Boundary unique continuation on C^{1}-Dini domains

Zihui Zhao
joint work with Carlos Kenig

University of Chicago

Minisymposium on Harmonic Analysis and Partial Differential Equations, 8ECM, Portorož, Slovenia

Table of contents

(1) Background

(2) Main result
(3) Analogous result in the interior

Background

Motivation
Let u be a harmonic function in $D \subset \mathbb{R}^{d}$.

- Let $d=2$. If ∇u vanishes on a boundary set $E \subset \partial D$ with positive measure, then $u \equiv$ const.

Background

Motivation

Let u be a harmonic function in $D \subset \mathbb{R}^{d}$.

- Let $d=2$. If ∇u vanishes on a boundary set $E \subset \partial D$ with positive measure, then $u \equiv$ const.
- (A classical question originating from Bers) Let $d \geq 3$. Is it possible that u and ∇u vanish on a boundary set $E \subset \partial D$ with positive surface measure, i.e.

$$
\mathcal{H}^{d-1}(\{x \in \partial D: u(x)=0=|\nabla u(x)|\})>0 ?
$$

Theorem (Bourgain-Wolff 1990)
When $d \geq 3$, there exists a non-trivial harmonic function $u \in C^{1}\left(\overline{\mathbb{R}_{+}^{d}}\right)$ such that

$$
\mathcal{H}^{d-1}(\{x \in \partial D: u(x)=0=|\nabla u(x)|\})>0 .
$$

Theorem (Bourgain-Wolff 1990)
When $d \geq 3$, there exists a non-trivial harmonic function $u \in C^{1}\left(\overline{\mathbb{R}_{+}^{d}}\right)$ such that

$$
\mathcal{H}^{d-1}(\{x \in \partial D: u(x)=0=|\nabla u(x)|\})>0 .
$$

Question: Assuming that $u \equiv 0$ on an open set $U \subset \partial D$, how big can the set $\{x \in \partial D: \nabla u(x)=0\}$ be?

Theorem (Bourgain-Wolff 1990)
When $d \geq 3$, there exists a non-trivial harmonic function $u \in C^{1}\left(\overline{\mathbb{R}_{+}^{d}}\right)$ such that

$$
\mathcal{H}^{d-1}(\{x \in \partial D: u(x)=0=|\nabla u(x)|\})>0
$$

Question: Assuming that $u \equiv 0$ on an open set $U \subset \partial D$, how big can the set $\{x \in \partial D: \nabla u(x)=0\}$ be?

Theorem (Tolsa 2020, Adolfsson-Escauriaza 1997)
Let D be a Lipschitz domain with sufficiently small Lipschitz constant. Let $u \in C(\bar{D})$ be a non-trivial harmonic function in D. Suppose that $u \equiv 0$ on $\partial D \cap B_{5 R}$. Then

$$
\mathcal{H}^{d-1}\left(\left\{x \in \partial D \cap B_{R}: \nabla u(x)=0\right\}\right)=0 .
$$

Main result

- Let D be a Dini domain in \mathbb{R}^{d}, and let u be a non-trivial harmonic function in D.

Main result

- Let D be a Dini domain in \mathbb{R}^{d}, and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5 R}(0)$.

Main result

- Let D be a Dini domain in \mathbb{R}^{d}, and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5 R}(0)$.
- Moreover, suppose the frequency function of u satisfies $N_{0}(4 R) \leq \Lambda$.

Main result

- Let D be a Dini domain in \mathbb{R}^{d}, and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5 R}(0)$.
- Moreover, suppose the frequency function of u satisfies $N_{0}(4 R) \leq \Lambda$. We define the singular set

$$
\mathcal{S}(u)=\{x \in \bar{D}: u(x)=0=|\nabla u(x)|\} .
$$

Main result

- Let D be a Dini domain in \mathbb{R}^{d}, and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5 R}(0)$.
- Moreover, suppose the frequency function of u satisfies $N_{0}(4 R) \leq \Lambda$. We define the singular set

$$
\mathcal{S}(u)=\{x \in \bar{D}: u(x)=0=|\nabla u(x)|\} .
$$

Theorem (Kenig-Z 2021)
We have the following bound on the size of $\mathcal{S}(u)$

$$
\mathcal{H}^{d-2}\left(\mathcal{S}(u) \cap B_{R}(0)\right) \leq \mathcal{M}^{d-2, *}\left(\mathcal{S}(u) \cap B_{R}(0)\right) \leq C(\Lambda)
$$

and $\mathcal{S}(u) \cap B_{R}(0)$ is $(d-2)$-rectifiable.

Definition

We say a domain $D \subset \mathbb{R}^{d}$ is a C^{1}-Dini domain if locally, it is above the graph of a C^{1} function $\varphi: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$, i.e.

$$
D=\left\{\left(x, x_{d}\right) \in \mathbb{R}^{d}: x_{d}>\varphi(x)\right\}
$$

where φ satisfies $|\nabla \varphi(x)-\nabla \varphi(y)| \leq \theta(|x-y|)$ and $\theta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non-decreasing function satisfying the Dini condition

$$
\int_{0}^{1} \frac{\theta(r)}{r} d r<+\infty
$$

Definition

We say a domain $D \subset \mathbb{R}^{d}$ is a C^{1}-Dini domain if locally, it is above the graph of a C^{1} function $\varphi: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$, i.e.

$$
D=\left\{\left(x, x_{d}\right) \in \mathbb{R}^{d}: x_{d}>\varphi(x)\right\}
$$

where φ satisfies $|\nabla \varphi(x)-\nabla \varphi(y)| \leq \theta(|x-y|)$ and $\theta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non-decreasing function satisfying the Dini condition

$$
\int_{0}^{1} \frac{\theta(r)}{r} d r<+\infty
$$

Remark

- In particular $C^{1, \alpha}$ domains $(0<\alpha<1)$ are Dini domains.
- Sharp for $u \in C^{1}(\bar{D})$.

Analogous result in the interior

Theorem (Naber-Valtorta 2018)
Let u be a non-trivial harmonic function in $B_{3}(0) \subset \mathbb{R}^{d}$. Suppose the frequency function of u satisfies $N_{0}(2) \leq \Lambda$. Let

$$
\mathcal{C}(u)=\{x \in D: \nabla u(x)=0\}
$$

be the critical set of u. Then $\mathcal{C}(u) \cap B_{1}(0)$ is $(d-2)$-rectifiable, and

$$
\mathcal{H}^{d-2}\left(\mathcal{C}(u) \cap B_{1}(0)\right) \leq C(\Lambda)
$$

Analogous result in the interior

Theorem (Naber-Valtorta 2018)
Let u be a non-trivial harmonic function in $B_{3}(0) \subset \mathbb{R}^{d}$. Suppose the frequency function of u satisfies $\boldsymbol{N}_{\mathbf{0}}(\mathbf{2)} \leq \boldsymbol{\Lambda}$. Let

$$
\mathcal{C}(u)=\{x \in D: \nabla u(x)=0\}
$$

be the critical set of u. Then $\mathcal{C}(u) \cap B_{1}(0)$ is $(d-2)$-rectifiable, and

$$
\mathcal{H}^{d-2}\left(\mathcal{C}(u) \cap B_{1}(0)\right) \leq C(\Lambda)
$$

Frequency function

Assume WOLG that $u(0)=0$. We define the frequency function centered at 0 to be

$$
r \mapsto N(r):=\frac{r D(r)}{H(r)}=\frac{r \iint_{B_{r}(0)}|\nabla u|^{2} d x}{\int_{\partial B_{r}(0)} u^{2} d \mathcal{H}^{d-1}}
$$

Frequency function

Assume WOLG that $u(0)=0$. We define the frequency function centered at 0 to be

$$
r \mapsto N(r):=\frac{r D(r)}{H(r)}=\frac{r \iint_{B_{r}(0)}|\nabla u|^{2} d x}{\int_{\partial B_{r}(0)} u^{2} d \mathcal{H}^{d-1}}
$$

Example

Suppose $u=P_{N_{0}}$ is a homogeneous harmonic polynomial of degree N_{0}. Then $N(r) \equiv N_{0}$.

Proposition (Monotonicity formula of the frequency function)
The frequency function satisfies

$$
\frac{d}{d r} N(r)=\frac{2 r}{H(r)} \int_{\partial B_{r}(0)}\left|\partial_{r} u-\frac{N(r)}{r} u\right|^{2} d \mathcal{H}^{d-1} \geq 0
$$

where $\partial_{r} u$ denotes the radial derivative of u.
Thus $r \mapsto N(r)$ is monotone increasing, and the limit $\lim _{r \rightarrow 0+} N(r)$ exists.

Proposition (Monotonicity formula of the frequency function)

The frequency function satisfies

$$
\frac{d}{d r} N(r)=\frac{2 r}{H(r)} \int_{\partial B_{r}(0)}\left|\partial_{r} u-\frac{N(r)}{r} u\right|^{2} d \mathcal{H}^{d-1} \geq 0
$$

where $\partial_{r} u$ denotes the radial derivative of u.
Thus $r \mapsto N(r)$ is monotone increasing, and the limit $\lim _{r \rightarrow 0+} N(r)$ exists.

Remark

- $N:=\lim _{r \rightarrow 0+} N(r)$ is the degree of the leading order term in the expansion of $u(x)$ near 0 .
- The assumption $N_{0}(2) \leq \Lambda$ means the growth of the harmonic function u can not be too fast near 0 .

In a nutshell, the frequency function gives us a way to quantity how far u is from being a homogeneous harmonic polynomial P_{N}.

In a nutshell, the frequency function gives us a way to quantity how far u is from being a homogeneous harmonic polynomial P_{N}.

Consider the ideal situation $u=P_{N}$.
Observation I

- $0 \in \mathcal{C}(u)$ (namely $\nabla u(0)=0) \Longleftrightarrow N \geq 2$.

In a nutshell, the frequency function gives us a way to quantity how far u is from being a homogeneous harmonic polynomial P_{N}.

Consider the ideal situation $u=P_{N}$.
Observation I

- $0 \in \mathcal{C}(u)$ (namely $\nabla u(0)=0) \Longleftrightarrow N \geq 2$.
- $N=1$, i.e. P_{N} is linear $\Longleftrightarrow P_{N}$ is invariant in $(d-1)$ linearly independent directions.

In a nutshell, the frequency function gives us a way to quantity how far u is from being a homogeneous harmonic polynomial P_{N}.

Consider the ideal situation $u=P_{N}$.
Observation I

- $0 \in \mathcal{C}(u)$ (namely $\nabla u(0)=0) \Longleftrightarrow N \geq 2$.
- $N=1$, i.e. P_{N} is linear $\Longleftrightarrow P_{N}$ is invariant in $(d-1)$ linearly independent directions.
- $N \geq 2 \Longleftrightarrow P_{N}$ is invariant in at most $(d-2)$ linearly independent directions.

Observation II: Cone splitting

Let h be a non-trivial harmonic function in \mathbb{R}^{d}, and $x_{1}, x_{2} \in \mathbb{R}^{d}$. Suppose h is homogeneous of degree N_{i} with respect to x_{i}, for $i=1,2$. Then $N_{1}=N_{2} \in \mathbb{N}$, and h is invariant along the direction $x_{2}-x_{1}$, i.e.

$$
h\left(y+t\left(x_{2}-x_{1}\right)\right)=h(y), \quad \text { for any } y \in \mathbb{R}^{d} \text { and } t \in \mathbb{R} .
$$

Qualitative \longrightarrow Quantitative

- If $N_{x}(r)=N_{x}(r / 2)$, then $u=($ a constant multiple of $)$ some hhP P_{N}.

Qualitative \longrightarrow Quantitative

- If $N_{x}(r)=N_{x}(r / 2)$, then $u=\left(\right.$ a constant multiple of) some hhP P_{N}.
- If $N_{x}(r)-N_{x}(r / 2) \leq \delta$, then u is ϵ-close to (a constant multiple of) some hhP P_{N} in $B_{r}(x)$.

Qualitative \longrightarrow Quantitative

- If $N_{x}(r)=N_{x}(r / 2)$, then $u=($ a constant multiple of $)$ some hhP P_{N}.
- If $N_{x}(r)-N_{x}(r / 2) \leq \delta$, then u is ϵ-close to (a constant multiple of) some hhP P_{N} in $B_{r}(x)$.
- If $x, x^{\prime} \in \mathbb{R}^{d}$ are two distinct points such that $\left|x-x^{\prime}\right|<r / 2$, and

$$
\begin{aligned}
& N_{x}(r)-N_{x}(r / 2) \leq \delta, \\
& N_{x^{\prime}}(r)-N_{x^{\prime}}(r / 2) \leq \delta,
\end{aligned}
$$

then P^{x} is almost invariant along the direction $\frac{x^{\prime}-x}{r}$.

Thank you!

