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The following NP-hard problems are polynomial-time solvable on triad-convex graphs:

• DOMINATING SET (Pandey and Panda 2019)

• INDEPENDENT DOMINATING SET (Lu et al. 2013)

• CONNECTED DOMINATING SET (Liu et al. 2015)

• DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)

• FEEDBACK VERTEX SET (Jiang et al. 2013)

It turns out that:

• the problems above are polynomial-time solvable on graphs of bounded
mim-width;

• triad-convex graphs have boundedmim-width.
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Capra Da BepiCapra Da Bepi

For t,∆ ≥ 0, a (t,∆)-tree is a tree with maximum degree at most∆ and containing at most
t vertices of degree at least 3.
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LetH be a family of graphs. A bipartite graph G = (A,B, E) isH-convex if there exists a
graph H ∈ Hwith V(H) = A such that the set of neighbours in A of each b ∈ B induces a
connected subgraph of H.

bipartite

tree convex≡ (∞,∞)-tree convex

circular convex

(t,∆)-tree convex, t ≥ 1,∆ ≥ 3

(∞, 3)-tree convex

comb convexstar convex≡ (1,∞)-tree convex

chordal bipartite

triad convex

convex

unboundedmim-width

boundedmim-width



We all knowwhy treewidth is useful
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NP-hard to determine the treewidth of a graph (Arnborg et al. 1987).

2O(w
3) · n time algorithm that finds a tree decomposition of widthw (Bodlaender 1996).

Dynamic Programming on tree decompositions.



Branch decompositions andmim-width
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• Natural approach to DP: recursively partition the vertices of the graph into two parts.

• Decomposition of G can be stored as a subcubic treewhose leaves are in bijection
with vertices of G.

• Need to store multiple sub-solutions at each intermediate node structure of the
cuts is crucial to runtime.
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Branch decomposition for G: (T, δ)where T is subcubic tree and δ is bijection between
vertices of G and leaves of T. Each e ∈ E(T) represents partition (Ae, Ae) of V(G).

mimwG(T, δ): maxe∈E(T) size of maximum inducedmatching in G[Ae, Ae].

mimw(G): min value ofmimwG(T, δ) over all possible branch decompositions (T, δ) for G.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.

Theorem (Belmonte, Vatshelle 2013)
mimw(G) ≤ 1, for any interval graph G. Moreover, a branch decomposition of
mim-width at most 1 can be computed in linear time.
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Whymim-width?
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cw = O(1)
rw = O(1)

tw = O(1)

mimw = O(1)
cw(G) ≤ 3 · 2tw(G)−1 (Corneil, Rotics 2005)

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 (Oum, Seymour 2006)

mimw(G) ≤ cw(G) (Vatshelle 2012)

• LCVS problems in XP parameterized bymim-width, provided a branch
decomposition is given (INDEP SET, DOM SET, TOTAL DOM SET, INDUCED MATCHING, ...).
Same for more general LCVP problems (k-COLORING, H-HOMOMORPHISM, ...).

(Bui-Xuan, Telle, Vatshelle 2013)

• Bad News: In contrast to treewidth and rank-width, deciding mim-width is W[1]-hard.
(Sæther and Vatshelle 2016)
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LCVS problems
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Given finite or co-finite subsets σ, ρ ofN and a graph G, S ⊆ V(G) is a (σ, ρ)-set if:

• |N(v) ∩ S| ∈ σ, for each v ∈ S;

• |N(v) ∩ S| ∈ ρ, for each v ∈ V(G) \ S.

Locally checkable vertex subset problem: find a min or max (σ, ρ)-set in input graph
G (Telle and Proskurowski 1997).

Distance-r locally checkable vertex subset problem: replace N(v)with Nr(v) (Ja�ke et

al. 2020).

(Ja�ke et al. 2020)



LCVS problems andmim-width

Theorem (Bui-Xuan et al. 2013)
There is an algorithm that, given a graph G and a branch decomposition (T, δ) for
G with w = mimwG(T, δ), solves each LCVS problem in O(n4+3dw) time.

Theorem (Ja�ke et al. 2020)
There is an algorithm that for all r ∈ N, given a graph G and a branch
decomposition (T, δ) for G with w = mimwG(T, δ), solves each distance-r LCVS
problem in O(n4+6dw) time.

Solving distance-r LCVS on G is the same as solving distance-1 LCVS on Gr .
Moreover,mimw(Gr) ≤ 2mimw(G).

Theorem (Fomin et al. 2018)
INDEPENDENT SET and DOMINATING SET areW[1]-hard parameterized by
mimw(G) and solution size.
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Beyond LCVS problems

• LONGEST INDUCED PATH (Ja�ke et al. 2020)

• INDUCED DISJOINT PATHS (Ja�ke et al. 2020)

• FEEDBACK VERTEX SET (Ja�ke et al. 2020)

• SUBSET FEEDBACK VERTEX SET (Bergougnoux et al. 2020)

• NODE MULTIWAY CUT (Bergougnoux et al. 2020)

• Connected and acyclic variants of LCVS problems (Bergougnoux and Kanté 2019)

• SEMITOTAL DOMINATING SET (Galby, M., Ries 2020)

• LIST k-COLORING (Kwon 2020)
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Decidingmim-width isW[1]-hard: Not really a bad news
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The case of k-Coloring
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With mim-width we can again simplify and generalize:

Mim-width of (Kr, K11,s, Pt)-free graphs is bounded and quickly computable
(Brettell, Horsfield, M., Paulusma 2020+)

• LIST k-COLORING in P for P5-free graphs (Hoàng, Kamiński, Lozin, Sawada, Shu, 2010)

• LIST 3-COLORING in P for (K11,s, Pt)-free graphs (Chudnovsky, Spirkl, Zhong 2020)

• MAX PARTIAL H-COLORING in P for P5-free graphs with bounded clique number
(Chudnovsky, King, Pilipczuk, Rza̧żewski, Spirkl 2020)

• MAX PARTIAL H-COLORING in P for (K11,3, P6)-free graphs with bounded clique number
(Chudnovsky, King, Pilipczuk, Rza̧żewski, Spirkl 2020)



Mim-width classification for hereditary classes: motivation
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Let G be a hereditary class with a forbidden set of induced subgraphsF .

What can we say about (un)boundedness of mim-width for G when |F| is finite?

• Analogous question for tree-width well understood
(Bodlaender, Brettell, Johnson, Paesani, Paulusma, van Leeuwen 2020)

(Lozin, Razgon 2020+)

• Analogous question for clique-width/rank-widthwell understoodwhen |F| ≤ 2
see (Dabrowski, Johnson, Paulusma 2019)
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Our results

We obtain a partial picture when |F| ≤ 2 (Brettell, Horsfield, M., Paesani, Paulusma 2020)

Boundedness/unboundedness of mim-width resolved when:

• |F| = 1

• F = {H1,H2} and H1,H2 are such that:

• |V(H1)|+ |V(H2)| ≤ 8

• forests, except for H1 = 2P2 and H2 ∈ {K1,3 + sP1, S1,1,2 + (s− 1)P1} for s ≥ 1

• connected, except for:
1. H1 = P5 and H2 = S1,1,2 or K1,r + sP1 for r ≥ 3 and s ∈ {1, 2}

2. H1 = P7 or Sh,i,j for h ≤ i ≤ j ≤ 4 with i + j ≤ 6 ≤ h + i + j and H2 = C3 or paw

3. H1 = K1,3 or S1,1,2 and H2 = hammer

16/21



Techniques

17/21

Complementation does not preservemim-width.

Upper bounds: Ramsey-type arguments and

Lower bounds:

• Walls: An n× nwall has mim-width at least
√
n/50.

• 1-subdivision of e ∈ E(G):mimw(G) ≤ mimw(G′) ≤ mimw(G) + 1.

• Clique implant on v ∈ V(G):mimw(G) ≤ mimw(G′) ≤ mimw(G) + d(v).

• k-partite partial complementation:mimw(G′) ≥ mimw(G)/k.

• Blocks:mimw(G) = max{mimw(H) : H is a block of G}.

=⇒ =⇒



Back to the beginning
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Theorem (Bonomo-Braberman, Brettell, M., Paulusma 2021)
For t,∆ ∈ N, (t,∆)-tree convex graphs can be recognized and a (t,∆)-tree support
computed, if it exists, in O(nt+3) time.

Let G be a (t,∆)-tree convex graph with t,∆ ∈ N and t ≥ 1 and∆ ≥ 3. Then
mimw(G) ≤ f(t,∆). Moreover, we can construct in polynomial time a branch
decomposition (T, δ) for G withmimwG(T, δ) ≤ f(t,∆).

Lemma (Brettell, Horsfield, M., Paulusma 2020+)
Let G be a graph and (X1, . . . , Xp) be a partition of V(G) such that cutmimG(Xi, Xj) ≤ c for all
distinct i, j ∈ {1, . . . , p}, and p ≥ 2.

Let h = max
{
c
⌊( p

2

)2⌋
,maxi∈{1,...,p}{mimw(G[Xi])}+ c(p− 1)

}
.

Thenmimw(G) ≤ h. Moreover, given a branch decomposition (Ti, δi) for G[Xi] for each i, we
can construct in O(p) time a branch decomposition (T, δ) for G withmimwG(T, δ) ≤ h.
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GWP 2021
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Thank you!
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