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Periodically forced Kepler problem

Find T-periodic solutions to:

(FKPe) X=— \x]3 + eV, U(t,x) xeR?\ {0}
where:
o U:R*2 - R smooth enough;
o U(t+ T,x) = U(t,x) for all (t,x) € R1*2 and some T > 0.
As critical points in HY := {x € H!(0, T) : x(0) = x(T)} of

(P 1
AT(X)_/O ( TG ())) dt

There are x € HY such that O € x([0, T]) and A7 (x) < +oo0.

m[o]
@~



Introduction and little bibliography
oeo

Related papers: collisionless solutions

For (FKPe):
@ Ambrosetti & Coti Zelati 1989: U even and T /2 periodic;
o Cabral & Vidal, 2000: U symmetric under rotation and reflection;
o Fonda & Toader & Torres, 2012;
e Fonda & Gallo, 2017: radial perturbation, 2018: symmetry under a rotation;
o Boscaggin & Ortega, 2016: averaging technique;
o Amster & Haddad & Ortega & Urefia 2011: large perturbations;
For (FKP):
@ Serra & Terracini 1994: U(t, x) = p(t) ruled out.
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Related papers: generalised solutions

@ Solutions attaining O on a zero-measure set: Ambrosetti & Coti Zelati 1993,
Bahri & Rabinowitz, Tanaka 1993;

regularised equations in dimension 1: Ortega 2011, Zhao 2016, Rebelo & Simdes
2018§;

regularised equations in higher dimension: Boscaggin & Ortega & Zhao 2019;

regularised functionals in general setting: Barutello & Ortega & Verzini 2021.
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Generalised solutions

A generalised T-periodic solution to (FKP) is a T-periodic function x € C(R) that
satisfies the following:

O the collision set E, := x~1(0) = {t € [0, T] : x(t) = O} is discrete;
@ x € C?(/) and satisfies equation (FKP) in I, for each interval I C R\ E;
@ the limits:

exist and are finite at every ty € Ej.
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If U(t, x) is CL(R*2), T-periodic w.r.t. t and satisfies:
|U(t,x)| < C(A + |x|*) ¥(t,x) e RF?

for some C > 0 and « € 10, 2[, then (FKP) has at least one T-periodic generalised
solution.

.

Candidates are chosen among the local minimisers of the action functional

% 2
Ar(x) = /OT (’ (5)‘ + |X(1t)’ + U(t,x(t))) dt

which lacks coercivity on HY := {x € H1(0, T) : x(0) = x(T)}.
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Minimisation

We consider X := X U X, where:
o X, = {X € HY 1 0 € x([o, T])};
o X, = {x € HY : O ¢ x([0, T]) and x is not null-homotopic in R2\ {O}}
@ X is sequentially weakly closed in ’HlT
@ A Poincaré-type inequality holds in X:

T 9 T ) T |X’2 ‘X’2
[Pk [P wex = ar)z [ (BE+oo) -k wex,
0 0 0 4 8K

Proposition
There exists x € X such that Ar(x) = inf,cx A7(y) .
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Exploring collisions

o The collision set £, = x~(0) C [0, T] has measure 0 since A7(x) € R;

® R\ Ukez(Ex + kT) is the (at most) countable union of pairwise disjoint open
intervals ]a,, by[ where x is C?(]an, ba[) and satisfies (FKP) (n € N).

o if we let

hy(t) = - te[0, T]\ E,

we have that

T T
/ Ih(£)|dt < A7(x) —/ U(t, x(£))dt — by € L}(0, T).
0 0
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Exploring collisions: the energy

Proposition

hyx € V\/,(lm1 and, therefore, the energy can be extended to a continous function.

@ choose any ¢ € C°(0, T) and define ¥\(t) = t + Ap(t) and let x) = x 0 y;

e if X is small enough, ¢, is a diffeomorphism, x([0, T]) = x([0, T]) and, in
particular, x) € A;

o if a(A\) := Ar(xy), then a(X) > a(0) = Ar(x) for each X in a neighborhood of 0
and, thus, 2’(0) = 0;

@ more precisely:
[ [e(03(6) + (FUe (1), 3(0) (0] ot =0 v € €

D]
and, hence, h, € Wli’cl.
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Exploring collisions: the collision set E,

Proposition
The collision set E, = x~1(0) C [0, T] is finite.

o Letting /(t) : >~—, we have the virial identity:

() =

(0] + (VU(t, x(t)), x(t)) + 2hs(t), te]0,T]\ Ex.

o /"(t) — +o0 as t approaches a collision time, therefore t — |x(t)|? is strictly
convex in a neighborhood of collision times.

@ Collision times are isolated.
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Exploring collisions: asymptotic directions at a collision time ¢

@ For each small 6 > 0 there exist tj , 1“5+ > 0 such that
x(to £ )] = 6
Ix(t)] <6 Vte]to— t(s_,to—l—t;’[
and t — |x(t)[? is (strictly) convex in [to — t; , to + t5 |.

@ Sperling’s asymptotics (Celestial Mech. 1969/70) at an isolated collision time ty:
there are two versors x;” and x, such that:

x(t) =

— t*3x¢ + 0 (|t - t0|2/3)

9|t
2 +

ast — t;
3/ 9

3
. 2 - _
x(t) = 3\/;(1“ —to) V3% +o (|t — to 1/3)

S S
Goal: x5 = x; .
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Exploring collisions: blow-up analysis at tg

Rescalmg

25( ) == 2x(8%2s + to) for s € [~o5 ,05]
of =t /53/2 |zs(05)| = 1, z5(0) = O,
25(t)| <1Vt e | -0y, 08 ]
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Exploring collisions: blow-up analysis at tg

1
2(s) = 5x( s+ 1), s € [-05.0] (o = t5/5°7?)
2505 =1, 2(0)=0, |zt <1 Vte|-o5,0f]
A straightforward computation gives:

A _ n (X) ot -2 ot
[to—t; to+t]] (% [ ]zs] 1 5 [ 3/2
e - /05 <2 )4 [ U (to+ %%, 2(s)) ) ds

‘26’ o5
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Exploring collisions: blow-up analysis at tg

Sperling's asymptotics as § — 07 give that af;t — 50, z5(s) = C(t; x5 , %y ) and
25(s) — ((t;xg , %)) Y0 < |s| < sp, where:

I2s|?3x; if —sp<s<0
C(tixg x5 ) = \ﬂ 0 -7 (b.t.w. sp=/2/3).
0o \3’/g]5|2/3x5r if 0 <s <sp,
is the parabolic collision-ejection solution of the following two-point bvp:
z=—=% s € [—s0, 0]
(2PK) S
z(£s0) = xg
Moreover:

‘A[to—t‘,to+t+](x)

. <P :
S5 > —
“(;T,Brlf 5172 > o : /—50 < + = |C| = 44/2V2. gé
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Exploring collisions: alternative routes

If xo # xg it is known that ((-; x; , x; ) does not minimise the Keplerian action over
the paths joining x; to xj in the time interval [—sp, so].

Lemma [Fusco & Gronchi & Negrini, 2011]
If o # x; then there are exactly two classical solutions - /- X
& =&i( x5, %) of (2PK) (for i = 1,2) such that: °

12
Q ¢ (xy,x) = /50 <’€'| +1> <) for i =1,2;

o\ 2 [&i]
@ they are not homotopic to each other in R? \ {O};
© they depend smoothly on the data of the problem.

o

See also: Albouy, Lecture notes on the two-body problem (2002).
If we have x, # XO+, we can use these &; to modify x in a neighborhood of ty and
decrease its action. ElG|



Exploring collisions: cut-and-paste near tg

and x wouldn’t anymore be
.. [} 1
minimal for A7 on X. [E[G|
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