Generalised periodic solutions to a forced Kepler problem in the plane

D. Papini joint work with A. Boscaggin & W. Dambrosio

Dip. di Scienze Matematiche, Informatiche e Fisiche, Università di Udine

Topological Methods in Differential Equations

Table of contents

Introduction and little bibliography •00

Periodically forced Kepler problem

Find T-periodic solutions to:

$$(\mathsf{FKP}\epsilon)$$
 $\ddot{x} = -rac{x}{|x|^3} + \epsilon
abla_x U(t,x)$ $x \in \mathbb{R}^2 \setminus \{O\}$

where:

- $U: \mathbb{R}^{1+2} \to \mathbb{R}$ smooth enough;
- U(t + T, x) = U(t, x) for all $(t, x) \in \mathbb{R}^{1+2}$ and some T > 0.

As critical points in $\mathcal{H}^1_T := \{x \in \mathcal{H}^1(0, T) : x(0) = x(T)\}$ of

$$\mathcal{A}_{\mathcal{T}}(x) = \int_0^{\mathcal{T}} \left(\frac{|\dot{x}(t)|^2}{2} + \frac{1}{|x(t)|} + \epsilon U(t, x(t)) \right) dt$$

There are $x \in \mathcal{H}^1_T$ such that $O \in x([0, T])$ and $\mathcal{A}_T(x) < +\infty$.

Related papers: collisionless solutions

For $(FKP\epsilon)$:

- Ambrosetti & Coti Zelati 1989: U even and T/2 periodic;
- Cabral & Vidal, 2000: U symmetric under rotation and reflection;
- Fonda & Toader & Torres, 2012;
- Fonda & Gallo, 2017: radial perturbation, 2018: symmetry under a rotation;
- Boscaggin & Ortega, 2016: averaging technique;
- Amster & Haddad & Ortega & Ureña 2011: large perturbations;

For (*FKP*):

• Serra & Terracini 1994: U(t,x) = p(t) ruled out.

Related papers: generalised solutions

- Solutions attaining O on a zero-measure set: Ambrosetti & Coti Zelati 1993, Bahri & Rabinowitz, Tanaka 1993;
- regularised equations in dimension 1: Ortega 2011, Zhao 2016, Rebelo & Simões 2018;
- regularised equations in higher dimension: Boscaggin & Ortega & Zhao 2019;
- regularised functionals in general setting: Barutello & Ortega & Verzini 2021.

Generalised solutions

A generalised *T*-periodic solution to (FKP) is a *T*-periodic function $x \in C(\mathbb{R})$ that satisfies the following:

- the collision set $E_x := x^{-1}(O) = \{t \in [0, T] : x(t) = O\}$ is discrete;
- **2** $x \in C^2(I)$ and satisfies equation (FKP) in *I*, for each interval $I \subset \mathbb{R} \setminus E_x$;

the limits:

$$\lim_{t o t_0}rac{x(t)}{|x(t)|} \quad ext{and} \quad \lim_{t o t_0}\left(rac{|\dot{x}(t)|^2}{2}-rac{1}{|x(t)|}
ight)$$

exist and are finite at every $t_0 \in E_x$.

Result

Theorem

If
$$U(t,x)$$
 is $C^{1}(\mathbb{R}^{1+2})$, *T*-periodic w.r.t. t and satisfies:

$$|U(t,x)| \leq C(1+|x|^lpha) \quad orall (t,x) \in \mathbb{R}^{1+2}$$

for some C > 0 and $\alpha \in]0,2[$, then (FKP) has at least one T-periodic generalised solution.

Candidates are chosen among the local minimisers of the action functional

$$\mathcal{A}_{T}(x) = \int_{0}^{T} \left(\frac{|\dot{x}(t)|^{2}}{2} + \frac{1}{|x(t)|} + U(t, x(t)) \right) dt$$

which lacks coercivity on $\mathcal{H}^1_T := \{x \in \mathcal{H}^1(0, T) : x(0) = x(T)\}.$

Introduction and little bibliography	Main result	Proof
000	00	●000000000

Minimisation

We consider $\mathcal{X} := \mathcal{X}_{c} \cup \mathcal{X}_{r}$ where:

- $\mathcal{X}_c := \left\{ x \in \mathcal{H}^1_T : O \in x([0, T]) \right\};$
- $\mathcal{X}_r := \Big\{ x \in \mathcal{H}^1_T : O \not\in x([0, T]) \text{ and } x \text{ is not null-homotopic in } \mathbb{R}^2 \setminus \{O\} \Big\}.$
- \mathcal{X} is sequentially weakly closed in \mathcal{H}^1_T .
- A Poincaré-type inequality holds in \mathcal{X} :

$$\int_0^T |x|^2 \leq \mathcal{K} \int_0^T |\dot{x}|^2 \quad \forall x \in \mathcal{X} \quad \Longrightarrow \quad \mathcal{A}_T(x) \geq \int_0^T \left(\frac{|\dot{x}|^2}{4} + \frac{|x|^2}{8\mathcal{K}}\right) - \mathcal{K}' \quad \forall x \in \mathcal{X}.$$

Proposition

There exists
$$x \in \mathcal{X}$$
 such that $\mathcal{A}_T(x) = \inf_{y \in \mathcal{X}} \mathcal{A}_T(y)$.

From now on, we assume that $x \in \mathcal{X}_c$.

イロト 不得 トイヨト イヨト

Introduction and little bibliography	Main result	Proof
000	00	o●oooooooo

- The collision set $E_x = x^{-1}(O) \subset [0, T]$ has measure 0 since $\mathcal{A}_T(x) \in \mathbb{R}$;
- ℝ \ ∪_{k∈ℤ}(E_x + kT) is the (at most) countable union of pairwise disjoint open intervals]a_n, b_n[where x is C²(]a_n, b_n[) and satisfies (FKP) (n ∈ N).
- if we let

Exploring collisions

$$h_x(t)=rac{|\dot{x}(t)|^2}{2}-rac{1}{|x(t)|} \qquad t\in [0,\,T]\setminus E_x,$$

we have that

$$\int_0^T |h_x(t)| dt \leq \mathcal{A}_T(x) - \int_0^T U(t,x(t)) dt \Longrightarrow h_x \in L^1(0,T).$$

Exploring collisions: the energy

Proposition

 $h_x \in W_{loc}^{1,1}$ and, therefore, the energy can be extended to a continous function.

- choose any $\phi \in C^{\infty}_{c}(0, T)$ and define $\psi_{\lambda}(t) = t + \lambda \phi(t)$ and let $x_{\lambda} = x \circ \psi_{\lambda}$;
- if λ is small enough, ϕ_{λ} is a diffeomorphism, $x_{\lambda}([0, T]) = x([0, T])$ and, in particular, $x_{\lambda} \in \mathcal{X}_{c}$;
- if a(λ) := A_T(x_λ), then a(λ) ≥ a(0) = A_T(x) for each λ in a neighborhood of 0 and, thus, a'(0) = 0;
- more precisely:

$$\int_0^T \left[h_x(t) \dot{\phi}(t) + \langle \nabla_x U(t, x(t)), \dot{x}(t) \rangle \phi(t) \right] dt = 0 \quad \forall \phi \in C_c^{\infty}$$

and, hence, $h_x \in W^{1,1}_{\mathsf{loc}}$.

Exploring collisions: the collision set E_x

Proposition

The collision set
$${\it E}_{x}=x^{-1}({\it O})\subset [0,\,T]$$
 is finite.

• Letting $I_{x}(t) := \frac{|x(t)|^{2}}{2}$, we have the virial identity:

$$I_x''(t) = rac{1}{|x(t)|} + \langle
abla_x U(t,x(t)),x(t)
angle + 2h_x(t), \quad t \in [0,T] \setminus E_x$$

- $l''_x(t) \to +\infty$ as t approaches a collision time, therefore $t \mapsto |x(t)|^2$ is strictly convex in a neighborhood of collision times.
- Collision times are isolated.

ntroduction and little bibliography	Main result	Proof
		0000000000

Exploring collisions: asymptotic directions at a collision time t_0

• For each small $\delta>0$ there exist $t_{\delta}^-, t_{\delta}^+>0$ such that

$$egin{aligned} &|x(t_0\pm t_{\delta}^{\pm})|=\delta\ &|x(t)|<\delta\quad orall t\in \left]t_0-t_{\delta}^{-},t_0+t_{\delta}^{+}
ight[\end{aligned}$$

and $t\mapsto |x(t)|^2$ is (strictly) convex in $[t_0-t_\delta^-,t_0+t_\delta^+].$

• Sperling's asymptotics (Celestial Mech. 1969/70) at an isolated collision time t_0 : there are two versors x_0^+ and x_0^- such that:

$$\begin{aligned} \mathsf{x}(t) &= \sqrt[3]{\frac{9}{2}} |t - t_0|^{2/3} \mathsf{x}_0^{\pm} + \mathsf{o}\left(|t - t_0|^{2/3}\right) \\ \dot{\mathsf{x}}(t) &= \frac{2}{3} \sqrt[3]{\frac{9}{2}} (t - t_0)^{-1/3} \mathsf{x}_0^{\pm} + \mathsf{o}\left(|t - t_0|^{-1/3}\right) \end{aligned} \quad \text{as } t \to t_0^{\pm} \end{aligned}$$

Goal: $x_0^+ = x_0^-$.

Introduction and little bibliography 000 Main result

Proof 00000●0000

Exploring collisions: blow-up analysis at t_0

Rescaling:

$$egin{aligned} &z_\delta(s) := rac{1}{\delta} x(\delta^{3/2}s+t_0) ext{ for } s\in [-\sigma_\delta^-,\sigma_\delta^+] \ &\sigma_\delta^\pm := t_\delta^\pm/\delta^{3/2} \; |z_\delta(\sigma_\delta^\pm)| = 1, \; z_\delta(0) = O, \ &|z_\delta(t)| < 1 \; orall t\in \left] - \sigma_\delta^-, \sigma_\delta^+
ight[. \end{aligned}$$

Exploring collisions: blow-up analysis at t_0

$$egin{aligned} & z_\delta(s) := rac{1}{\delta} x (\delta^{3/2} s + t_0), \quad s \in [-\sigma_\delta^-, \sigma_\delta^+] & \left(\sigma_\delta^\pm := t_\delta^\pm / \delta^{3/2}
ight) \ & |z_\delta(\sigma_\delta^\pm)| = 1, \qquad z_\delta(0) = O, \qquad |z_\delta(t)| < 1 \quad orall t \in \left] - \sigma_\delta^-, \sigma_\delta^+
ight[\end{aligned}$$

A straightforward computation gives:

$$rac{\mathcal{A}_{[t_0-t_{\delta}^-,t_0+t_{\delta}^+]}(x)}{\delta^{1/2}} = \int_{-\sigma_{\delta}^-}^{\sigma_{\delta}^+} \left(rac{|\dot{z}_{\delta}|^2}{2} + rac{1}{|z_{\delta}|}
ight) + \delta^2 \int_{-\sigma_{\delta}^-}^{\sigma_{\delta}^+} U\left(t_0 + \delta^{3/2}s, z_{\delta}(s)
ight)
ight) ds$$

Introduction and little bibliography 000 Main result 00 Proof ooooooooooo

Exploring collisions: blow-up analysis at t_0

Sperling's asymptotics as $\delta \to 0^+$ give that $\sigma_{\delta}^{\pm} \to s_0$, $z_{\delta}(s) \to \zeta(t; x_0^-, x_0^+)$ and $\dot{z}_{\delta}(s) \to \dot{\zeta}(t; x_0^-, x_0^+) \ \forall 0 < |s| < s_0$, where:

$$\zeta(t; x_0^-, x_0^+) := \begin{cases} \sqrt[3]{\frac{9}{2}} |s|^{2/3} x_0^- & \text{if } -s_0 \le s \le 0, \\ \sqrt[3]{\frac{9}{2}} |s|^{2/3} x_0^+ & \text{if } 0 \le s \le s_0, \end{cases}$$
 (b.t.w. $s_0 = \sqrt{2}/3$).

is the parabolic collision-ejection solution of the following two-point bvp:

$$(2PK) \quad \begin{cases} \ddot{z} = -\frac{z}{|z|^3} & s \in [-s_0, s_0] \\ z(\pm s_0) = x_0^{\pm} \end{cases}$$

Moreover:

$$\liminf_{\delta\to 0^+} \frac{\mathcal{A}_{[t_0-t_\delta^-,t_0+t_\delta^+]}(x)}{\delta^{1/2}} \geq \psi_0 := \int_{-s_0}^{s_0} \left(\frac{|\dot{\boldsymbol{\zeta}}|^2}{2} + \frac{1}{|\boldsymbol{\zeta}|}\right) = 4\sqrt[3]{2\sqrt{2}}.$$

Exploring collisions: alternative routes

If $x_0^- \neq x_0^+$ it is known that $\zeta(\cdot; x_0^-, x_0^+)$ does not minimise the Keplerian action over the paths joining x_0^- to x_0^+ in the time interval $[-s_0, s_0]$.

Lemma [Fusco & Gronchi & Negrini, 2011]

If
$$x_0^- \neq x_0^+$$
 then there are exactly two classical solutions
 $\xi_i = \xi_i(\cdot; x_0^-, x_0^+)$ of $(2PK)$ (for $i = 1, 2$) such that:
• $\phi^i(x_0^-, x_0^+) := \int_{-s_0}^{s_0} \left(\frac{|\dot{\xi}_i|^2}{2} + \frac{1}{|\xi_i|}\right) < \psi_0$ for $i = 1, 2$;

- **2** they are not homotopic to each other in $\mathbb{R}^2 \setminus \{O\}$;
- they depend smoothly on the data of the problem.

See also: Albouy, Lecture notes on the two-body problem (2002). If we have $x_0^- \neq x_0^+$, we can use these ξ_i to modify x in a neighborhood of t_0 and decrease its action.

Main result

Proof oooooooooo

Exploring collisions: cut-and-paste near t_0

and x wouldn't anymore be minimal for $\mathcal{A}_{\mathcal{T}}$ on \mathcal{X} .

