# Simulation, optimal management and infrastructure planning of gas transmission networks

Ángel Manuel González Rueda GANESO<sup>®</sup> development team

University of A Coruña Technological Institute for Industrial Mathematics (ITMATI)



Simulation, optimal management and infrastructure planning of gas transmission networks

1 GANESO<sup> $\mathbb{R}$ </sup>: Overview of the project

2 Stationary Simulation and Optimization

3 Transient Simulation

4 Network Design and Infrastructure Planning

**5** Ongoing work

# GANESO<sup>®</sup>: Overview of the project

#### 1 GANESO<sup> $\mathbb{R}$ </sup>: Overview of the project

- 2 Stationary Simulation and Optimization
- **3** Transient Simulation
- 4 Network Design and Infrastructure Planning
- 5 Ongoing work

GANESO<sup>®</sup>: <u>Gas Network Simulation and Optimization</u>

- Software developed by researchers at USC, UDC and ITMATI for Reganosa Company
- Ongoing collaboration that started in 2011
- More than 15 researchers have participated so far

#### Main functionalities of **GANESO**<sup>®</sup>

- Steady-state simulation and optimization
- Transient simulation
  - Support to the injection of gases with different compositions
- Network planning and design under uncertainty
- Computation of tariffs for network access
- Database management for storing and handling scenarios
- User interface via QGIS
- Network visualizations via QGIS and Google Earth

Desarrolladores interfaz

Interfaz QGIS

20

20

- GANESO<sup>®</sup> Software ► Programming languages: Python, FORTRAN
- Modeling languages: AMPL, Pyomo
- Database management: MySQL
- Auxiliary software:
  - Mathematical libraries: UMFPACK (to solve systems of linear equations)
  - Optimization software: Free and commercial solvers:
    - Linear solvers: <u>CBC</u>, Glop, <u>LPSolve</u>, Gurobi,...
    - Nonlinear solvers: ipopt, Knitro, snopt, minos,...
  - Visualization: QGIS, Google Earth
  - Data input/output: XLS, CSV, and JSON files





Stationary Simulation and Optimization

#### 1 GANESO<sup>®</sup>: Overview of the project

#### 2 Stationary Simulation and Optimization

**3** Transient Simulation

4 Network Design and Infrastructure Planning

5 Ongoing work









#### Graph Associated to a Gas Transport Network

#### The network is modeled as a directed graph

- Edges represent gas pipes and roads for tank trucks
- Edges connect nodes. Nodes can represent:
  - Entry points (supply nodes) such as international connections and regasification plants
  - Exit points (demand nodes) such as international connections and cities
  - Underground storage facilities
  - Suction and discharge points of a compressor station
  - Loading and unloading stations for tank trucks
  - Virtual interconnection points
  - Points where there are changes in the properties of a pipe (section, rugosity,...)

#### Graph Associated to a Gas Transport Network

#### The network is modeled as a directed graph

- Edges represent gas pipes and roads for tank trucks
- Edges connect nodes. Nodes can represent:
  - Entry points (supply nodes) such as international connections and regasification plants
  - Exit points (demand nodes) such as international connections and cities
  - Underground storage facilities
  - Suction and discharge points of a compressor station
  - Loading and unloading stations for tank trucks
  - Virtual interconnection points
  - Points where there are changes in the properties of a pipe (section, rugosity,...)
- The **Spanish High Pressure Network** has been modeled with around 500 edges and 500 nodes

#### Extra

#### Equations for the Model

#### Mathematical model

The equations/constraints of the simulation and optimization models are deduced from the following fundamental equations:

- Navier-Stokes equations for compressible flows:
  - Conservation of mass
  - Conservation of momentum
  - Conservation of energy
- Constitutive laws:
  - Law of friction for turbulent flows
  - State equation for real gases
  - Fourier's law for the heat flow

#### Ingredients of the Optimization Problem

Determine a feasible gas flow configuration such that:

- Guarantee the security of supply
  - Meet demands at the consumption points
  - Gas pressure is kept within specified bounds
- Mass balance
- Pressure loss constraints
- Available objective functions
  - Minimize gas consumption at compressor stations
  - Minimize boil-off gas at regasification plants
  - Minimize overall transport costs: compressor stations + regasification plants + tank trucks
  - Maximize network linepack
  - Maximize/minimize exports of different zones
  - Control bottlenecks

#### Network Flow Problem

Flow conservation constraints

 $\sum_{\substack{k \in A_i^{\text{ini}} \\ \forall i \in N^C}} q_k - \sum_{\substack{k \in A_i^{\text{fin}} \\ \text{odd}}} q_k = c_i$ 

$$0 \leq \sum_{\substack{k \in A_i^{\text{ini}} \\ orall i \in N^S}} q_k - \sum_{\substack{k \in A_i^{\text{fin}} \\ i \in N^S}} q_k \leq s_i$$

Box Constraints  $\underline{\mathbf{q}}_k \leq q_k \leq \bar{q}_k$  $\forall k \in E$  flow bounds

 $\begin{array}{l} {{{\mathbf{p}}_{i}^{2}} \le {{p}_{i}}^{2}} \le {\bar{p}_{i}}^{2} \\ \forall i \in N \text{ pressure bounds} \end{array}$ 



Variables of the problem

- Flow through each pipe
- Pressure at each node

Overview

Transient

#### Pressure loss

Given a pipe between two nodes  $k=(i,j)\in E^{st}$ 

- L<sub>k</sub>: length of the pipe
- D<sub>k</sub>: diameter of the pipe
- R: gas specific constant
- $\lambda(q_k)$ : friction coefficient computed with Colebrook or Weymouth
- $Z(p_{m_k}, \theta_{m_k})$ : compressibility factor computed with AGA-8 or SGERG-88
  - $p_{m_k}$ : average pressure in the pipe
  - $\theta_{m_k}$ : average temperature in the pipe
- $h_i$  and  $h_j$ : height at nodes i and j

$$p_i^2 - p_j^2 = \frac{16L_k\lambda(q_k)}{\pi^2 D_k^5} Z(p_{m_k}, \theta_{m_k}) R\theta_{m_k} |q_k| q_k + \frac{2g}{R\theta_{m_k}} \frac{p_i^2 + p_j^2}{2Z(p_{m_k}, \theta_{m_k})} (h_j - h_i)$$

#### As many nonlinear constraints as structural pipes



| Overview                      | Simulation&Optimization                                | Transient     | _ |
|-------------------------------|--------------------------------------------------------|---------------|---|
| Increase the Let $k = (i, i)$ | e pressure $j) \in E^c$ be a compressor $p_i \leq p_j$ | $(q_k \ge 0)$ |   |

being  $p_i$  the input pressure and  $p_j$  the output pressure.

Gas consumption at compressors

$$g_k = \frac{1}{LCV} \frac{1}{\varepsilon \xi \eta_k^*} \frac{\gamma}{\gamma - 1} Z\left(p_{m_k}, \theta_i\right) R\theta_i \left(\left(\frac{p_j}{p_i}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right) |q_k|,$$

- LCV: lower calorific value
- $\gamma$ : adiabatic coefficient of the gas (ratio of the specific heats)
- $\varepsilon$  and  $\xi$ : efficiency parameters of the compressor
- $\eta_k^*$ : optimal isentropic efficiency (it actually depends on  $(q_k, p_i, p_j)$  and the operating diagram constraints)

| Overview                                                       | Simulation&Optimization                                                                              | Transient                                  | Planning E:                                             | xtra              |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------|
| Nonlinea                                                       | r Nonconvex Optir                                                                                    | nization Pro                               | oblem                                                   |                   |
| Obj. Functio                                                   | on: min $\sum_{k\in E^c} g_k$                                                                        |                                            |                                                         |                   |
| Box Constrair                                                  | its                                                                                                  |                                            |                                                         |                   |
| $\mathtt{p}_i^2 \le {p_i}^2 \le \bar{p}_i^2$                   | 2                                                                                                    | $\forall i \in N$                          | 7 pressure bounds                                       |                   |
| $\underline{\mathbf{q}}_k \leq \underline{q}_k \leq \bar{q}_k$ |                                                                                                      | $\forall k \in I$                          | ${\mathcal E}$ flow bounds                              |                   |
| Flow conserva                                                  | ation constraints                                                                                    |                                            |                                                         |                   |
| $\sum_{k} q_k$ -                                               | $-\sum_{c} q_k = c_i$                                                                                | $\forall i \in N$                          | $J^C$ flow conservation at demand r                     | nodes             |
| $k \in A_i^{\text{ini}}$                                       | $k \in A_i^{\text{tin}}$                                                                             |                                            | a                                                       |                   |
| $0 \leq \sum_{k \in A^{\text{ini}}} q_k$ -                     | $-\sum_{k \in A^{fin}} q_k \leq s_i$                                                                 | $\forall i \in N$                          | $I^S$ flow conservation at supply no                    | des               |
| Gas loss const                                                 | traints                                                                                              |                                            |                                                         |                   |
| $p_i{}^2 - p_j{}^2 = \frac{1}{2}$                              | $\frac{6L_k\lambda(q_k)}{\pi^2 D_k^5} Z(p_{m_k}, T_m) RT_m$                                          | $q_k   q_k + \frac{2g}{RT_m} \frac{p}{2Z}$ | $\frac{a^2 + p_j^2}{(p_{m_k}, T_m)} (h_{in} - h_{out})$ | $\forall k \in E$ |
| Increase press                                                 | ure in compressors                                                                                   |                                            |                                                         |                   |
| $p_i \leq p_j$                                                 |                                                                                                      | $\forall k = ($                            | $(i,j) \in E^c$                                         |                   |
| Gas consumpt                                                   | tion constraints                                                                                     |                                            |                                                         |                   |
| $g_k = rac{1}{e_h H^c} rac{\gamma}{\gamma-1}$                | $\frac{1}{1}Z(p_m,T_{in})RT_{in}\left(\left(\frac{p_j}{p_i}\right)^{\frac{\gamma-1}{\gamma}}\right)$ | $(-1)q_k  \forall k = 0$                   | $(i,j) \in E^c$                                         |                   |
|                                                                |                                                                                                      |                                            |                                                         |                   |

GANESO<sup>®</sup> <u>GAs</u> <u>NE</u>twork <u>S</u>imulation and <u>O</u>ptimization — 8ECM 2021

#### Extra

#### Additional Network Elements Pressure control valves (open/closed valves, ...)

- Freedom to decrease pressure in the direction of flow
- Suppose pipe  $k = (i, j) \in E^{PCV}$ : (BINARY VARIABLES) if  $q_k > 0 \Rightarrow p_i \ge p_i$  if  $q_k \le 0 \Rightarrow p_i \le p_i$

#### Operating diagrams in compressors



#### Boil-off costs

- Operation of a **regasification plant**.
- BINARY VARIABLES: whether is supplying gas.

#### Operational Ranges at Compressor Stations

- GANESO<sup>®</sup> delivers solutions in which compressor stations work in **feasible** and **efficient** regimes
- The user can check the point of operation of each compressor station



# $\mathsf{GANESO}^{\textcircled{R}}$ $\mathsf{Algorithms}$ for steady-state simulation and optimization

#### Mathematical Modeling

- As the pipe length is much larger than the area of its cross-section we can use a 1D model
- We **integrate the 3D equations** on the pipe cross-section to obtain a stationary 1D model

Simulation

 Resolution of systems of nonlinear equations relying on Newton-like numeric methods for nonlinear equations

Optimization

- Custom-made implementation of a Sequential Linear Programming algorithm
- Custom-made implementation of a hybrid algorithm combining Control Theory (simulator) and Sequential Linear Programming
- Use of state of the art **nonlinear solvers** via algebraic modeling languages AMPL and Pyomo (Ipopt, Knitro,...)

Running  $\mathsf{GANESO}^{\textcircled{R}}$  on a feasible flow configuration reported by Spanish TSM

#### Scenario

- Spanish High Pressure Gas Network
- Work day of January with low demand

#### Optimization premises

- Flows at International connections and underground facilities are taken as fixed inputs
- The optimizer has freedom to choose the distribution of flow among the **regasification plants**
- The optimizer has freedom to choose how to use **compressor stations**, **PCVs** and **FCVs**.
- The goal is to minimize the cost associated to the **gas consumption** at compressor stations.

Extra

#### Case Study in the Spanish High Pressure Network Running GANESO<sup>®</sup> on a feasible flow configuration reported by Spanish TSM

Operation obtained from TSM reports (on security of supply)



 $GANESO^{\textcircled{R}}$  <u>GAs</u> <u>NE</u>twork <u>S</u>imulation and <u>O</u>ptimization — 8ECM 2021

# Case Study in the Spanish High Pressure Network Running GANESO<sup>(R)</sup> on a feasible flow configuration reported by Spanish TSM

Operation optimized with GANESO<sup>®</sup>



#### Case Study in the Spanish High Pressure Network Running GANESO<sup>®</sup> on a feasible flow configuration reported by Spanish TSM Distribution of flow in the plants

| [GWh/d]   | TSM   | Optim. |
|-----------|-------|--------|
| Barcelona | 131.8 | 241.6  |
| Bilbao    | 113.9 | 90.7   |
| Cartagena | 85.4  | 38.2   |
| Huelva    | 170.8 | 83.6   |
| Reganosa  | 114.2 | 106.4  |
| Sagunto   | 56.9  | 112.3  |

#### Compression costs in stations

| [GWh/d]      | TSM  | Optim |
|--------------|------|-------|
| Alcazar      | 0.29 | -     |
| Almendralejo | 0.27 | 0.16  |
| Tivisa       | 0.22 | -     |
| Zamora       | 0.15 | -     |
| TOTAL        | 0.93 | 0.16  |

| Delore vs. Alter                        |                                                    |  |  |  |
|-----------------------------------------|----------------------------------------------------|--|--|--|
| <b>From South</b><br>Cartagena + Huelva | <b>From North</b><br>Reganosa + Barcelona + Bilbao |  |  |  |
| -134.3 GWh/d                            | +78.9 GWh/d                                        |  |  |  |

Defense After

- GANESO<sup>®</sup> has optimized
  - the distribution of flow among the regasification plants
  - 2 the use of compressor stations
- Based on this management, the cost would be 17% of the usual one
- Execution takes less than **5 minutes** on a desktop computer

#### Injection of gases with different qualities

- The injection of gases with **different qualities** in the network has a big impact in the equations of the model
- Some parameters depend drastically on the gas composition:
  - $R = \frac{\mathcal{R}}{M}$ : gas specific constant, where  $\mathcal{R} = 8.31434$  [kJ/(kmol K)] is the universal gas constant and M the molar mass of the gas [kg/kmol].
  - $Z(p_{m_k}, \theta_{m_k})$ : compressibility factor
- Further, the customers usually demand a certain amount of energy, but depending on the gas composition the mass flow needed to satisfy it changes
- The following constraints are incorporated:
  - Calorific value propagation (pooling constraints)
  - Flow conservation constraint in terms of energy

### Case Study: Maximize the injection of $H_2$

- Real instance of the Spanish gas transmission network
  - Minimize the **gas consumption** at compressors
  - The optimizer has **freedom** to choose the distribution of flow among the **regasification plants**
  - The optimizer consider as **controllable** elements the **compressor stations** and **PCVs**
  - $\bullet~{\rm Work}$  day of January with low demand (1065 GWh/d)
- We consider two case studies:
  - Case A: conventional natural gas through entry points
  - **Case B**: maximize the injection of **Hydrogen** through 4 entry points: Mugardos (North-West), Irún (North), Cartagena (East) and Tarifa (South)

| (%)         | $CH_4$ | $C_2H_6$ | $C_3H_8$ | $C_{4}H_{10}$ | $N_2$ | $H_2$ | CV (MJ/kg) |
|-------------|--------|----------|----------|---------------|-------|-------|------------|
| Natural gas | 88.72  | 7.81     | 2.72     | 0.73          | 0.02  | -     | 55.04      |
| Hydrogen    | -      | -        | -        | -             | -     | 100   | 141.79     |

Transient

Extra

#### Case A: natural gas injection



Transient

Extra

#### Case B: maximize $H_2$ injection





#### GANESO<sup>®</sup> GAs NEtwork Simulation and Optimization — 8ECM 2021

#### Case study B: maximize $H_2$ injection (Gas composition)



# Transient Simulation

#### 

#### 2 Stationary Simulation and Optimization

#### 3 Transient Simulation

4 Network Design and Infrastructure Planning

#### 5 Ongoing work

Transient

#### **Transient Simulation** Physical Equations:

- Navier-Stokes equations for compressible flows:
  - Conservation of mass, conservation of momentum, conservation of energy
- Constitutive laws:
  - Law of friction for turbulent flows, equations of state for real gases
- Mathematical modeling:
  - Again, we integrate 3D equations to obtain a transient 1D model
  - Obtaining 1D compressible Euler equations with source terms:
    - Friction, variable height along the pipeline, heat exchange with the exterior
  - Modeling junctions of several pipes requires additional mathematical tools
  - Allowing for heterogeneous gases also requires additional tools
- Numerical methods:
  - Standard methods such as Euler explicit for time discretization and finite volume methods for space discretization cannot be applied in the presence of source terms
  - Need to use Euler explicit methods enhanced with well-balanced schemes (discretization of source terms needs some upwinding)

### Transient Simulation: Numerical Results



#### Mass flow rate at node 01A

- Blue. Real measurement
- Red. Simulation with a homogeneous gas model
- Green. Simulation with a heterogeneous gas model

# Network Design and Infrastructure Planning

#### 1 GANESO<sup>®</sup>: Overview of the project

- 2 Stationary Simulation and Optimization
- **3** Transient Simulation
- 4 Network Design and Infrastructure Planning

#### 5 Ongoing work

- Long-term planning under uncertainty to prioritize infrastructures
- Multistage optimization problem
- Stochastic programming problem

- Long-term planning under uncertainty to prioritize infrastructures
- Multistage optimization problem
- Stochastic programming problem

Sources of uncertainty: Gas demand - Gas prices - Infrastructure costs

- Long-term planning under uncertainty to prioritize infrastructures
- Multistage optimization problem
- Stochastic programming problem

Sources of uncertainty: Gas demand – Gas prices – Infrastructure costs

Main costs involved in the multistage problem

- Operational costs in each period:gas consumption at compressor stations, boil-off gas, tank trucks,...
- Costs for unmet demand (if any) in each period
- Costs of building infrastructures

- Long-term planning under uncertainty to prioritize infrastructures
- Multistage optimization problem
- Stochastic programming problem

Sources of uncertainty: Gas demand – Gas prices – Infrastructure costs

Main costs involved in the multistage problem

- Operational costs in each period:gas consumption at compressor stations, boil-off gas, tank trucks,...
- Costs for unmet demand (if any) in each period
- Costs of building infrastructures

Main approaches

• U1: Multideterministic solver:

Execution and analysis of a battery of different (plausible) multistage scenarios

• U2: Stochastic programming solver:

If probabilities are known for the different scenarios, joint analysis of the optimization problem under uncertainty with tools from stochastic programming



• U2: The whole tree is solved at once: Large optimization problem

| Overview | Simulation&Optimization | Transient | Planning | Extra |
|----------|-------------------------|-----------|----------|-------|
|          |                         |           |          |       |

#### Network Design and Infrastructure Planning under Uncertainty

#### Integration with user interface



#### Network Design and Infrastructure Planning under Uncertainty

#### Integration with user interface



# Ongoing work

#### $\textcircled{1} GANESO^{\textcircled{R}}: Overview of the project$

- 2 Stationary Simulation and Optimization
- 3 Transient Simulation
- 4 Network Design and Infrastructure Planning

#### 5 Ongoing work

Extra

#### Ongoing work

- The development and validation of the **physical parameters for hydrogen** enriched natural gas
  - For example, we are considering the use of **Papay equation** for the approximation of compressibility factor
- Extent the network **planning module** to include the injection of heterogeneous gases
- The development of mathematical models and algorithms to combine electrical and gas transmission networks (e.g, power to gas)

# Simulation, optimal management and infrastructure planning of gas transmission networks

Ángel Manuel González Rueda GANESO<sup>®</sup> development team

University of A Coruña Technological Institute for Industrial Mathematics (ITMATI)

