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Motivation |

The following NP-hard problems are polynomial-time solvable on triad-convex graphs:

e DOMINATING SET (Pandey and Panda 2019)
e INDEPENDENT DOMINATING SET (Luetal. 2013)
e CONNECTED DOMINATING SET (Liu et al. 2015)
e DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)
e FEEDBACK VERTEX SET (Jiang et al. 2013)
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e INDEPENDENT DOMINATING SET (Luetal. 2013)
e CONNECTED DOMINATING SET (Liu et al. 2015)
e DOMINATING INDUCED MATCHING (Panda and Chaudhary 2019)
e FEEDBACK VERTEX SET (Jiang et al. 2013)

It turns out that:

e the problems above are polynomial-time solvable on graphs of bounded
mim-width;

e triad-convex graphs have bounded mim-width.
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Capra Da Bepi
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Capra Da Bepi

Fort, A > 0,a (t, A)-tree is a tree with maximum degree at most A and containing at most

t vertices of degree at least 3.
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Let H be a family of graphs. A bipartite graph G = (A, B, E) is H-convex if there exists a
graph H € H with V(H) = A such that the set of neighbours in A of each b € Binduces a
connected subgraph of H.

unbounded mim-width

l tree convex = (oo, 0o)-tree convex

(o0, 3)-tree convex chordal bipartite

star convex = (1, 0o)-tree convex

comb convex

circular convex

bounded mim-width

l(t,A)-tree convex,t > 1,A > 3]

triad convex

42



We all know why treewidth is useful

aef
f
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a ¢ d
abe cde
g b c
abg
NP-hard to determine the treewidth of a graph (Arborg et al. 1987).
2°0°) . time algorithm that finds a tree decomposition of width w (Bodlaender 1996).

Dynamic Programming on tree decompositions.
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Branch decompositions and mim-width

e Natural approach to DP: recursively partition the vertices of the graph into two parts.

e Decomposition of G can be stored as a subcubic tree whose leaves are in bijection
with vertices of G.

e Need to store multiple sub-solutions at each intermediate node ~~ structure of the
cuts is crucial to runtime.

(T,9)

Ae
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Branch decomposition for G: (T, §) where T is subcubic tree and 4 is bijection between
vertices of G and leaves of T. Each e € E(T) represents partition (e, Ac) of V(G).

mimwe (T, §): maxecg(r) size of maximum induced matching in G[Ae, Ae].

mimw(G): min value of mimwg(T, §) over all possible branch decompositions (T, §) for G.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.
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Mim-width of interval graphs

Interval graph: intersection graph of a family of intervals on the real line.

Theorem (Belmonte, Vatshelle 2013)

mimw(G) < 1, for any interval graph G. Moreover, a branch decomposition of
mim-width at most 1 can be computed in linear time.
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Why mim-width?

ew(G) < 3.2t (Corneil, Rotics 2005)
mimw = O(1) rw(G) < cw(G) < 27O+ g (Oum, Seymour 2006)
mimw(G) < cw(G) (Vatshelle 2012)

cw = 0(1)
rw = 0(1)

tw = 0(1)
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cw = 0(1)
rw = 0(1)

tw = 0(1)

e LCVS problems in XP parameterized by mim-width, provided a branch
decomposition is given (INDEP SET, DOM SET, TOTAL DOM SET, INDUCED MATCHING, ...).
Same for more general LCVP problems (k-COLORING, H-HOMOMORPHISM, ...).

(Bui-Xuan, Telle, Vatshelle 2013)
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ew(G) < 3.2t (Corneil, Rotics 2005)
mimw = O(1) rw(G) < cw(G) < 27O+ g (Oum, Seymour 2006)
mimw(G) < cw(G) (Vatshelle 2012)

cw = 0(1)
rw = 0(1)

tw = 0(1)

e LCVS problems in XP parameterized by mim-width, provided a branch
decomposition is given (INDEP SET, DOM SET, TOTAL DOM SET, INDUCED MATCHING, ...).

Same for more general LCVP problems (k-COLORING, H-HOMOMORPHISM, ...).
(Bui-Xuan, Telle, Vatshelle 2013)

e Bad News: In contrast to treewidth and rank-width, deciding mim-width is W[1]-hard.
(Seether and Vatshelle 2016)
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LCVS problems

Given finite or co-finite subsets o, p of Nand a graph G, S C V(G) isa (o, p)-set if:

e [N(v)NS| € o,foreachv € S;

e |[N(v)N S| € p,foreachv € V(G)\ S.
Locally checkable vertex subset problem: find a min or max (o, p)-setin input graph
G (Telle and Proskurowski 1997).

Distance-r locally checkable vertex subset problem: replace N(v) with N'(v) (Jaffke et
al. 2020).

[o » d Standard name
{0} N 1 Independent set *
N N+ 1 Dominating set
{0} N* 1 Maximal Independent set #x
N+ N+ 1 Total Dominating set *x
{0} {0,1} 2 Strong Stable set or 2-Packing
{0} {1} 2 Perfect, Code or Efficient Dom. set,
{0,1} {0,1} 2 Total Nearly Perfect set
{0,1} {1} 2 Weakly Perfect Dominating set
{1} {1} 2 Total Perfect Dominating set
{1} N 2 Induced Matching
{1} N+ 2 Dominating Induced Matching x, »x
N {1} 2 Perfect Dominating set
N {dd+1,.} | d d-Dominating set %x
{d} N d+1 | Induced d-Regular Subgraph
{dd+1,.} | N d Subgraph of Min Degree > d
{0,1,....d} |N d+1 | Induced Subg. of Max Degree < d % 10/21

(Jaffke et al. 2020)



LCVS problems and mim-width

Theorem (Bui-Xuan et al. 2013)

There is an algorithm that, given a graph G and a branch decomposition (T, &) for
G with w = mimw(T, 9), solves each LCVS problem in O(n**>™) time.
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Theorem (Bui-Xuan et al. 2013)

There is an algorithm that, given a graph G and a branch decomposition (T, &) for
G with w = mimw(T, 9), solves each LCVS problem in O(n**>™) time.

Theorem (Jaffke et al. 2020)

There is an algorithm that for all r € N, given a graph G and a branch
decomposition (T, ¢) for G with w = mimw¢(T, ¢), solves each distance-r LCVS
problem in O(n*"%) time.

Solving distance-r LCVS on G is the same as solving distance-1LCVS on G'.
Moreover, mimw(G") < 2mimw(G).
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LCVS problems and mim-width

Theorem (Bui-Xuan et al. 2013)

There is an algorithm that, given a graph G and a branch decomposition (T, &) for
G with w = mimw(T, 9), solves each LCVS problem in O(n**>™) time.

Theorem (Jaffke et al. 2020)

There is an algorithm that for all r € N, given a graph G and a branch
decomposition (T, ¢) for G with w = mimw¢(T, ¢), solves each distance-r LCVS
problem in O(n*"%) time.

Solving distance-r LCVS on G is the same as solving distance-1LCVS on G'.
Moreover, mimw(G") < 2mimw(G).

Theorem (Fomin et al. 2018)

INDEPENDENT SET and DOMINATING SET are W[1]-hard parameterized by
mimw (G) and solution size.
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Beyond LCVS problems

e LONGEST INDUCED PATH

e INDUCED DISJOINT PATHS

e FEEDBACK VERTEX SET

e SUBSET FEEDBACK VERTEX SET

e NODE MuLTIWAY CuT

e Connected and acyclic variants of LCVS problems
e SEMITOTAL DOMINATING SET

e LiST k-COLORING

(Jaffke et al. 2020)

(Jaffke et al. 2020)

(Jaffke et al. 2020)
(Bergougnoux et al. 2020)
(Bergougnoux et al. 2020)
(Bergougnoux and Kanté 2019)
(Galby, M., Ries 2020)

(Kwon 2020)
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Deciding mim-width is W[1]-hard: Not really a bad news

line graph
of bipartite

chordal bipartite

‘ comparability ‘ ‘ tolerance ?

AT-free
[

cocomparability

mimw = 0(1) ‘ circular permutation ‘ ‘k—polygon ‘ ‘ circular k-trapezoid ‘ ‘ leaf power‘

‘trapezoid ‘

‘distance hereditary‘

‘ bounded tolerance ‘ ‘ circular arc

permutation

bipartite permutation Dilworth k

interval‘

k-tree, fixed k

threshold
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The case of k-Coloring

With mim-width we can again simplify and generalize:

Mim-width of (K-, K{ 5, P¢)-free graphs is bounded and quickly computable
(Brettell, Horsfield, M., Paulusma 2020+)

LisT k-COLORING in P for Ps-free graphs (Hoang, Kamiriski, Lozin, Sawada, Shu, 2010)

e LiST 3-COLORING in P for (K{S, P;)-free graphs (Chudnovsky, Spirkl, Zhong 2020)

MAX PARTIAL H-COLORING in P for Ps-free graphs with bounded clique number
(Chudnovsky, King, Pilipczuk, Rzazewski, Spirkl 2020)

MAX PARTIAL H-COLORING in P for (K] 3, Ps)-free graphs with bounded clique number
(Chudnovsky, King, Pilipczuk, Rzazewski, Spirkl 2020)
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Mim-width classification for hereditary classes: motivation

Let G be a hereditary class with a forbidden set of induced subgraphs F.

What can we say about (un)boundedness of mim-width for G when | F| is finite?
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Mim-width classification for hereditary classes: motivation

Let G be a hereditary class with a forbidden set of induced subgraphs F.

What can we say about (un)boundedness of mim-width for G when | F| is finite?

e Analogous question for tree-width well understood
(Bodlaender, Brettell, Johnson, Paesani, Paulusma, van Leeuwen 2020)

(Lozin, Razgon 2020+)

o Analogous question for clique-width/rank-width well understood when | F| < 2

see (Dabrowski, Johnson, Paulusma 2019)

15/21



We obtain a partial picture when | F| < 2 (Brettell, Horsfield, M., Paesani, Paulusma 2020)

Boundedness/unboundedness of mim-width resolved when:

o F = {H:,H,} and Hy, H, are such that:
o [V(H)| + [V(H2)| < 8

o forests, except for Hy = 2P, and H, € {Ki 3+ sP1,S11,2 + (s — 1)P1} fors > 1
e connected, except for:
1. H =PsandH, = S, 0rKy, + sPforr > 3ands € {1,2}
2. Hy=ProrSy;jforh <i<j<4withi+j<6 < h+i+jandH, = C;orpaw
3. Hy = Ky 30rSi 2 and H, = hammer
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Complementation does not preserve mim-width.

Upper bounds: Ramsey-type arguments and \\ ///
/

- —

Lower bounds:

Walls: An n x n wall has mim-width at least \/n/50.
1-subdivision of e € E(G): mimw(G) < mimw(G') < mimw(G) + 1.

Clique implantonv € V(G): mimw(G) < mimw(G') < mimw(G) + d(v).

k-partite partial complementation: mimw(G’) > mimw(G)/k.

e Blocks: mimw(G) = max{mimw(H) : His a block of G}.

X G-
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Back to the beginning

Theorem (Bonomo-Braberman, Brettell, M., Paulusma 2021)
Fort, A € N, (t, A)-tree convex graphs can be recognized and a (t, A)-tree support

computed, if it exists, in O(n"+?) time.

Let G be a (t, A)-tree convex graph with t, A € Nandt > 1and A > 3. Then
mimw (G) < f(t, A). Moreover, we can construct in polynomial time a branch
decomposition (T, 6) for G with mimwe(T,d) < f(t, A).

Lemma (Brettell, Horsfield, M., Paulusma 2020+)

Let G be a graph and (X, . .., Xp) be a partition of V(G) such that cutmime(X;, X;) < cforall
distincti,j € {1,...,p},andp > 2.

Let h = max {c {(g)zJ  maxic 1.,y {mimw(G[X])} + c(p — 1)}.

Then mimw (G) < h. Moreover, given a branch decomposition (T;, d;) for G[Xi] for each i, we
can construct in O(p) time a branch decomposition (T, 0) for G with mimwe(T,d) < h.
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Registration

For free registration to the workshop, please fill in this form. The deadline for registration is Friday 2 July.

Format

This workshop will be held online. over Zoom.

It will be a one-day workshop, consisting of 6 invited talks, and finishing with a session for further discussion and open problems

For the final session of the workshop, we invite short presentations that highlight an open problem or potential area for future research. If you wish to have a 10-minute slot
description to a.munaro@gub.ac.uk by Friday 2 July 2021.

Speakers

Eunjung Kim, LAMSADE, Paris-Dauphine University, France
Vadim Lozin. Mathematics Institute, University of Warwick, UK.

Lalla Mouatadid, Department of Computer Science, University of Toronto, Canada

Pawel Rzgzewski, Faculty of Matl ics and Information Science, Warsaw University of Technology, Poland.
Jan Arne Telle, Department of Informatics, University of Bergen, Norway.

David Wood, School of Mathematics, Monash University, Melbourne. Australia.

Programme
All times are in Central European Time.

9.30-10.15: David Wood — "The structure of planar graphs"

10.15-10.30: Break

10.30-11.15: Jan Arne Telle — "On Parameters in the Mim-width Family"
11.15-11.45: Break

11.45-12.30: Eunjung Kim — "Twin-width and Friends"

12.30-12.45: Break

12.45-13.30: Vadim Lozin — "A parametric approach to hereditary classes of graphs"
13.30-14.15: Break

14.15-15.00: Pawel Rzazewski — "The advantages of being modest: subexponential- and quasipolynomial-time algorithms for H-free graphs"
15.00-15.15: Break

15.15-16.00: Lalla Mouatadid — "Measuring Linear Structure on Graphs"
16.00-16.30: Break

16.30-18.30: Open problem session and discussion



Thank you!
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