The epsilon constant conjecture for higher dimensional unramified twists of $\mathbb{Z}_{p}^{r}(1)$

Alessandro Cobbe (joint work with Werner Bley)
der Bundeswehr
Universität 䦽 München
June, 22th, 2021

Dedekind zeta function

Dedekind ζ-function

Let E be a number field. For $\operatorname{Re}(s)>1$

$$
\zeta_{E}(s)=\sum_{I \neq 0 \text { ideals in } \mathcal{O}_{E}} \frac{1}{N_{E / \mathbb{Q}}(I)^{s}} .
$$

This is extended analytically and has a pole at $s=1$.

Dedekind zeta function

Dedekind ζ-function

Let E be a number field. For $\operatorname{Re}(s)>1$

$$
\zeta_{E}(s)=\sum_{l \neq 0 \text { ideals in } \mathcal{O}_{E}} \frac{1}{N_{E / \mathbb{Q}}(I)^{s}} .
$$

This is extended analytically and has a pole at $s=1$.

Functional equation

Up to modifying $\zeta_{E}(s)$ by some Γ-factors, we get $\Lambda_{E}(s)$, which satisfies $\Lambda_{E}(s)=\Lambda_{E}(1-s)$.

Analytic class number formula

Analytic class number formula

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{E}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{E} \operatorname{Reg}_{E}}{w_{E}\left|d_{E}\right|^{1 / 2}}
$$

Here:

- h_{E} is the class number of E;
- w_{E} is the number of roots of unity in E;
- d_{E} is the discriminant of E / \mathbb{Q};
- r_{1}, r_{2} respectively the real and the pairs of complex embeddings of E;
- Reg_{E} is the regulator.

Analytic class number formula

Another formula

From the analytic class number formula and the functional equation one can show:

$$
\lim _{s \rightarrow 0} \frac{\zeta_{E}(s)}{s^{r_{1}+r_{2}-1}}=-\frac{h_{E} \operatorname{Reg}_{E}}{w_{E}}
$$

Artin L-functions

Artin L-functions

Let F / E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \operatorname{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F / E, \chi)$.

Artin L-functions

Artin L-functions

Let F / E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \operatorname{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F / E, \chi)$.

Relation to $\zeta_{N}(s)$

$$
\zeta_{F}(s)=\prod L(s, F / E, \chi)^{\chi(1)}
$$

Artin L-functions

Artin L-functions

Let F / E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \operatorname{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F / E, \chi)$.

Relation to $\zeta_{N}(s)$

$$
\zeta_{F}(s)=\prod_{\chi} L(s, F / E, \chi)^{\chi(1)}
$$

Equivariant Artin L-function
If Γ is abelian we have an equivariant version:

$$
\theta_{F / E}(s)=\sum_{\chi \in \hat{\Gamma}} L\left(s, F / E, \chi^{-1}\right) e_{\chi}
$$

Epsilon constants conjecture

Functional equation

Again one can modify $L(s, F / E, \chi)$ by some Γ-factors and obtain $\Lambda(s, F / E, \chi)$, which satisfies

$$
\Lambda(s, F / E, \chi)=\varepsilon(s, F / E, \chi) \wedge(1-s, F / E, \bar{\chi})
$$

Epsilon constants conjecture

Functional equation

Again one can modify $L(s, F / E, \chi)$ by some Γ-factors and obtain $\Lambda(s, F / E, \chi)$, which satisfies

$$
\Lambda(s, F / E, \chi)=\varepsilon(s, F / E, \chi) \Lambda(1-s, F / E, \bar{\chi}) .
$$

Remark

The main building blocks of $\varepsilon(s, F / E, \chi)$ are the discriminant of F / E and a Gauß sum.

Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.

Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.
Seminal work on the epsilon constant conjecture was done by Bloch-Kato and by Benois-Berger.

The epsilon constant conjecture

The setting

Let N / K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G.

The epsilon constant conjecture

The setting

Let N / K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G.
Let

$$
\rho^{\mathrm{nr}}: G_{K} \longrightarrow \mathrm{Gl}_{r}\left(\mathbb{Z}_{p}\right)
$$

be an unramified representation of $G_{K}=\operatorname{Gal}\left(K^{c} / K\right)$. We will focus on the case $V=\mathbb{Q}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$, where the (1) stands for the twist with the cyclotomic character.

The epsilon constant conjecture

The setting

Let N / K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G.
Let

$$
\rho^{\mathrm{nr}}: G_{K} \longrightarrow \mathrm{Gl}_{r}\left(\mathbb{Z}_{p}\right)
$$

be an unramified representation of $G_{K}=\operatorname{Gal}\left(K^{c} / K\right)$. We will focus on the case $V=\mathbb{Q}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$, where the (1) stands for the twist with the cyclotomic character.
Our formulation of the conjecture will be an equality in $K_{0}\left(\mathbb{Z}_{p}[G], \mathbb{Q}_{p}[G]\right)$. For G abelian, this is isomorphic to $\mathbb{Q}_{p}[G]^{\times} / \mathbb{Z}_{p}[G]^{\times}$.

The main ingredients

The epsilon constants
$\varepsilon_{D}(N / K, V) \in Z\left(\mathbb{Q}_{p}[G]\right)$ (the center of $\left.\mathbb{Q}_{p}[G]\right)$ is basically a Gauß sum (up to an extra factor).

The main ingredients

The epsilon constants

$\varepsilon_{D}(N / K, V) \in Z\left(\mathbb{Q}_{p}[G]\right)$ (the center of $\left.\mathbb{Q}_{p}[G]\right)$ is basically a Gauß sum (up to an extra factor).
In the case of weak and wild ramification we use work of Pickett-Vinatier, which relates Gauß sums to some norm resolvents.

The main ingredients

The epsilon constants

$\varepsilon_{D}(N / K, V) \in Z\left(\mathbb{Q}_{p}[G]\right)$ (the center of $\left.\mathbb{Q}_{p}[G]\right)$ is basically a Gauß sum (up to an extra factor).
In the case of weak and wild ramification we use work of
Pickett-Vinatier, which relates Gauß sums to some norm resolvents.

A sublattice

Let $T \subseteq V$ be a G_{K}-stable \mathbb{Z}_{p}-sublattice such that $V=\mathbb{Q}_{p} \otimes_{\mathbb{Z}_{p}} T$. In our case $T=\mathbb{Z}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$.

A perfect complex

Theorem (C.)

Let $R \Gamma(N, T)$ be the complex of the G_{N}-invariants of the standard resolution of T. One can construct explicitly a bounded complex of cohomologically trivial G-modules which represents $R \Gamma(N, T)$. Its cohomology is:
(1) $H^{1}(N, T)=\left(\prod_{r} \widehat{N_{0}^{\times}}\left(\rho^{\mathrm{nr}}\right)\right)^{G_{N}}$, where N_{0} is the completion of the maximal unramified extension and the hat stands for the p-completion.
(2) $H^{2}(N, T)=\mathbb{Z}_{p}^{r}\left(\rho^{\mathrm{nr}}\right) /\left(F_{N}-1\right) \mathbb{Z}_{p}^{r}\left(\rho^{\mathrm{nr}}\right)$,
(3) $H^{i}(N, T)=0$ for $i \neq 1,2$.

The epsilon constant conjecture

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_{p}[G]$-modules.) with a trivialisation, one can associate an Euler characteristic:

$$
C_{N / K}=-\chi_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}\left(R \Gamma(N, T) \oplus \operatorname{Ind}_{N / \mathbb{Q}_{p}} T[0], \exp _{V} \circ \operatorname{comp}_{V}^{-1}\right) .
$$

The epsilon constant conjecture

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_{p}[G]$-modules.) with a trivialisation, one can associate an Euler characteristic:

$$
C_{N / K}=-\chi_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}\left(R \Gamma(N, T) \oplus \operatorname{Ind}_{N / \mathbb{Q}_{p}} T[0], \exp _{V} \circ \operatorname{comp}_{V}^{-1}\right) .
$$

The epsilon constant conjecture

Some other terms are necessary:

$$
\begin{aligned}
R_{N / K}= & C_{N / K}+U_{\text {cris }}+r m \hat{\partial}_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}^{1}(t)-m U_{t w}\left(\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}\right) \\
& -r U_{N / K}+\hat{\partial}_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}^{1}\left(\varepsilon_{D}(N / K, V)\right) .
\end{aligned}
$$

The epsilon constant conjecture

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_{p}[G]$-modules.) with a trivialisation, one can associate an Euler characteristic:

$$
C_{N / K}=-\chi_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}\left(R \Gamma(N, T) \oplus \operatorname{Ind}_{N / \mathbb{Q}_{p}} T[0], \exp _{V} \circ \operatorname{comp}_{V}^{-1}\right) .
$$

The epsilon constant conjecture

Some other terms are necessary:

$$
\begin{aligned}
R_{N / K}= & C_{N / K}+U_{\text {cris }}+r m \hat{\partial}_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}^{1}(t)-m U_{t w}\left(\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}\right) \\
& -r U_{N / K}+\hat{\partial}_{\mathbb{Z}_{p}[G], B_{\mathrm{dR}}[G]}^{1}\left(\varepsilon_{D}(N / K, V)\right) .
\end{aligned}
$$

The conjecture $C_{E P}^{n a}(N / K, V)$ states that $R_{N / K}=0$.

Results for $V=\mathbb{Q}_{p}(1)$

Results for $V=\mathbb{Q}_{p}(1)$

- Breuning: N/K tame.

Results for $V=\mathbb{Q}_{p}(1)$

Results for $V=\mathbb{Q}_{p}(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N / \mathbb{Q}_{p} abelian, $p \neq 2$.

Results for $V=\mathbb{Q}_{p}(1)$

Results for $V=\mathbb{Q}_{p}(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N / \mathbb{Q}_{p} abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $\left[N: \mathbb{Q}_{p}\right]$ small.

Results for $V=\mathbb{Q}_{p}(1)$

Results for $V=\mathbb{Q}_{p}(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N / \mathbb{Q}_{p} abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $\left[N: \mathbb{Q}_{p}\right]$ small.
- Bley-C: N / K weakly ramified and abelian, with cyclic ramification group, inertia degree coprime to $\left[K: \mathbb{Q}_{p}\right]$ and K / \mathbb{Q}_{p} unramified.

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Let $V=\mathbb{Q}_{p}\left(\chi^{\mathrm{nr}}\right)(1)$, where χ^{nr} is an unramified character of G_{K}, which is the restriction of an unramified character of $G_{\mathbb{Q}_{p}}$.

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Let $V=\mathbb{Q}_{p}\left(\chi^{\mathrm{nr}}\right)(1)$, where χ^{nr} is an unramified character of G_{K}, which is the restriction of an unramified character of $G_{\mathbb{Q}_{p}}$.

- Izychev-Venjakob: N / K tame.

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Let $V=\mathbb{Q}_{p}\left(\chi^{\mathrm{nr}}\right)(1)$, where χ^{nr} is an unramified character of G_{K}, which is the restriction of an unramified character of $G_{\mathbb{Q}_{p}}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N / K weakly ramified, as for $\mathbb{Q}_{p}(1)$.

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Results for unramified twists of $\mathbb{Q}_{p}(1)$

Let $V=\mathbb{Q}_{p}\left(\chi^{\mathrm{nr}}\right)(1)$, where χ^{nr} is an unramified character of G_{K}, which is the restriction of an unramified character of $\mathcal{Q}_{\mathbb{Q}_{p}}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N / K weakly ramified, as for $\mathbb{Q}_{p}(1)$.

Remark

An Iwasawa theoretic version of the conjecture by A. Nickel, together with some work in progress of Burns-Nickel will give a new proof of the above results.

Higher dimensional results

Theorem (Bley-C.)

Let N / K be a tame extension of p-adic number fields and let

$$
\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}: G_{\mathbb{Q}_{p}} \longrightarrow \mathrm{Gl}_{r}\left(\mathbb{Z}_{p}\right)
$$

be an unramified representation of $G_{\mathbb{Q}_{p}}$. Let ρ^{nr} denote the restriction of $\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}$ to G_{K}. Then $C_{E P}^{n a}(N / K, V)$ is true for N / K and $V=\mathbb{Q}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$, if $\operatorname{det}\left(\rho^{\mathrm{nr}}\left(F_{N}\right)-1\right) \neq 0$.

Higher dimensional results

Theorem (Bley-C.)

Let N / K be a tame extension of p-adic number fields and let

$$
\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}: G_{\mathbb{Q}_{p}} \longrightarrow \mathrm{Gl}_{r}\left(\mathbb{Z}_{p}\right)
$$

be an unramified representation of $\mathcal{G}_{\mathbb{Q}_{p}}$. Let ρ^{nr} denote the restriction of $\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}$ to G_{K}. Then $C_{E P}^{n a}(N / K, V)$ is true for N / K and $V=\mathbb{Q}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$, if $\operatorname{det}\left(\rho^{\mathrm{nr}}\left(F_{N}\right)-1\right) \neq 0$.

Remark

Recall: $H^{2}(N, T)=\mathbb{Z}_{p}^{r}\left(\rho^{\mathrm{nr}}\right) /\left(F_{N}-1\right) \mathbb{Z}_{p}^{r}\left(\rho^{\mathrm{nr}}\right)$. The condition $\operatorname{det}\left(\rho^{\mathrm{nr}}\left(F_{N}\right)-1\right) \neq 0$ holds, if and only if $H^{2}\left(N, \mathbb{Z}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)\right)$ is finite.

Higher dimensional results

Theorem (Bley-C.)

Let K / \mathbb{Q}_{p} be unramified of degree m and let N / K be weakly and wildly ramified, finite and abelian with cyclic ramification group. Let d be the inertia degree of N / K, let \tilde{d} denote the order of $\rho^{\mathrm{nr}}\left(F_{N}\right) \bmod p$ in $\mathrm{Gl}_{r}\left(\mathbb{Z}_{p} / p \mathbb{Z}_{p}\right)$ and assume that m and d are relatively prime. Let $\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}: G_{\mathbb{Q}_{p}} \longrightarrow \mathrm{Gl}_{r}\left(\mathbb{Z}_{p}\right)$ be an unramified representation of $G_{\mathbb{Q}_{p}}$ and let ρ^{nr} denote the restriction of $\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}$ to G_{K}. Assume that $\operatorname{det}\left(\rho^{\mathrm{nr}}\left(F_{N}\right)-1\right) \neq 0$ and, in addition, that one of the following three conditions holds:
(a) $\rho^{\mathrm{nr}}\left(F_{N}\right)-1$ is invertible modulo p;
(b) $\rho^{\mathrm{nr}}\left(F_{N}\right) \equiv 1(\bmod p)$;
(c) $\operatorname{gcd}(\tilde{d}, m)=1$ and $\operatorname{det}\left(\rho^{\mathrm{nr}}\left(F_{N}\right)^{\tilde{d}}-1\right) \neq 0$.

Then $C_{E P}^{n a}(N / K, V)$ is true for N / K and $V=\mathbb{Q}_{p}^{r}(1)\left(\rho^{\mathrm{nr}}\right)$.

Some geometry

Final remark

If A / \mathbb{Q}_{p} is an abelian variety of dimension r with good ordinary reduction, then the Tate module of the associated formal group \hat{A} is isomorphic to $\mathbb{Z}_{p}^{r}(1)\left(\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}\right)$ for an appropriate choice of $\rho_{\mathbb{Q}_{p}}^{\mathrm{nr}}$. By a result of Mazur $\operatorname{det}\left(\rho^{\text {nr }}\left(F_{L}\right)-1\right) \neq 0$ is automatically satisfied for any finite extension L / \mathbb{Q}_{p}.

Thank you for your attention!

