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Motivation

Consider an algorithmic problem e.g. Vertex colouring:

A proper colouring is an assignment of colours to the vertices of a
graph such that no two adjacent vertices get the same colour.
A colouring using at most k colours is a k-colouring.

The Vertex Colouring Problem
Input: A graph G and an integer k
Question: Does G have a proper k-colouring?

This problem is NP-complete, even if k = 3.

What happens when the input is restricted to a class of graphs?
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Hereditary Classes

A graph H is an induced subgraph of G if H can be obtained by
deleting vertices of G , written H ⊆i G .

P4 3P1 P1 + P2

So P1 + P2 ⊆i P4, but 3P1 6⊆i P4.

A class of graphs is hereditary if it is closed under taking induced
subgraphs.

Let S be a set of graphs. The class of S-free graphs is the set of
graphs that do not contain any graph in S as an induced subgraph.
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Colouring H-free graphs

Theorem (Král’, Kratochvíl, Tuza & Woeginger, 2001)
The Vertex Colouring problem is polynomial-time solvable for
H-free graphs if and only if H ⊆i P1 + P3 or P4, otherwise it is
NP-complete.

P1 + P3 P4



Clique-width
Theorem (Courcelle, Makowsky & Rotics 2000,
Kobler & Rotics 2003, Rao 2007, Oum 2008,
Grohe & Schweitzer 2015)
Any problem expressible in “monadic second-order logic with
quantification over vertices” (and certain other classes of problems)
can be solved in polynomial time on graphs of bounded
clique-width.

This includes:

I Vertex Colouring
I Maximum Independent Set
I Graph Isomorphism
I Minimum Dominating Set
I Hamilton Path/Cycle
I Partitioning into Perfect Graphs
I . . .



Clique-width

The clique-width is the minimum number of labels needed to
construct G by using the following four operations:

(i) creating a new graph consisting of a single vertex v with
label i (represented by i(v))

(ii) taking the disjoint union of two labelled graphs G1 and G2
(represented by G1 ⊕ G2)

(iii) joining each vertex with label i to each vertex with label j
(i 6= j) (represented by ηi ,j)

(iv) renaming label i to j (represented by ρi→j)

For example, P4 has clique-width 3.
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Why clique-width?

I “Equivalent” to rank-width and NLC-width
I Generalises tree-width
I “Equivalent” to tree-width on graphs of bounded degree

The following operations don’t change the clique-width by “too
much”

I Complementation
I Bipartite complementation
I Vertex deletion
I Edge subdivision (for graphs of bounded-degree)

Need only look at graphs that are

I prime
I 2-connected
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Which classes have bounded clique-width?

If the class of H-free graphs has bounded clique-width then every
component of H must be a subdivided claw, path or isolated
vertex. The set of such graphs is called S.

S1,2,3

P5

P1



H-free graphs

Theorem (D., Paulusma 2015)
The class of H-free graphs has bounded clique-width if and only if
H ⊆i P4.

The classification of boundedness of clique-width on (H1,H2)-free
graphs is known for all but five open cases.

Complexity of Vertex Colouring on (H1,H2)-free graphs is open for
infinitely many cases.
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Atoms

A graph is an atom if it has no clique cut-set.

For a hereditary class H, we can solve the Vertex Colouring problem
on graphs in H in polynomial time if we can do so for atoms in H.

A vertex is simplicial if its neighbourhood is a clique.

If a graph is an atom, then it is either a clique, or it has no
simplicial vertices.

For what classes of graphs does no simplicial vertex imply the graph
is an atom?
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Split Graphs

A graph is split if its vertices can be partitioned into an
independent set and a clique.

Equivalently, split graphs are the (2P2,C4,C5)-free graphs.

2P2 C4 C5

Every split graph has a simplicial vertex, so split atoms are cliques.

Also works for chordal graphs.



A class is nice if all connected graphs in it with no simplicial
vertices are atoms.

Theorem (D., Paulusma 21+)
The class of H-free graphs is nice if and only if it is a subclass of:
2P2-free graphs or P3-free graphs.

Theorem (D., Paulusma 21+)
The class of (H1,H2)-free graphs is nice if and only if it is a
subclass of:
I 2P2-free graphs
I P3-free graphs
I (P1 + P3, sunlet4)-free graphs

I (P4,P1 + 2C4)-free graphs
I (P5, 2P1 + P2)-free graphs
I (P5,P1 + P3)-free graphs
I (C4, 2P3)-free graphs or
I (K1,3, banner)-free graphs



Are there classes which have unbounded clique-width, but whose
atoms have bounded clique-width?

Theorem
The class of H-free atoms has bounded clique-width if and only if
H ⊆i P4.

I NO such cases for H-free graphs.
I YES: split graphs
I YES: chordal graphs
I YES: (cap,C4)-free odd-signable graphs (Cameron, da Silva,

Huang, Vušković, 2018)
I YES: (C4,P6)-free graphs (Gaspers, Huang, Paulusma, 2019)

What about (H1,H2)-free graphs?
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(2P2,P2 + P3)-free Atoms Have Bounded Clique-width

2P2 P2 + P3
I (2P2,P2 + P3)-free graphs generalise split ((C4,C5, 2P2)-free)

graphs, so have unbounded clique-width
I (2P2,P2 + P3)-free atoms containing an induced C5
I (C5, 2P2,P2 + P3)-free atoms containing an induced C4
I (C4,C5, 2P2,P2 + P3)-free atoms are a subclass of split graphs

v1

v2

v3

v4

v5

V2,5

V1,3

V2,4

V3,5

V1,4

independent set

cliqueV1,2,3,4,5

sets are complete
to each other

at most one edge
between the sets

V∅



(2P2,P5)-free Atoms Have Unbounded Clique-width

2P2 P5

I Take a split graph ((2P2,C4,C5)-free, arbitrarily large
clique-width)

I Add two non-adjacent vertices that are complete to the graph
I Result is a (2P2,P5)-free atom of arbitrarily large

clique-width



Open Problem
Does the class of (H1,H2)-free atoms have bounded clique-width if

(i) H1 = diamond and H2 = P6

(ii) H1 = C4 and H2 ∈ {P1 + 2P2,P2 + P4, 3P2}

(iii) H1 = P1 + 2P2 and H2 ∈ {2P2,P2 + P3,P5}

(iv) H1 = P2 + P3 and H2 ∈ {P2 + P3,P5}

*(v) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}
*(vi) H1 = 3P1 and H2 = P1 + S1,1,3

*(vii) H1 = diamond and H2 ∈ {P1 + P2 + P3,P1 + P5}
*(viii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3,P1 + P5}
*(ix) H1 = gem and H2 = P2 + P3, or

*(x) H1 = P1 + P4 and H2 = P2 + P3.

* means boundedness of clique-width is open for the whole class of
(H1,H2)-free graphs



Summary

I Systematically studied boundedness of clique-width on
(H1,H2)-free atoms

I 1 new bounded class
I Lots of unbounded classes
I There are 18* classes of (H1,H2)-free atoms for which

boundedness of clique-width remains open
I There are 5* classes of (H1,H2)-free graphs for which

boundedness of clique-width remains open

Further details: https://arxiv.org/abs/2006.03578
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Thank You!


