Boundary unique continuation on C^1 -Dini domains

Zihui Zhao joint work with Carlos Kenig

University of Chicago

Minisymposium on *Harmonic Analysis and Partial Differential Equations*, 8ECM, Portorož, Slovenia

3 Analogous result in the interior

э

イロト イボト イヨト イヨト

Background

Motivation

- Let *u* be a harmonic function in $D \subset \mathbb{R}^d$.
 - Let d = 2. If ∇u vanishes on a boundary set E ⊂ ∂D with positive measure, then u ≡ const.

イロト イポト イヨト イヨト

Background

Motivation

- Let *u* be a harmonic function in $D \subset \mathbb{R}^d$.
 - Let d = 2. If ∇u vanishes on a boundary set E ⊂ ∂D with positive measure, then u ≡ const.
 - (A classical question originating from Bers) Let d ≥ 3. Is it possible that u and ∇u vanish on a boundary set E ⊂ ∂D with positive surface measure, i.e.

$$\mathcal{H}^{d-1}(\{x \in \partial D : u(x) = 0 = |\nabla u(x)|\}) > 0?$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Bourgain-Wolff 1990)

When $d \ge 3$, there exists a non-trivial harmonic function $u \in C^1(\mathbb{R}^d_+)$ such that

$$\mathcal{H}^{d-1}(\{x\in\partial D: u(x)=0=|\nabla u(x)|\})>0.$$

Theorem (Bourgain-Wolff 1990)

When $d \ge 3$, there exists a non-trivial harmonic function $u \in C^1(\mathbb{R}^d_+)$ such that

$$\mathcal{H}^{d-1}(\{x\in\partial D: u(x)=0=|\nabla u(x)|\})>0.$$

Question: Assuming that $u \equiv 0$ on an open set $U \subset \partial D$, how big can the set $\{x \in \partial D : \nabla u(x) = 0\}$ be?

Theorem (Bourgain-Wolff 1990)

When $d \ge 3$, there exists a non-trivial harmonic function $u \in C^1(\mathbb{R}^d_+)$ such that

$$\mathcal{H}^{d-1}(\{x\in\partial D: u(x)=0=|\nabla u(x)|\})>0.$$

Question: Assuming that $u \equiv 0$ on an open set $U \subset \partial D$, how big can the set $\{x \in \partial D : \nabla u(x) = 0\}$ be?

Theorem (Tolsa 2020, Adolfsson-Escauriaza 1997)

Let D be a Lipschitz domain with sufficiently small Lipschitz constant. Let $u \in C(\overline{D})$ be a non-trivial harmonic function in D. Suppose that $u \equiv 0$ on $\partial D \cap B_{5R}$. Then

$$\mathcal{H}^{d-1}(\{x\in\partial D\cap B_R:\nabla u(x)=0\})=0.$$

• Let D be a Dini domain in \mathbb{R}^d , and let u be a non-trivial harmonic function in D.

э

イロン イヨン イヨン

- Let D be a Dini domain in \mathbb{R}^d , and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5R}(0)$.

э

(日)

- Let D be a Dini domain in \mathbb{R}^d , and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5R}(0)$.
- Moreover, suppose the *frequency function* of *u* satisfies $N_0(4R) \leq \Lambda$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Let D be a Dini domain in \mathbb{R}^d , and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5R}(0)$.
- Moreover, suppose the *frequency function* of *u* satisfies $N_0(4R) \leq \Lambda$. We define the **singular set**

$$\mathcal{S}(u) = \{x \in \overline{D} : u(x) = 0 = |\nabla u(x)|\}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Let D be a Dini domain in \mathbb{R}^d , and let u be a non-trivial harmonic function in D.
- Suppose $0 \in \partial D$ and $u \equiv 0$ on $\partial D \cap B_{5R}(0)$.
- Moreover, suppose the *frequency function* of *u* satisfies $N_0(4R) \leq \Lambda$. We define the **singular set**

$$\mathcal{S}(u) = \{x \in \overline{D} : u(x) = 0 = |\nabla u(x)|\}.$$

Theorem (Kenig-Z 2021)

We have the following bound on the size of S(u)

$$\mathcal{H}^{d-2}\left(\mathcal{S}(u)\cap B_{R}(0)
ight)\leq\mathcal{M}^{d-2,*}\left(\mathcal{S}(u)\cap B_{R}(0)
ight)\leq C(\Lambda),$$

and $S(u) \cap B_R(0)$ is (d-2)-rectifiable.

Definition

We say a domain $D \subset \mathbb{R}^d$ is a C^1 -Dini domain if locally, it is above the graph of a C^1 function $\varphi : \mathbb{R}^{d-1} \to \mathbb{R}$, i.e.

$$D = \left\{ (x, x_d) \in \mathbb{R}^d : x_d > \varphi(x) \right\},\$$

where φ satisfies $|\nabla \varphi(x) - \nabla \varphi(y)| \le \theta(|x - y|)$ and $\theta : \mathbb{R}_+ \to \mathbb{R}_+$ is a non-decreasing function satisfying the Dini condition

$$\int_0^1 \frac{\theta(r)}{r} \, dr < +\infty.$$

Definition

We say a domain $D \subset \mathbb{R}^d$ is a C^1 -Dini domain if locally, it is above the graph of a C^1 function $\varphi : \mathbb{R}^{d-1} \to \mathbb{R}$, i.e.

$$D = \left\{ (x, x_d) \in \mathbb{R}^d : x_d > \varphi(x) \right\},\$$

where φ satisfies $|\nabla \varphi(x) - \nabla \varphi(y)| \le \theta(|x - y|)$ and $\theta : \mathbb{R}_+ \to \mathbb{R}_+$ is a non-decreasing function satisfying the Dini condition

$$\int_0^1 \frac{\theta(r)}{r} \, dr < +\infty.$$

Remark

- In particular $C^{1,\alpha}$ domains $(0 < \alpha < 1)$ are Dini domains.
- Sharp for $u \in C^1(\overline{D})$.

Analogous result in the interior

Theorem (Naber-Valtorta 2018)

Let u be a non-trivial harmonic function in $B_3(0) \subset \mathbb{R}^d$. Suppose the frequency function of u satisfies $N_0(2) \leq \Lambda$. Let

$$\mathcal{C}(u) = \{x \in D : \nabla u(x) = 0\}$$

be the critical set of u. Then $C(u) \cap B_1(0)$ is (d-2)-rectifiable, and

$$\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B_1(0))\leq C(\Lambda).$$

Analogous result in the interior

Theorem (Naber-Valtorta 2018)

Let u be a non-trivial harmonic function in $B_3(0) \subset \mathbb{R}^d$. Suppose the frequency function of u satisfies $N_0(2) \leq \Lambda$. Let

$$\mathcal{C}(u) = \{x \in D : \nabla u(x) = 0\}$$

be the critical set of u. Then $C(u) \cap B_1(0)$ is (d-2)-rectifiable, and

$$\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B_1(0))\leq C(\Lambda).$$

Frequency function

Assume WOLG that u(0) = 0. We define the frequency function centered at 0 to be

$$r \mapsto N(r) := \frac{rD(r)}{H(r)} = \frac{r\iint_{B_r(0)} |\nabla u|^2 dx}{\int_{\partial B_r(0)} u^2 d\mathcal{H}^{d-1}}.$$

э

イロト イポト イヨト イヨト

Frequency function

Assume WOLG that u(0) = 0. We define the frequency function centered at 0 to be

$$r\mapsto N(r):=rac{rD(r)}{H(r)}=rac{r\iint_{B_r(0)}|
abla u|^2\ dx}{\int_{\partial B_r(0)}u^2\ d\mathcal{H}^{d-1}}.$$

Example

Suppose $u = P_{N_0}$ is a homogeneous harmonic polynomial of degree N_0 . Then $N(r) \equiv N_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition (Monotonicity formula of the frequency function) The frequency function satisfies

$$\frac{d}{dr}N(r)=\frac{2r}{H(r)}\int_{\partial B_r(0)}\left|\partial_r u-\frac{N(r)}{r}u\right|^2 d\mathcal{H}^{d-1}\geq 0,$$

where $\partial_r u$ denotes the radial derivative of u. Thus $r \mapsto N(r)$ is monotone increasing, and the limit $\lim_{r\to 0+} N(r)$ exists. Proposition (Monotonicity formula of the frequency function) The frequency function satisfies

$$\frac{d}{dr}N(r)=\frac{2r}{H(r)}\int_{\partial B_r(0)}\left|\partial_r u-\frac{N(r)}{r}u\right|^2 \ d\mathcal{H}^{d-1}\geq 0,$$

where $\partial_r u$ denotes the radial derivative of u. Thus $r \mapsto N(r)$ is monotone increasing, and the limit $\lim_{r\to 0+} N(r)$ exists.

Remark

- N := lim_{r→0+} N(r) is the degree of the leading order term in the expansion of u(x) near 0.
- The assumption $N_0(2) \leq \Lambda$ means the growth of the harmonic function *u* can not be too fast near 0.

< □ > < □ > < □ > < □ > < □ > < □ >

イロト イポト イヨト イヨト

Consider the ideal situation $u = P_N$.

Observation I

• $0 \in \mathcal{C}(u)$ (namely $\nabla u(0) = 0$) $\iff N \ge 2$.

< □ > < □ > < □ > < □ > < □ > < □ >

Consider the ideal situation $u = P_N$.

Observation I

- $0 \in \mathcal{C}(u)$ (namely $\nabla u(0) = 0$) $\iff N \ge 2$.
- N = 1, i.e. P_N is linear $\iff P_N$ is invariant in (d 1) linearly independent directions.

イロト イヨト イヨト ・

Consider the ideal situation $u = P_N$.

Observation I

- $0 \in \mathcal{C}(u)$ (namely $\nabla u(0) = 0$) $\iff N \ge 2$.
- N = 1, i.e. P_N is linear $\iff P_N$ is invariant in (d 1) linearly independent directions.
- $N \ge 2 \iff P_N$ is invariant in at most (d-2) linearly independent directions.

Observation II: Cone splitting

Let *h* be a non-trivial harmonic function in \mathbb{R}^d , and $x_1, x_2 \in \mathbb{R}^d$. Suppose *h* is homogeneous of degree N_i with respect to x_i , for i = 1, 2. Then $N_1 = N_2 \in \mathbb{N}$, and *h* is invariant along the direction $x_2 - x_1$, i.e.

$$h(y + t(x_2 - x_1)) = h(y)$$
, for any $y \in \mathbb{R}^d$ and $t \in \mathbb{R}$.

$\mathsf{Qualitative} \longrightarrow \mathsf{Quantitative}$

• If $N_x(r) = N_x(r/2)$, then u = (a constant multiple of) some hhP P_N .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\mathsf{Qualitative} \longrightarrow \mathsf{Quantitative}$

- If $N_x(r) = N_x(r/2)$, then u = (a constant multiple of) some hhP P_N .
- If N_x(r) − N_x(r/2) ≤ δ, then u is ε-close to (a constant multiple of) some hhP P_N in B_r(x).

イロト イヨト イヨト イヨト 三日

Qualitative \longrightarrow Quantitative

- If $N_x(r) = N_x(r/2)$, then u = (a constant multiple of) some hhP P_N .
- If N_x(r) − N_x(r/2) ≤ δ, then u is ε-close to (a constant multiple of) some hhP P_N in B_r(x).

• If $x, x' \in \mathbb{R}^d$ are two distinct points such that |x - x'| < r/2, and

$$N_x(r) - N_x(r/2) \le \delta,$$

$$N_{x'}(r) - N_{x'}(r/2) \le \delta,$$

then P^x is almost invariant along the direction $\frac{x'-x}{r}$.

イロト 不得下 イヨト イヨト 二日

Thank you!

2