periodic solutions to a forced Kepler problem in the plane

D．Papini
joint work with A．Boscaggin \＆W．Dambrosio

Dip．di Scienze Matematiche，Informatiche e Fisiche，Università di Udine

Topological Methods in Differential Equations

Table of contents

(1) Introduction and little bibliography
(2) Main result
(3) Proof

Periodically forced Kepler problem

Find T-periodic solutions to:

$$
(F K P \epsilon) \quad \ddot{x}=-\frac{x}{|x|^{3}}+\epsilon \nabla_{x} U(t, x) \quad x \in \mathbb{R}^{2} \backslash\{O\}
$$

where:

- $U: \mathbb{R}^{1+2} \rightarrow \mathbb{R}$ smooth enough;
- $U(t+T, x)=U(t, x)$ for all $(t, x) \in \mathbb{R}^{1+2}$ and some $T>0$.

As critical points in $\mathcal{H}_{T}^{1}:=\left\{x \in \mathcal{H}^{1}(0, T): x(0)=x(T)\right\}$ of

$$
\mathcal{A}_{T}(x)=\int_{0}^{T}\left(\frac{|\dot{x}(t)|^{2}}{2}+\frac{1}{|x(t)|}+\epsilon U(t, x(t))\right) d t
$$

There are $x \in \mathcal{H}_{T}^{1}$ such that $O \in x([0, T])$ and $\mathcal{A}_{T}(x)<+\infty$.

Related papers: collisionless solutions

For (FKP ϵ):

- Ambrosetti \& Coti Zelati 1989: U even and $T / 2$ periodic;
- Cabral \& Vidal, 2000: U symmetric under rotation and reflection;
- Fonda \& Toader \& Torres, 2012;
- Fonda \& Gallo, 2017: radial perturbation, 2018: symmetry under a rotation;
- Boscaggin \& Ortega, 2016: averaging technique;
- Amster \& Haddad \& Ortega \& Ureña 2011: large perturbations;

For (FKP):

- Serra \& Terracini 1994: $U(t, x)=p(t)$ ruled out.

Related papers: generalised solutions

- Solutions attaining O on a zero-measure set: Ambrosetti \& Coti Zelati 1993, Bahri \& Rabinowitz, Tanaka 1993;
- regularised equations in dimension 1: Ortega 2011, Zhao 2016, Rebelo \& Simões 2018;
- regularised equations in higher dimension: Boscaggin \& Ortega \& Zhao 2019;
- regularised functionals in general setting: Barutello \& Ortega \& Verzini 2021.

Generalised solutions

A generalised T-periodic solution to (FKP) is a T-periodic function $x \in C(\mathbb{R})$ that satisfies the following:
(1) the collision set $E_{x}:=x^{-1}(O)=\{t \in[0, T]: x(t)=O\}$ is discrete;
(2) $x \in C^{2}(I)$ and satisfies equation (FKP) in I, for each interval $I \subset \mathbb{R} \backslash E_{x}$;
(3) the limits:

$$
\lim _{t \rightarrow t_{0}} \frac{x(t)}{|x(t)|} \quad \text { and } \quad \lim _{t \rightarrow t_{0}}\left(\frac{|\dot{x}(t)|^{2}}{2}-\frac{1}{|x(t)|}\right)
$$

exist and are finite at every $t_{0} \in E_{x}$.

Result

Theorem

If $U(t, x)$ is $C^{1}\left(\mathbb{R}^{1+2}\right)$, T-periodic w.r.t. t and satisfies:

$$
|U(t, x)| \leq C\left(1+|x|^{\alpha}\right) \quad \forall(t, x) \in \mathbb{R}^{1+2}
$$

for some $C>0$ and $\alpha \in] 0,2[$, then (FKP) has at least one T-periodic generalised solution.

Candidates are chosen among the local minimisers of the action functional

$$
\mathcal{A}_{T}(x)=\int_{0}^{T}\left(\frac{|\dot{x}(t)|^{2}}{2}+\frac{1}{|x(t)|}+U(t, x(t))\right) d t
$$

which lacks coercivity on $\mathcal{H}_{T}^{1}:=\left\{x \in \mathcal{H}^{1}(0, T): x(0)=x(T)\right\}$.

We consider $\mathcal{X}:=\mathcal{X}_{c} \cup \mathcal{X}_{r}$ where:

- $\mathcal{X}_{c}:=\left\{x \in \mathcal{H}_{T}^{1}: O \in x([0, T])\right\}$;
- $\mathcal{X}_{r}:=\left\{x \in \mathcal{H}_{T}^{1}: O \notin x([0, T])\right.$ and x is not null-homotopic in $\left.\mathbb{R}^{2} \backslash\{O\}\right\}$.
- \mathcal{X} is sequentially weakly closed in \mathcal{H}_{T}^{1}.
- A Poincaré-type inequality holds in \mathcal{X} :
$\int_{0}^{T}|x|^{2} \leq K \int_{0}^{T}|\dot{x}|^{2} \quad \forall x \in \mathcal{X} \quad \Longrightarrow \quad \mathcal{A}_{T}(x) \geq \int_{0}^{T}\left(\frac{|\dot{x}|^{2}}{4}+\frac{|x|^{2}}{8 K}\right)-K^{\prime} \quad \forall x \in \mathcal{X}$.

Proposition

There exists $x \in \mathcal{X}$ such that $\mathcal{A}_{T}(x)=\inf _{y \in \mathcal{X}} \mathcal{A}_{T}(y)$.
From now on, we assume that $x \in \mathcal{X}_{c}$.

- The collision set $E_{x}=x^{-1}(O) \subset[0, T]$ has measure 0 since $\mathcal{A}_{T}(x) \in \mathbb{R}$;
- $\mathbb{R} \backslash \bigcup_{k \in \mathbb{Z}}\left(E_{x}+k T\right)$ is the (at most) countable union of pairwise disjoint open intervals $] a_{n}, b_{n}\left[\right.$ where x is $C^{2}(] a_{n}, b_{n}[)$ and satisfies (FKP) $(n \in \mathbb{N})$.
- if we let

$$
h_{x}(t)=\frac{|\dot{x}(t)|^{2}}{2}-\frac{1}{|x(t)|} \quad t \in[0, T] \backslash E_{x}
$$

we have that

$$
\int_{0}^{T}\left|h_{x}(t)\right| d t \leq \mathcal{A}_{T}(x)-\int_{0}^{T} U(t, x(t)) d t \Longrightarrow h_{x} \in L^{1}(0, T)
$$

Exploring collisions: the energy

Proposition

$h_{x} \in W_{\text {loc }}^{1,1}$ and, therefore, the energy can be extended to a continous function.

- choose any $\phi \in C_{c}^{\infty}(0, T)$ and define $\psi_{\lambda}(t)=t+\lambda \phi(t)$ and let $x_{\lambda}=x \circ \psi_{\lambda}$;
- if λ is small enough, ϕ_{λ} is a diffeomorphism, $x_{\lambda}([0, T])=x([0, T])$ and, in particular, $x_{\lambda} \in \mathcal{X}_{c}$;
- if $a(\lambda):=\mathcal{A}_{T}\left(x_{\lambda}\right)$, then $a(\lambda) \geq a(0)=\mathcal{A}_{T}(x)$ for each λ in a neighborhood of 0 and, thus, $a^{\prime}(0)=0$;
- more precisely:

$$
\int_{0}^{T}\left[h_{x}(t) \dot{\phi}(t)+\left\langle\nabla_{x} U(t, x(t)), \dot{x}(t)\right\rangle \phi(t)\right] d t=0 \quad \forall \phi \in C_{c}^{\infty}
$$

and, hence, $h_{x} \in W_{\text {loc }}^{1,1}$.

Proposition

The collision set $E_{x}=x^{-1}(O) \subset[0, T]$ is finite.

- Letting $I_{x}(t):=\frac{|x(t)|^{2}}{2}$, we have the virial identity:

$$
I_{x}^{\prime \prime}(t)=\frac{1}{|x(t)|}+\left\langle\nabla_{x} U(t, x(t)), x(t)\right\rangle+2 h_{x}(t), \quad t \in[0, T] \backslash E_{x}
$$

- $I_{x}^{\prime \prime}(t) \rightarrow+\infty$ as t approaches a collision time, therefore $t \mapsto|x(t)|^{2}$ is strictly convex in a neighborhood of collision times.
- Collision times are isolated.

Exploring collisions: asymptotic directions at a collision time t_{0}

- For each small $\delta>0$ there exist $t_{\delta}^{-}, t_{\delta}^{+}>0$ such that

$$
\begin{aligned}
& \left|x\left(t_{0} \pm t_{\delta}^{ \pm}\right)\right|=\delta \\
& |x(t)|<\delta \quad \forall t \in] t_{0}-t_{\delta}^{-}, t_{0}+t_{\delta}^{+}[
\end{aligned}
$$

and $t \mapsto|x(t)|^{2}$ is (strictly) convex in $\left[t_{0}-t_{\delta}^{-}, t_{0}+t_{\delta}^{+}\right]$.

- Sperling's asymptotics (Celestial Mech. 1969/70) at an isolated collision time t_{0} : there are two versors x_{0}^{+}and x_{0}^{-}such that:

$$
\begin{aligned}
& x(t)=\sqrt[3]{\frac{9}{2}}\left|t-t_{0}\right|^{2 / 3} x_{0}^{ \pm}+o\left(\left|t-t_{0}\right|^{2 / 3}\right) \\
& \dot{x}(t)=\frac{2}{3} \sqrt[3]{\frac{9}{2}}\left(t-t_{0}\right)^{-1 / 3} x_{0}^{ \pm}+\mathrm{o}\left(\left|t-t_{0}\right|^{-1 / 3}\right) \quad \text { as } t \rightarrow t_{0}^{ \pm}
\end{aligned}
$$

Goal: $x_{0}^{+}=x_{0}^{-}$.

Exploring collisions: blow-up analysis at t_{0}

Rescaling:
$z_{\delta}(s):=\frac{1}{\delta} \times\left(\delta^{3 / 2} s+t_{0}\right)$ for $s \in\left[-\sigma_{\delta}^{-}, \sigma_{\delta}^{+}\right]$

$\sigma_{\delta}^{ \pm}:=t_{\delta}^{ \pm} / \delta^{3 / 2}\left|z_{\delta}\left(\sigma_{\delta}^{ \pm}\right)\right|=1, z_{\delta}(0)=O$,
$\left.\left|z_{\delta}(t)\right|<1 \forall t \in\right]-\sigma_{\delta}^{-}, \sigma_{\delta}^{+}[$.

Exploring collisions: blow-up analysis at t_{0}

$$
\left.\begin{array}{ll}
z_{\delta}(s):=\frac{1}{\delta} x\left(\delta^{3 / 2} s+t_{0}\right), \quad s \in\left[-\sigma_{\delta}^{-}, \sigma_{\delta}^{+}\right] & \left(\sigma_{\delta}^{ \pm}:=t_{\delta}^{ \pm} / \delta^{3 / 2}\right) \\
\left|z_{\delta}\left(\sigma_{\delta}^{ \pm}\right)\right|=1, & z_{\delta}(0)=0, \quad\left|z_{\delta}(t)\right|<1
\end{array} \quad \forall t \in\right]-\sigma_{\delta}^{-}, \sigma_{\delta}^{+}[\$ ~ l
$$

A straightforward computation gives:

$$
\left.\frac{\mathcal{A}_{\left[t_{0}-t_{\delta}^{-}, t_{0}+t_{d}^{+}\right]}(x)}{\delta^{1 / 2}}=\int_{-\sigma_{\delta}^{-}}^{\sigma_{\delta}^{+}}\left(\frac{\left|\dot{z}_{\delta}\right|^{2}}{2}+\frac{1}{\left|z_{\delta}\right|}\right)+\delta^{2} \int_{-\sigma_{\delta}^{-}}^{\sigma_{\delta}^{+}} U\left(t_{0}+\delta^{3 / 2} s, z_{\delta}(s)\right)\right) d s
$$

Exploring collisions: blow-up analysis at t_{0}
Sperling's asymptotics as $\delta \rightarrow 0^{+}$give that $\sigma_{\delta}^{ \pm} \rightarrow s_{0}, z_{\delta}(s) \rightarrow \zeta\left(t ; x_{0}^{-}, x_{0}^{+}\right)$and $\dot{z}_{\delta}(s) \rightarrow \dot{\zeta}\left(t ; x_{0}^{-}, x_{0}^{+}\right) \forall 0<|s|<s_{0}$, where:

$$
\zeta\left(t ; x_{0}^{-}, x_{0}^{+}\right):=\left\{\begin{array}{ll}
\sqrt[3]{\frac{9}{2}}|s|^{2 / 3} x_{0}^{-} & \text {if }-s_{0} \leq s \leq 0, \\
\sqrt[3]{\frac{9}{2}}|s|^{2 / 3} x_{0}^{+} & \text {if } 0 \leq s \leq s_{0}
\end{array} \quad \text { (b.t.w. } s_{0}=\sqrt{2} / 3\right)
$$

is the parabolic collision-ejection solution of the following two-point bvp:

$$
(2 P K)\left\{\begin{array}{l}
\ddot{z}=-\frac{z}{|z|^{3}} \\
z\left(\pm s_{0}\right)=x_{0}^{ \pm}
\end{array} \quad s \in\left[-s_{0}, s_{0}\right]\right.
$$

Moreover:

$$
\liminf _{\delta \rightarrow 0^{+}} \frac{\mathcal{A}_{\left[t_{0}-t_{\delta}^{-}, t_{0}+t_{\delta}^{+}\right]}(x)}{\delta^{1 / 2}} \geq \psi_{0}:=\int_{-s_{0}}^{s_{0}}\left(\frac{|\dot{\zeta}|^{2}}{2}+\frac{1}{|\zeta|}\right)=4 \sqrt[3]{2 \sqrt{2}} .
$$

Exploring collisions: alternative routes

If $x_{0}^{-} \neq x_{0}^{+}$it is known that $\zeta\left(\cdot ; x_{0}^{-}, x_{0}^{+}\right)$does not minimise the Keplerian action over the paths joining x_{0}^{-}to x_{0}^{+}in the time interval $\left[-s_{0}, s_{0}\right]$.

Lemma [Fusco \& Gronchi \& Negrini, 2011]

If $x_{0}^{-} \neq x_{0}^{+}$then there are exactly two classical solutions $\xi_{i}=\xi_{i}\left(\cdot ; x_{0}^{-}, x_{0}^{+}\right)$of $(2 P K)($ for $i=1,2)$ such that:
(1) $\phi^{i}\left(x_{0}^{-}, x_{0}^{+}\right):=\int_{-s_{0}}^{s_{0}}\left(\frac{\left|\dot{\xi}_{i}\right|^{2}}{2}+\frac{1}{\left|\xi_{i}\right|}\right)<\psi_{0}$ for $i=1,2$;
(2) they are not homotopic to each other in $\mathbb{R}^{2} \backslash\{O\}$;

(3) they depend smoothly on the data of the problem.

See also: Albouy, Lecture notes on the two-body problem (2002). If we have $x_{0}^{-} \neq x_{0}^{+}$, we can use these ξ_{i} to modify x in a neighborhood of t_{0} and decrease its action.

Exploring collisions: cut-and-paste near t_{0}

and x wouldn't anymore be minimal for \mathcal{A}_{T} on \mathcal{X}.

