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Kay’s question

Suppose that a finite group G acts transitively on a set Ω

with
non-trivial two point stabilisers and such that all elements of G#

fix at most two points.

What can we find out about G?

And is it true that the only simple examples are PSL2(q), Sz(q)
and PSL3(4)?

“Have you seen this before?”

“I am pretty sure that we got the simple examples right. How
would you prove that?”
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How and why?

Why is this an interesting question?

How can we begin to understand the structure of G?
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Setting the stage

G always denotes a finite group and Ω denotes a set.

Fixity

Let k ∈ N. We say that G acts with fixity k on Ω if and only if k
is the maximal number of fixed points of elements of G#. (Ronse
1980)
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Examples

1 S3 and A4 in their natural action act with fixity 1, and more
generally Frobenius groups in their natural action act with
fixity 1.

2 In their natural action, S4 and A5 have fixity 2, S5 and A6

have fixity 3 and S6 and A7 have fixity 4.

3 The simple groups that Kay mentioned are indeed examples
for fixity 2, and there are infinite families of groups that act
with fixity 3 and 4 as well.
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Goals and motivation

In this project we are interested in fixity 2, 3 and 4.

It started with
Kay and me, has been supported by the DFG and now includes
more people:
Barbara Baumeister, Paula Hähndel, Patrick Salfeld, Anika
Streck and, most recently, Christoph Möller.

Goals

Prove general structure results for groups that act with low fixity.

Classify all finite simple groups that act with fixity 2, 3 or 4, along
with a description of possible point stabilisers.

In the remainder of the talk, I will refer to this part of the project
by “classification problem”.
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More goals

Classify the possibilities where

a finite simple group G acts as a group of automorphisms on a
compact Riemann surface of genus at least 2 such that G acts
with global fixity at most 4.

This consists of many individual questions and builds heavily on
the first classification goal.

In the remainder of the talk, I will refer to this part of the project
by “realisation problem”.
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Status for fixity 2

Kay was right with his conjecture about the finite simple examples:

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 2 on a set Ω of size at least 4.
Then G is isomorphic to PSL3(4) or there exists a prime power q
such that G is isomorphic to PSL2(q) or to Sz(q).

In each case, all possibilities are classified, with a description of the
point stabilisers.

We also prove structure results for general finite groups that act
with fixity 2, and a revision of this work is in progress (with Anika
Streck).



Status for fixity 2

Kay was right with his conjecture about the finite simple examples:

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 2 on a set Ω of size at least 4.

Then G is isomorphic to PSL3(4) or there exists a prime power q
such that G is isomorphic to PSL2(q) or to Sz(q).

In each case, all possibilities are classified, with a description of the
point stabilisers.

We also prove structure results for general finite groups that act
with fixity 2, and a revision of this work is in progress (with Anika
Streck).



Status for fixity 2

Kay was right with his conjecture about the finite simple examples:

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 2 on a set Ω of size at least 4.
Then G is isomorphic to PSL3(4) or there exists a prime power q
such that G is isomorphic to PSL2(q) or to Sz(q).

In each case, all possibilities are classified, with a description of the
point stabilisers.

We also prove structure results for general finite groups that act
with fixity 2, and a revision of this work is in progress (with Anika
Streck).



Status for fixity 2

Kay was right with his conjecture about the finite simple examples:

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 2 on a set Ω of size at least 4.
Then G is isomorphic to PSL3(4) or there exists a prime power q
such that G is isomorphic to PSL2(q) or to Sz(q).

In each case, all possibilities are classified, with a description of the
point stabilisers.

We also prove structure results for general finite groups that act
with fixity 2, and a revision of this work is in progress (with Anika
Streck).



Status for fixity 2

Kay was right with his conjecture about the finite simple examples:

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 2 on a set Ω of size at least 4.
Then G is isomorphic to PSL3(4) or there exists a prime power q
such that G is isomorphic to PSL2(q) or to Sz(q).

In each case, all possibilities are classified, with a description of the
point stabilisers.

We also prove structure results for general finite groups that act
with fixity 2, and a revision of this work is in progress (with Anika
Streck).



Status for fixity 2, cont.

The simple groups from our classification are candidates for groups
of automorphisms of Riemann surfaces in all cases where the point
stabilisers are cyclic.

Salfeld, W. (2020)

If q is a prime power and G is isomorphic to PSL2(q) or to Sz(q),
or if G ∼=PSL3(4), then the realisation problem is solved.
Specifications are given by ramification data.
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Status for fixity 3

Theorem (Magaard, W. 2015)

Suppose that G is a finite simple group that acts transitively and
with fixity 3 on a set Ω of size at least 5. Then G is isomorphic to
one of the following groups:

A5, A6, A7 or A8,

PSL2(7), PSL2(11), PSL3(4), PSL4(3), PSU4(3) or PSL4(5),

M11 or M22, or

PSL3(q) or PSU3(q) for some prime power q.

Again we also have general results, we are working on stronger
results for soluble groups (Christoph Möller’s Bachelor thesis) and
for all simple examples, the realisation problem is solved (Salfeld,
PhD thesis).
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For fixity 4, we have partial results and a strategy
(Baumeister, Hähndel, W.),

we are close to solving the classification problem
(Baumeister, Hähndel, Salfeld, W.),
and for all classified cases the realisation problem is solved
(Salfeld, PhD thesis).
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Let α ∈ Ω and H := Gα.

If 1 6= x ∈ H, then CG (x) stabilises the fixed points set of x
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If 1 6= X ≤ H, then NG (X ) stabilises the fixed points set of X
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With some more detailed analysis, this shows the following:

Stabiliser Lemma

Let α ∈ Ω and H := Gα.

If 1 6= x ∈ H, then |CG (x) : CH(x)| ≤ k .

If 1 6= X ≤ H, then |NG (X ) : NH(X )| ≤ k .

As a direct consequence, we can bound |Z (G )| and analyse the
connection between Sylow subgroups and point stabilisers.
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Let p ∈ π(G ), α ∈ Ω and H := Gα.

Sylow Lemma

If p ≥ 5, then H is a p′-group or it contains a Sylow
p-subgroup of G .

If k = 2 and p = 3, then H is a p′-group or it contains a
Sylow p-subgroup of G .

This has consequences for the possible orbit lengths of Sylow
subgroups and for the structure of F ∗(G ), and it gives rise to a
strategy for solving the classification problem.
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Strategy for fixity 4, simple groups

Classification of the finite simple examples

1 Point stabilisers of order coprime to 6: in progress, with
CFSG. (Baumeister, Magaard, W.)

2 Point stabilisers of odd order, of order divisible by 3, small
Sylow 3-subgroups or a strongly 3-embedded subgroup.
(Hähndel, CFSG)

3 Sectional 2-rank at most 4, with some involution fixing four
points. (Salfeld, Gorenstein-Harada)

4 Point stabilisers of even order, all involutions fix at most three
points, more information about the 2-structure. (Hähndel)

5 Point stabilisers of even order, strongly embedded subgroup.
(Hähndel)
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Ongoing work

There are several papers in preparation, here is an overview:

Classification of the finite simple examples: Manuscript in
progress. (Baumeister, Hähndel, Magaard, Salfeld, W.)

General analysis: Possible components, structure of F ∗, the
special case of soluble groups. (Hähndel)

Revision of the analysis for groups of fixity 2 and 3:
Improvements, simplifications, details on the special case of
soluble groups. (Möller, Streck, W.)

The realisation problem for groups of fixity 4. (Salfeld, W.)
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soluble groups. (Möller, Streck, W.)

The realisation problem for groups of fixity 4. (Salfeld, W.)



Ongoing work

There are several papers in preparation, here is an overview:

Classification of the finite simple examples: Manuscript in
progress. (Baumeister, Hähndel, Magaard, Salfeld, W.)

General analysis: Possible components, structure of F ∗, the
special case of soluble groups. (Hähndel)

Revision of the analysis for groups of fixity 2 and 3:
Improvements, simplifications, details on the special case of
soluble groups. (Möller, Streck, W.)
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Thanks for listening!

I look forward to your comments and questions.
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