of odd order ⇒ G (m) is of odd order.

D.Churikov, I. Ponomarenko (2020):

G is nilpotent ⇒ G (m) is nilpotent.
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Primitive case

M.Liebeck, C. Praeger, J. Saxl 1988; and C. P and J. S, 1992:
If m ≥ 2 and G ≤ Sym(Ω) is primitive, then either
Soc(G ) = Soc(G (m)), or one of the following holds:

1 G is m-transitive for 2 ≤ m ≤ 5;

2 m = 3, |Ω| = 15, and A7 ' G < G (3) ' A8;

3 m = 2 and G and G (2) are known almost simple groups;
4 G and G (m) preserve a product decomposition Ω = ∆k ,

k ≥ 2, and G∆ and (G (m))∆ are groups from (1)–(3).
In particular, if m ≥ 6, then Soc(G ) = Soc(G (m)).

The socle Soc(G ) of G is the subgroup of G generated by all its
minimal normal subgroups.
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Solvable Permutation Groups

There are 2-transitive solvable groups, say, AGL(1, p)(2) = Sym(p)
for a prime p, so assuming p ≥ 5, we get

G is solvable 6⇒ G (2) is solvable.

A. Seress (1995):

If G is a solvable primitive group, then G = G (5).

If G = G (m), then G is called m-closed.

Main Result

E.O’Brien, I. Ponomarenko, A. V., and E. Vdovin (2020):

If m ≥ 3 and G is solvable, then G (m) is solvable.
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Basic facts on m-closures

Below G ,H ≤ Sym(Ω).

Lemma 1
G ≤ G (m), G (m) = (G (m))(m), and G ≤ H implies G (m) ≤ H(m).

Lemma 2
Suppose that m ≥ 2. Then

1 G is m-closed, if there is an (m− 1)-closed one-point stabilizer;
2 G is (m + 1)-closed, if an (m − 1)-point stabilizer has

a faithful regular orbit.

Corollary
A point stabilizer of G has a faithful regular orbit ⇒ G is 3-closed.
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Closures of products of permutation groups

Let K ≤ Sym(Γ) and L ≤ Sym(∆).

Lemma 3 (folklore)

If K × L acts on Γ t∆, then (K × L)(m) = K (m) × L(m), m ≥ 1.

Remark. (K × L)(m) = K (m) × L(m) even if K × L acts on Γ×∆
but starting from m ≥ 2.

Lemma 4 (L. A. Kalužnin, M.Klin, 1976)

If K o L acts on
⊔
δ∈∆

Γδ, then (K o L)(m) = K (m) o L(m), m ≥ 2.
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Does the same hold for the case when K o L acts on Γ∆ =
∏
δ∈∆

Γδ?

If m = 2, the answer is ‘No’, even if we replace ‘=’ by ‘≤’:

(Sym(2) o Alt(3))(2) = Sym(2) o Sym(3) � Sym(2) o Alt(3).

S. Evdokimov, I. Ponomarenko (2001):

(K o L)(2) ≤ K (2) o L(2) unless K (2) = Sym(Γ).

Lemma 5 (New)

If K o L acts on Γ∆ primitively, then (K o L)(3) ≤ K (3) o L(3).
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Outline of the proof

Since G (m) ≤ G (3) for m ≥ 3, it suffices to prove

Theorem
If G is solvable, then G (3) is solvable.

Let G be a counterexample of the least possible degree.

Claim 1
G is basic, i. e. G is primitive and does not preserve any product
decomposition of Ω.

Hint: Apply Lemmas 3–5.
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Since G is a primitive solvable group, G is affine, that is Ω can be
identified with a vector space of size pd ,

G ≤ AGL(d , p) H ≤ GL(d , p),

where H is the stabilizer of zero vector in G ; and H is irreducible.

Claim 2
G is neither subgroup of AΓL(1, pd), nor 2-transitive.

ΓL(1, pd) is 2-closed (J. Xu et al., 2011) + Lemma 2.
By Huppert’s classification of solvable 2-transitive groups,
if G � AΓL(1, pd), then pd ∈ {32, 52, 72, 112, 232, 34}.
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An irreducible group H ≤ GL(V ) is imprimitive (as a linear group)
if there is a subspace U ⊂ V such that V is a direct sum of Uh,
h ∈ H, and primitive otherwise.

Since G is basic, H is primitive (as a linear group).

Since the m-closure operator preserves the inclusion, we may
assume that a point stabilizer H of G is a maximal solvable
primitive subgroup of GL(d , p).

Suprunenko’s theory (1972) shows that any such group H is
characterized (in some precise sense) by four integers, which we
refer to as parameters of G .

Claim 3
There are only 102 possible sets of parameters of G .
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Claim 3
There are only 102 possible sets of parameters of G .

Claim 2 ⇒ G is neither subgroup of AΓL(1, pd), nor 2-trans.
H has a faithful regular orbit ⇒ G is 3-closed by Lemma 2.
Otherwise there are only 102 sets of parameters of G
(Al. Vasil’ev (not me!), E. Vdovin, Y. Yang, 2020).

In order to complete the proof of the main theorem, we check with
the help of computer computations that G is 3-closed for the
remaining 102 sets of parameters.

Tools: GAP packages IRREDSOL and COCO2, and for some large
cases additional computations in MAGMA.
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Theorem (E. A.O’Brien, I. Ponomarenko, A. V., and E. Vdovin)

If m ≥ 3 and G is solvable, then G (m) is solvable.

E. A.O’Brien, I. Ponomarenko, A. V. Vasil’ev, and E. Vdovin,
The 3-closure of a solvable permutation group is solvable,
2020, arXiv:2012.14166, subm. to J. Algebra.

Y. Yang, A. S. Vasil’ev, and E. Vdovin, Regular orbits of finite
primitive solvable groups, III, 2020, arXiv:1612.05959, subm. to
J. Algebra.
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