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Periodically forced Kepler problem

Find T -periodic solutions to:

(FKPε) ẍ = − x
|x |3 + ε∇x U(t, x) x ∈ R2 \ {O}

where:
U : R1+2 → R smooth enough;
U(t + T , x) = U(t, x) for all (t, x) ∈ R1+2 and some T > 0.

As critical points in H1
T := {x ∈ H1(0,T ) : x(0) = x(T )} of

AT (x) =
∫ T

0

(
|ẋ(t)|2

2 + 1
|x(t)| + εU(t, x(t))

)
dt

There are x ∈ H1
T such that O ∈ x([0,T ]) and AT (x) < +∞.
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Related papers: collisionless solutions

For (FKPε):
Ambrosetti & Coti Zelati 1989: U even and T/2 periodic;
Cabral & Vidal, 2000: U symmetric under rotation and reflection;
Fonda & Toader & Torres, 2012;
Fonda & Gallo, 2017: radial perturbation, 2018: symmetry under a rotation;
Boscaggin & Ortega, 2016: averaging technique;
Amster & Haddad & Ortega & Ureña 2011: large perturbations;

For (FKP):
Serra & Terracini 1994: U(t, x) = p(t) ruled out.
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Related papers: generalised solutions

Solutions attaining O on a zero-measure set: Ambrosetti & Coti Zelati 1993,
Bahri & Rabinowitz, Tanaka 1993;
regularised equations in dimension 1: Ortega 2011, Zhao 2016, Rebelo & Simões
2018;
regularised equations in higher dimension: Boscaggin & Ortega & Zhao 2019;
regularised functionals in general setting: Barutello & Ortega & Verzini 2021.
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Generalised solutions

A generalised T -periodic solution to (FKP) is a T -periodic function x ∈ C(R) that
satisfies the following:

1 the collision set Ex := x−1(O) = {t ∈ [0,T ] : x(t) = O} is discrete;
2 x ∈ C 2(I) and satisfies equation (FKP) in I, for each interval I ⊂ R \ Ex ;
3 the limits:

lim
t→t0

x(t)
|x(t)| and lim

t→t0

(
|ẋ(t)|2

2 − 1
|x(t)|

)
exist and are finite at every t0 ∈ Ex .



Introduction and little bibliography Main result Proof

Result

Theorem
If U(t, x) is C 1(R1+2), T -periodic w.r.t. t and satisfies:

|U(t, x)| ≤ C(1 + |x |α) ∀(t, x) ∈ R1+2

for some C > 0 and α ∈ ]0, 2[, then (FKP) has at least one T -periodic generalised
solution.

Candidates are chosen among the local minimisers of the action functional

AT (x) =
∫ T

0

(
|ẋ(t)|2

2 + 1
|x(t)| + U(t, x(t))

)
dt

which lacks coercivity on H1
T := {x ∈ H1(0,T ) : x(0) = x(T )}.
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Minimisation

We consider X := Xc ∪ Xr where:
Xc :=

{
x ∈ H1

T : O ∈ x([0,T ])
}

;

Xr :=
{

x ∈ H1
T : O 6∈ x([0,T ]) and x is not null-homotopic in R2 \ {O}

}
.

X is sequentially weakly closed in H1
T .

A Poincaré-type inequality holds in X :∫ T

0
|x |2 ≤ K

∫ T

0
|ẋ |2 ∀x ∈ X =⇒ AT (x) ≥

∫ T

0

(
|ẋ |2

4 + |x |
2

8K

)
− K ′ ∀x ∈ X .

Proposition
There exists x ∈ X such that AT (x) = infy∈X AT (y) .

From now on, we assume that x ∈ Xc .
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Exploring collisions

The collision set Ex = x−1(O) ⊂ [0,T ] has measure 0 since AT (x) ∈ R;
R \

⋃
k∈Z(Ex + kT ) is the (at most) countable union of pairwise disjoint open

intervals ]an, bn[ where x is C 2(]an, bn[) and satisfies (FKP) (n ∈ N).
if we let

hx (t) = |ẋ(t)|2
2 − 1

|x(t)| t ∈ [0,T ] \ Ex ,

we have that∫ T

0
|hx (t)|dt ≤ AT (x)−

∫ T

0
U(t, x(t))dt =⇒ hx ∈ L1(0,T ).
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Exploring collisions: the energy

Proposition

hx ∈W 1,1
loc and, therefore, the energy can be extended to a continous function.

choose any φ ∈ C∞c (0,T ) and define ψλ(t) = t + λφ(t) and let xλ = x ◦ ψλ;
if λ is small enough, φλ is a diffeomorphism, xλ([0,T ]) = x([0,T ]) and, in
particular, xλ ∈ Xc ;
if a(λ) := AT (xλ), then a(λ) ≥ a(0) = AT (x) for each λ in a neighborhood of 0
and, thus, a′(0) = 0;
more precisely:∫ T

0

[
hx (t)φ̇(t) + 〈∇x U(t, x(t)), ẋ(t)〉φ(t)

]
dt = 0 ∀φ ∈ C∞c

and, hence, hx ∈W 1,1
loc .
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Exploring collisions: the collision set Ex

Proposition
The collision set Ex = x−1(O) ⊂ [0,T ] is finite.

Letting Ix (t) := |x(t)|2
2 , we have the virial identity:

I ′′x (t) = 1
|x(t)| + 〈∇x U(t, x(t)), x(t)〉+ 2hx (t), t ∈ [0,T ] \ Ex .

I ′′x (t)→ +∞ as t approaches a collision time, therefore t 7→ |x(t)|2 is strictly
convex in a neighborhood of collision times.
Collision times are isolated.
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Exploring collisions: asymptotic directions at a collision time t0

For each small δ > 0 there exist t−δ , t
+
δ > 0 such that

|x(t0 ± t±δ )| = δ

|x(t)| < δ ∀t ∈
]
t0 − t−δ , t0 + t+

δ

[
and t 7→ |x(t)|2 is (strictly) convex in [t0 − t−δ , t0 + t+

δ ].
Sperling’s asymptotics (Celestial Mech. 1969/70) at an isolated collision time t0:
there are two versors x+

0 and x−0 such that:

x(t) = 3

√
9
2 |t − t0|2/3x±0 + o

(
|t − t0|2/3

)
ẋ(t) = 2

3
3

√
9
2(t − t0)−1/3x±0 + o

(
|t − t0|−1/3

) as t → t±0

Goal: x+
0 = x−0 .
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Exploring collisions: blow-up analysis at t0

Rescaling:
zδ(s) := 1

δ x(δ3/2s + t0) for s ∈ [−σ−δ , σ
+
δ ]

σ±δ := t±δ /δ3/2 |zδ(σ±δ )| = 1, zδ(0) = O,
|zδ(t)| < 1 ∀t ∈

]
−σ−δ , σ

+
δ

[
.
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Exploring collisions: blow-up analysis at t0

zδ(s) := 1
δ

x(δ3/2s + t0), s ∈ [−σ−δ , σ
+
δ ]

(
σ±δ := t±δ /δ

3/2
)

|zδ(σ±δ )| = 1, zδ(0) = O, |zδ(t)| < 1 ∀t ∈
]
−σ−δ , σ

+
δ

[
A straightforward computation gives:

A[t0−t−
δ
,t0+t+

δ
](x)

δ1/2 =
∫ σ+

δ

−σ−
δ

(
|żδ|2

2 + 1
|zδ|

)
+ δ2

∫ σ+
δ

−σ−
δ

U
(

t0 + δ3/2s, zδ(s))
)

ds
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Exploring collisions: blow-up analysis at t0

Sperling’s asymptotics as δ → 0+ give that σ±δ → s0, zδ(s)→ ζ(t; x−0 , x
+
0 ) and

żδ(s)→ ζ̇(t; x−0 , x
+
0 ) ∀0 < |s| < s0, where:

ζ(t; x−0 , x
+
0 ) :=


3
√

9
2 |s|

2/3x−0 if − s0 ≤ s ≤ 0,
3
√

9
2 |s|

2/3x+
0 if 0 ≤ s ≤ s0,

(b.t.w. s0 =
√

2/3).

is the parabolic collision-ejection solution of the following two-point bvp:

(2PK )

z̈ = − z
|z|3 s ∈ [−s0, s0]

z(±s0) = x±0

Moreover:

lim inf
δ→0+

A[t0−t−
δ
,t0+t+

δ
](x)

δ1/2 ≥ ψ0 :=
∫ s0

−s0

(
|ζ̇|2

2 + 1
|ζ|

)
= 4 3

√
2
√

2.
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Exploring collisions: alternative routes

If x−0 6= x+
0 it is known that ζ(·; x−0 , x

+
0 ) does not minimise the Keplerian action over

the paths joining x−0 to x+
0 in the time interval [−s0, s0].

Lemma [Fusco & Gronchi & Negrini, 2011]
If x−0 6= x+

0 then there are exactly two classical solutions
ξi = ξi (·; x−0 , x

+
0 ) of (2PK ) (for i = 1, 2) such that:

1 φi (x−0 , x
+
0 ) :=

∫ s0

−s0

(
|ξ̇i |2

2 + 1
|ξi |

)
< ψ0 for i = 1, 2;

2 they are not homotopic to each other in R2 \ {O};
3 they depend smoothly on the data of the problem.

See also: Albouy, Lecture notes on the two-body problem (2002).
If we have x−0 6= x+

0 , we can use these ξi to modify x in a neighborhood of t0 and
decrease its action.
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Exploring collisions: cut-and-paste near t0

and x wouldn’t anymore be
minimal for AT on X .
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