The epsilon constant conjecture for higher dimensional unramified twists of $\mathbb{Z}_{p}^{r}(1)$

Alessandro Cobbe (joint work with Werner Bley)

June, 22th, 2021

< D > < B > < E > < E</p>

Dedekind zeta function

Dedekind ζ -function

Let *E* be a number field. For $\operatorname{Re}(s) > 1$

$$\zeta_E(s) = \sum_{I \neq 0 \text{ ideals in } \mathcal{O}_E} \frac{1}{N_{E/\mathbb{Q}}(I)^s}.$$

This is extended analytically and has a pole at s = 1.

イロン 不同 とくほど 不同 とう

臣

Dedekind zeta function

Dedekind ζ -function

Let *E* be a number field. For $\operatorname{Re}(s) > 1$

$$\zeta_E(s) = \sum_{I \neq 0 \text{ ideals in } \mathcal{O}_E} \frac{1}{N_{E/\mathbb{Q}}(I)^s}.$$

This is extended analytically and has a pole at s = 1.

Functional equation

Up to modifying $\zeta_E(s)$ by some Γ -factors, we get $\Lambda_E(s)$, which satisfies $\Lambda_E(s) = \Lambda_E(1-s)$.

イロン 不同 とくほど 不同 とう

Analytic class number formula

Analytic class number formula

$$\lim_{s \to 1} (s-1)\zeta_E(s) = \frac{2^{r_1}(2\pi)^{r_2}h_E \text{Reg}_E}{w_E |d_E|^{1/2}}$$

Here:

- *h_E* is the class number of *E*;
- w_E is the number of roots of unity in E;
- d_E is the discriminant of E/\mathbb{Q} ;
- r₁, r₂ respectively the real and the pairs of complex embeddings of *E*;
- Reg_E is the regulator.

Analytic class number formula

Another formula

From the analytic class number formula and the functional equation one can show:

$$\lim_{s\to 0}\frac{\zeta_E(s)}{s^{r_1+r_2-1}}=-\frac{h_E\mathrm{Reg}_E}{w_E}$$

イロト イヨト イヨト イヨト

臣

Artin L-functions

Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ , let $\chi \in Irr(\Gamma)$ be an irreducible complex character of Γ , then one can define the Artin L-function $L(s, F/E, \chi)$.

Artin L-functions

Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ , let $\chi \in Irr(\Gamma)$ be an irreducible complex character of Γ , then one can define the Artin L-function $L(s, F/E, \chi)$.

Relation to $\zeta_N(s)$

$$\zeta_F(s) = \prod_{\chi} L(s, F/E, \chi)^{\chi(1)}.$$

Artin L-functions

Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ , let $\chi \in Irr(\Gamma)$ be an irreducible complex character of Γ , then one can define the Artin L-function $L(s, F/E, \chi)$.

Relation to $\zeta_N(s)$

$$\zeta_{\mathsf{F}}(s) = \prod_{\chi} L(s, \mathsf{F}/\mathsf{E}, \chi)^{\chi(1)}.$$

Equivariant Artin L-function

If Γ is abelian we have an equivariant version:

$$heta_{\mathsf{F}/\mathsf{E}}(s) = \sum_{\chi \in \widehat{\mathsf{\Gamma}}} L(s, \mathsf{F}/\mathsf{E}, \chi^{-1}) e_{\chi}.$$

Functional equation

Again one can modify $L(s, F/E, \chi)$ by some Γ -factors and obtain $\Lambda(s, F/E, \chi)$, which satisfies

$$\Lambda(s, F/E, \chi) = \varepsilon(s, F/E, \chi) \Lambda(1 - s, F/E, \bar{\chi}).$$

イロト イヨト イヨト イヨト

æ

Functional equation

Again one can modify $L(s, F/E, \chi)$ by some Γ -factors and obtain $\Lambda(s, F/E, \chi)$, which satisfies

$$\Lambda(s, F/E, \chi) = \varepsilon(s, F/E, \chi) \Lambda(1 - s, F/E, \bar{\chi}).$$

Remark

The main building blocks of $\varepsilon(s, F/E, \chi)$ are the discriminant of F/E and a Gauß sum.

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

< ロ > < 同 > < 三 > < 三 >

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.

・ロト ・回ト ・ヨト ・ヨト

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.

Seminal work on the epsilon constant conjecture was done by Bloch-Kato and by Benois-Berger.

The setting

Let N/K be a Galois extension of *p*-adic fields with Galois group *G* and let *V* be a *p*-adic representation of *G*.

The setting

Let N/K be a Galois extension of *p*-adic fields with Galois group *G* and let *V* be a *p*-adic representation of *G*. Let

$$\rho^{\mathrm{nr}}\colon \mathcal{G}_{\mathcal{K}}\longrightarrow \mathrm{Gl}_{r}(\mathbb{Z}_{p})$$

be an unramified representation of $G_{\mathcal{K}} = \operatorname{Gal}(\mathcal{K}^c/\mathcal{K})$. We will focus on the case $\mathcal{V} = \mathbb{Q}_p^r(1)(\rho^{\operatorname{nr}})$, where the (1) stands for the twist with the cyclotomic character.

The setting

Let N/K be a Galois extension of *p*-adic fields with Galois group *G* and let *V* be a *p*-adic representation of *G*.

Let

 $\rho^{\operatorname{nr}}\colon G_{\mathcal{K}}\longrightarrow \operatorname{Gl}_{r}(\mathbb{Z}_{p})$

be an unramified representation of $G_{\mathcal{K}} = \operatorname{Gal}(\mathcal{K}^c/\mathcal{K})$. We will focus on the case $V = \mathbb{Q}_p^r(1)(\rho^{\operatorname{nr}})$, where the (1) stands for the twist with the cyclotomic character.

Our formulation of the conjecture will be an equality in $\mathcal{K}_0(\mathbb{Z}_p[G], \mathbb{Q}_p[G])$. For *G* abelian, this is isomorphic to $\mathbb{Q}_p[G]^{\times}/\mathbb{Z}_p[G]^{\times}$.

・ロト ・回ト ・ヨト ・ヨト

The main ingredients

The epsilon constants

 $\varepsilon_D(N/K, V) \in Z(\mathbb{Q}_p[G])$ (the center of $\mathbb{Q}_p[G]$) is basically a Gauß sum (up to an extra factor).

The main ingredients

The epsilon constants

 $\varepsilon_D(N/K, V) \in Z(\mathbb{Q}_p[G])$ (the center of $\mathbb{Q}_p[G]$) is basically a Gauß sum (up to an extra factor).

In the case of weak and wild ramification we use work of

Pickett-Vinatier, which relates Gauß sums to some norm resolvents.

The main ingredients

The epsilon constants

 $\varepsilon_D(N/K, V) \in Z(\mathbb{Q}_p[G])$ (the center of $\mathbb{Q}_p[G]$) is basically a Gauß sum (up to an extra factor).

In the case of weak and wild ramification we use work of

Pickett-Vinatier, which relates Gauß sums to some norm resolvents.

A sublattice

Let $T \subseteq V$ be a G_K -stable \mathbb{Z}_p -sublattice such that $V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T$. In our case $T = \mathbb{Z}_p^r(1)(\rho^{\mathrm{nr}})$.

イロン 不同 とうほう 不同 とう

A perfect complex

Theorem (C.)

Let $R\Gamma(N, T)$ be the complex of the G_N -invariants of the standard resolution of T. One can construct explicitly a bounded complex of cohomologically trivial G-modules which represents $R\Gamma(N, T)$. Its cohomology is:

- $H^1(N, T) = (\prod_r \widehat{N_0^{\times}}(\rho^{nr}))^{G_N}$, where N_0 is the completion of the maximal unramified extension and the hat stands for the *p*-completion.
- $H^2(N,T) = \mathbb{Z}_p^r(\rho^{\mathrm{nr}})/(F_N-1)\mathbb{Z}_p^r(\rho^{\mathrm{nr}}),$
- **3** $H^{i}(N, T) = 0$ for $i \neq 1, 2$.

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_p[G]$ -modules.) with a trivialisation, one can associate an Euler characteristic:

$$C_{N/K} = -\chi_{\mathbb{Z}_p[G], \mathcal{B}_{\mathrm{dR}}[G]}(R\Gamma(N, T) \oplus \mathrm{Ind}_{N/\mathbb{Q}_p}T[0], \exp_V \circ \mathrm{comp}_V^{-1}).$$

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_p[G]$ -modules.) with a trivialisation, one can associate an Euler characteristic:

$$C_{N/K} = -\chi_{\mathbb{Z}_p[G], \mathcal{B}_{\mathrm{dR}}[G]}(R\Gamma(N, T) \oplus \mathrm{Ind}_{N/\mathbb{Q}_p}T[0], \exp_V \circ \mathrm{comp}_V^{-1}).$$

The epsilon constant conjecture

Some other terms are necessary:

$$\begin{split} R_{N/K} &= C_{N/K} + U_{\text{cris}} + rm \hat{\partial}^{1}_{\mathbb{Z}_{p}[G],B_{\text{dR}}[G]}(t) - mU_{tw}(\rho^{\text{nr}}_{\mathbb{Q}_{p}}) \\ &- rU_{N/K} + \hat{\partial}^{1}_{\mathbb{Z}_{p}[G],B_{\text{dR}}[G]}(\varepsilon_{D}(N/K,V)). \end{split}$$

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_p[G]$ -modules.) with a trivialisation, one can associate an Euler characteristic:

$$C_{N/K} = -\chi_{\mathbb{Z}_p[G], \mathcal{B}_{\mathrm{dR}}[G]}(R\Gamma(N, T) \oplus \mathrm{Ind}_{N/\mathbb{Q}_p}T[0], \exp_V \circ \mathrm{comp}_V^{-1}).$$

The epsilon constant conjecture

Some other terms are necessary:

$$\begin{split} R_{N/K} &= C_{N/K} + U_{\text{cris}} + rm \hat{\partial}^{1}_{\mathbb{Z}_{p}[G],B_{\text{dR}}[G]}(t) - mU_{tw}(\rho^{\text{nr}}_{\mathbb{Q}_{p}}) \\ &- rU_{N/K} + \hat{\partial}^{1}_{\mathbb{Z}_{p}[G],B_{\text{dR}}[G]}(\varepsilon_{D}(N/K,V)). \end{split}$$

The conjecture $C_{EP}^{na}(N/K, V)$ states that $R_{N/K} = 0$.

Motivation

The epsilon constant conjecture

Results for $\overline{V=\mathbb{Q}_{ ho}(1)}$

Results for $V = \mathbb{Q}_p(1)$

• Breuning: N/K tame.

イロン イヨン イヨン イヨン

Э

Results for $V = \mathbb{Q}_{\rho}(1)$

Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.

ヘロア 人間 アメヨア 人間 アー

크

Results for $V = \mathbb{Q}_p(1)$

Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $[N : \mathbb{Q}_p]$ small.

イロン イヨン イヨン イヨン

2

Results for $V = \mathbb{Q}_p(1)$

Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $[N : \mathbb{Q}_p]$ small.
- Bley-C: N/K weakly ramified and abelian, with cyclic ramification group, inertia degree coprime to $[K : \mathbb{Q}_p]$ and K/\mathbb{Q}_p unramified.

Results for unramified twists of $\mathbb{Q}_p(1)$

Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\mathrm{nr}})(1)$, where χ^{nr} is an unramified character of G_K , which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\mathrm{nr}})(1)$, where χ^{nr} is an unramified character of G_K , which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

• Izychev-Venjakob: N/K tame.

Results for unramified twists of $\mathbb{Q}_p(1)$

Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\mathrm{nr}})(1)$, where χ^{nr} is an unramified character of G_K , which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N/K weakly ramified, as for $\mathbb{Q}_p(1)$.

Results for unramified twists of $\mathbb{Q}_p(1)$

Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\mathrm{nr}})(1)$, where χ^{nr} is an unramified character of G_K , which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N/K weakly ramified, as for $\mathbb{Q}_p(1)$.

Remark

An Iwasawa theoretic version of the conjecture by A. Nickel, together with some work in progress of Burns-Nickel will give a new proof of the above results.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Higher dimensional results

Theorem (Bley-C.)

Let N/K be a tame extension of p-adic number fields and let

$$\rho_{\mathbb{Q}_p}^{\mathrm{nr}} \colon \mathcal{G}_{\mathbb{Q}_p} \longrightarrow \mathrm{Gl}_r(\mathbb{Z}_p)$$

be an unramified representation of $G_{\mathbb{Q}_p}$. Let ρ^{nr} denote the restriction of $\rho_{\mathbb{Q}_p}^{\mathrm{nr}}$ to G_K . Then $C_{EP}^{na}(N/K, V)$ is true for N/K and $V = \mathbb{Q}_p^r(1)(\rho^{\mathrm{nr}})$, if $\det(\rho^{\mathrm{nr}}(F_N) - 1) \neq 0$.

Higher dimensional results

Theorem (Bley-C.)

Let N/K be a tame extension of p-adic number fields and let

$$\rho_{\mathbb{Q}_p}^{\mathrm{nr}} \colon \mathcal{G}_{\mathbb{Q}_p} \longrightarrow \mathrm{Gl}_r(\mathbb{Z}_p)$$

be an unramified representation of $G_{\mathbb{Q}_p}$. Let ρ^{nr} denote the restriction of $\rho_{\mathbb{Q}_p}^{\mathrm{nr}}$ to G_K . Then $C_{EP}^{na}(N/K, V)$ is true for N/K and $V = \mathbb{Q}_p^r(1)(\rho^{\mathrm{nr}})$, if $\det(\rho^{\mathrm{nr}}(F_N) - 1) \neq 0$.

Remark

Recall: $H^2(N, T) = \mathbb{Z}_p^r(\rho^{\mathrm{nr}})/(F_N - 1)\mathbb{Z}_p^r(\rho^{\mathrm{nr}})$. The condition $\det(\rho^{\mathrm{nr}}(F_N) - 1) \neq 0$ holds, if and only if $H^2(N, \mathbb{Z}_p^r(1)(\rho^{\mathrm{nr}}))$ is finite.

Higher dimensional results

Theorem (Bley-C.)

Let K/\mathbb{Q}_p be unramified of degree m and let N/K be weakly and wildly ramified, finite and abelian with cyclic ramification group. Let d be the inertia degree of N/K, let \tilde{d} denote the order of $\rho^{\mathrm{nr}}(F_N)$ mod p in $\mathrm{Gl}_r(\mathbb{Z}_p/p\mathbb{Z}_p)$ and assume that m and d are relatively prime. Let $\rho^{\mathrm{nr}}_{\mathbb{Q}_p} : G_{\mathbb{Q}_p} \longrightarrow \mathrm{Gl}_r(\mathbb{Z}_p)$ be an unramified representation of $G_{\mathbb{Q}_p}$ and let ρ^{nr} denote the restriction of $\rho^{\mathrm{nr}}_{\mathbb{Q}_p}$ to G_K . Assume that $\det(\rho^{\mathrm{nr}}(F_N) - 1) \neq 0$ and, in addition, that one of the following three conditions holds:

(a)
$$\rho^{nr}(F_N) - 1$$
 is invertible modulo p ;
(b) $\rho^{nr}(F_N) \equiv 1 \pmod{p}$;
(c) $gcd(\tilde{d}, m) = 1$ and $det(\rho^{nr}(F_N)^{\tilde{d}} - 1) \neq 0$.
Then $C_{EP}^{na}(N/K, V)$ is true for N/K and $V = \mathbb{Q}_p^r(1)(\rho^{nr})$.

Some geometry

Final remark

If A/\mathbb{Q}_p is an abelian variety of dimension r with good ordinary reduction, then the Tate module of the associated formal group \hat{A} is isomorphic to $\mathbb{Z}_p^r(1)(\rho_{\mathbb{Q}_p}^{\mathrm{nr}})$ for an appropriate choice of $\rho_{\mathbb{Q}_p}^{\mathrm{nr}}$. By a result of Mazur det $(\rho^{\mathrm{nr}}(F_L) - 1) \neq 0$ is automatically satisfied for any finite extension L/\mathbb{Q}_p .

Thank you for your attention!

・ロト ・日ト ・ヨト ・ヨト

臣