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Fractional Laplacian with D-N boundary data

Powers of Laplacian operator (−∆):

Let (λn, ϕn) be the eigenvalues and eigenfunctions of (−∆) in Ω with zero mixed D-N
boundary data. Then (λsn, ϕn) are the eigenvalues and eigenfunctions of (−∆)s, also with
zero D-N boundary conditions.
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Fractional Laplacian with D-N boundary data

Powers of Laplacian operator (−∆):

Let (λn, ϕn) be the eigenvalues and eigenfunctions of (−∆) in Ω with zero mixed D-N
boundary data. Then (λsn, ϕn) are the eigenvalues and eigenfunctions of (−∆)s, also with
zero D-N boundary conditions.

The fractional Laplacian (−∆)s is well defined in the space of functions that vanish on ΣD ,

Hs
ΣD

(Ω) =







u =
∑

n≥1

anϕn ∈ L2(Ω) : ‖u‖2Hs
ΣD

(Ω) =
∑

n≥1

a2nλ
s
n < ∞







.
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boundary data. Then (λsn, ϕn) are the eigenvalues and eigenfunctions of (−∆)s, also with
zero D-N boundary conditions.

The fractional Laplacian (−∆)s is well defined in the space of functions that vanish on ΣD ,

Hs
ΣD

(Ω) =







u =
∑

n≥1

anϕn ∈ L2(Ω) : ‖u‖2Hs
ΣD

(Ω) =
∑

n≥1

a2nλ
s
n < ∞







.

As a consequence,

(−∆)su =
∑

n≥1

λsnanϕn.

Note that then ‖u‖Hs
ΣD

(Ω) = ‖(−∆)s/2u‖L2(Ω).
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Fractional Laplacian with D-N boundary data

Following [LM]

Hs
0(Ω) = Hs(Ω) for 0 < s ≤ 1

2
.

Hs
0(Ω) ( Hs(Ω) for 1

2
< s < 1.

[LM] J.-L. Lions, E. Magenes , A Non-homogeneous boundary value problems and applications. Vol. I,

Springer-Verlag, New York-Heidelberg, 1972.
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Fractional Laplacian with D-N boundary data

For the general problem

(P )







(−∆)su = f(x, u) in Ω,

B(u) = 0 on ∂Ω,

where we take mixed Dirichlet-Neumann boundary conditions,

B(u) = χΣD
u+ χΣN

∂u

∂ν
.
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Fractional Laplacian with D-N boundary data

For the general problem

(P )







(−∆)su = f(x, u) in Ω,

B(u) = 0 on ∂Ω,

where we take mixed Dirichlet-Neumann boundary conditions,

B(u) = χΣD
u+ χΣN

∂u

∂ν
.

ΣD and ΣN are smooth (N − 1)-dimensional submanifolds of ∂Ω.

ΣD is a closed manifold of positive (N − 1)-dimensional Hausdorff measure,

HN−1(ΣD) = α ∈ (0,HN−1(∂Ω)).

ΣD and ΣN verify ΣD ∩ ΣN = ∅ , ΣD ∪ ΣN = ∂Ω, ΣD ∩ ΣN = Γ, where Γ is a
smooth (N − 2)-dimensional submanifold of ∂Ω.
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Fractional Laplacian with D-N boundary data

(Pλ)







(−∆)su = λu+ u
N+2s
N−2s , u > 0 in Ω,

B(u) = 0 on ∂Ω,

where λ > 0, and Ω ⊂ RN , with N > 2s, 1
2
< s < 1.

[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
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Fractional Laplacian with D-N boundary data

(Pλ)







(−∆)su = λu+ u
N+2s
N−2s , u > 0 in Ω,

B(u) = 0 on ∂Ω,

where λ > 0, and Ω ⊂ RN , with N > 2s, 1
2
< s < 1.

[BN] H. Brezis, L. Nirenberg. CPAM, 1983.

Sense of weak/energy solution

∫

Ω
(−∆)s/2u(−∆)s/2ϕdx =

∫

Ω
fλ(u)ϕdx, ∀ϕ ∈ Hs

ΣD
(Ω).

We also have an associated energy functional (2∗s = 2N
N−2s

)

I(u) =
1

2

∫

Ω

∣

∣

∣(−∆)s/2u
∣

∣

∣

2
dx−

λ

2

∫

Ω
u2 dx−

1

2∗s

∫

Ω
u2

∗
s dx

which is well defined in Hs
ΣD

(Ω). Clearly, the critical points of I correspond to solutions to
(Pλ).
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Extended problems to one more variable

Consider the cylinder CΩ = Ω× (0,∞) ⊂ RN+1
+ . Given u ∈ Hs

ΣD
(Ω), we define its

s-harmonic extension w = Es (u) to the cylinder CΩ as the solution to the problem















−div(y1−2s∇w) = 0 in CΩ,

B∗(w) = 0 on ∂LCΩ = ∂Ω× [0,∞),

w = u on Ω× {y = 0}.

where

B∗(w) = wχΣ∗
D

+
∂w

∂ν
χΣ∗

N
,

with Σ∗
D = ΣD × [0,∞) and Σ∗

N = ΣN × [0,∞).
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Consider the cylinder CΩ = Ω× (0,∞) ⊂ RN+1
+ . Given u ∈ Hs

ΣD
(Ω), we define its

s-harmonic extension w = Es (u) to the cylinder CΩ as the solution to the problem















−div(y1−2s∇w) = 0 in CΩ,

B∗(w) = 0 on ∂LCΩ = ∂Ω× [0,∞),

w = u on Ω× {y = 0}.

where

B∗(w) = wχΣ∗
D

+
∂w

∂ν
χΣ∗

N
,

with Σ∗
D = ΣD × [0,∞) and Σ∗

N = ΣN × [0,∞).

The extension function belongs to the space Xs
Σ∗

D

(CΩ) defined as the completion of

{z ∈ C∞(CΩ) : z = 0 on Σ∗
D} with respect to the norm

‖z‖Xs
Σ∗
D

(CΩ) =

(

κs

∫

CΩ

y1−2s|∇z|2dxdy

)1/2

where κs is a normalization constant.
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(Ω), we define its
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
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








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w = u on Ω× {y = 0}.

where

B∗(w) = wχΣ∗
D

+
∂w

∂ν
χΣ∗

N
,

with Σ∗
D = ΣD × [0,∞) and Σ∗

N = ΣN × [0,∞).

Note that the extension operator is an isometry

‖Es (ψ)‖Xs
Σ∗
D

(CΩ) = ‖ψ‖Hs
ΣD

(Ω), ∀ψ ∈ Hs
ΣD

(Ω).
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
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where

B∗(w) = wχΣ∗
D

+
∂w

∂ν
χΣ∗

N
,

with Σ∗
D = ΣD × [0,∞) and Σ∗

N = ΣN × [0,∞).

Note that the extension operator is an isometry

‖Es (ψ)‖Xs
Σ∗
D

(CΩ) = ‖ψ‖Hs
ΣD

(Ω), ∀ψ ∈ Hs
ΣD

(Ω).

Moreover, for any ϕ ∈ Xs
Σ∗

D

(CΩ), we have the following trace inequality

‖ϕ‖Xs
Σ∗
D

(CΩ) ≥ ‖ϕ(·, 0)‖Hs
ΣD

(Ω).
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Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the
original function u through the formula

−κs lim
yց0

y1−2s ∂w

∂y
(x, y) = (−∆)su(x),
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Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the
original function u through the formula

−κs lim
yց0

y1−2s ∂w

∂y
(x, y) = (−∆)su(x),

See:

[CS] L. Caffarelli, L. Silvestre, CPDE, 2007.

See also:

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, PRSE, 2013.

[CT] X. Cabré, J. Tan, Adv. Math., 2010.

[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, CPDE, 2011.
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Extended problems to one more variable
Denoting

Lsw := −div(y1−2s∇w),
∂w

∂νs
:= −κs lim

yց0
y1−2s ∂w

∂y

we can reformulate (Pλ) with the new variable as

(P ∗
λ )



















Lsw = 0 in CΩ,

B∗(w) = 0 on ∂LCΩ,
∂w

∂νs
= λw + w

N+2s
N−2s in Ω× {y = 0}.
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
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



Lsw = 0 in CΩ,

B∗(w) = 0 on ∂LCΩ,
∂w

∂νs
= λw + w

N+2s
N−2s in Ω× {y = 0}.

We say as before that w ∈ Xs
Σ∗

D

(CΩ) is an energy solution if

κs

∫

CΩ

y1−2s〈∇w,∇ϕ〉 dxdy =

∫

Ω

(

λw + w
N+2s
N−2s

)

ϕdx, ∀ ϕ ∈ Xs
ΣD

(CΩ).
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Extended problems to one more variable
Denoting

Lsw := −div(y1−2s∇w),
∂w

∂νs
:= −κs lim

yց0
y1−2s ∂w

∂y

we can reformulate (Pλ) with the new variable as

(P ∗
λ )



















Lsw = 0 in CΩ,

B∗(w) = 0 on ∂LCΩ,
∂w

∂νs
= λw + w

N+2s
N−2s in Ω× {y = 0}.

We say as before that w ∈ Xs
Σ∗

D

(CΩ) is an energy solution if

κs

∫

CΩ

y1−2s〈∇w,∇ϕ〉 dxdy =

∫

Ω

(

λw + w
N+2s
N−2s

)

ϕdx, ∀ ϕ ∈ Xs
ΣD

(CΩ).

Energy functional

J(w) =
κs

2

∫

CΩ

y1−2s|∇w|2 dxdy −
λ

2

∫

Ω
w2 dx−

1

2∗s

∫

Ω
w2∗s dx .
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Extended problems to one more variable
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:= −κs lim

yց0
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we can reformulate (Pλ) with the new variable as
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λ )


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













Lsw = 0 in CΩ,
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D

(CΩ) is an energy solution if
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∫

CΩ

y1−2s〈∇w,∇ϕ〉 dxdy =

∫

Ω

(

λw + w
N+2s
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)

ϕdx, ∀ ϕ ∈ Xs
ΣD

(CΩ).

Energy functional

J(w) =
κs

2

∫

CΩ

y1−2s|∇w|2 dxdy −
λ

2

∫

Ω
w2 dx−

1

2∗s

∫

Ω
w2∗s dx .

Note that critical points of J in Xs
ΣD

(CΩ) correspond to critical points of I in Hs
Σ∗

D

(Ω).
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Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on ΣD with 0 < HN−1(ΣD) < HN−1(∂Ω), then

0 < C := inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖Hs
ΣD

(Ω)

‖u‖
L2∗s (Ω)

.
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0 < C := inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖Hs
ΣD

(Ω)

‖u‖
L2∗s (Ω)

.

Hence, in terms of the extension function,

(∫

Ω
ϕ

2N
N−2s (x, 0)dx

)
N−2s
2N

≤ C‖ϕ(·, 0)‖Hs
ΣD

(Ω) = C‖Es[ϕ(·, 0)]‖Xs
Σ∗
D

(CΩ).
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Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on ΣD with 0 < HN−1(ΣD) < HN−1(∂Ω), then

0 < C := inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖Hs
ΣD

(Ω)

‖u‖
L2∗s (Ω)

.

Hence, in terms of the extension function,

(∫

Ω
ϕ

2N
N−2s (x, 0)dx

)
N−2s
2N

≤ C‖ϕ(·, 0)‖Hs
ΣD

(Ω) = C‖Es[ϕ(·, 0)]‖Xs
Σ∗
D

(CΩ).

As a consequence, we obtain the following Mixed Trace inequality ,

(∫

Ω
ϕ

2N
N−2s (x, 0)dx

)1− 2s
N

≤ C

∫

CΩ

y1−2s|∇ϕ|2dxdy.

for any ϕ ∈ Xs
Σ∗

D

(CΩ), where C is a positive constant.
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Sobolev constant relative to ΣD

We define the Sobolev constant "relative to ΣD" as follows,

S(ΣD) = inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖2
Hs

ΣD
(Ω)

‖u‖2
L2∗s (Ω)

= inf
w∈Xs

ΣD
(CΩ)

w 6≡0

‖w‖2
Xs

ΣD
(CΩ)

‖w(·, 0)‖2
L2∗s (Ω)

.
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Sobolev constant relative to ΣD

We define the Sobolev constant "relative to ΣD" as follows,

S(ΣD) = inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖2
Hs

ΣD
(Ω)

‖u‖2
L2∗s (Ω)

= inf
w∈Xs

ΣD
(CΩ)

w 6≡0

‖w‖2
Xs

ΣD
(CΩ)

‖w(·, 0)‖2
L2∗s (Ω)

.

Theorem 1. S(ΣD) ≤ 2−
2s
N κsS(s,N), and even more, if S(ΣD) < 2−

2s
N κsS(s,N)

⇒ S(ΣD) is attained.
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Sobolev constant relative to ΣD

We define the Sobolev constant "relative to ΣD" as follows,

S(ΣD) = inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖2
Hs

ΣD
(Ω)

‖u‖2
L2∗s (Ω)

= inf
w∈Xs

ΣD
(CΩ)

w 6≡0

‖w‖2
Xs

ΣD
(CΩ)

‖w(·, 0)‖2
L2∗s (Ω)

.

Theorem 1. S(ΣD) ≤ 2−
2s
N κsS(s,N), and even more, if S(ΣD) < 2−

2s
N κsS(s,N)

⇒ S(ΣD) is attained.

The key of the proof relies on concentration-compactness arguments by Lions [L] . See
[ACP] for similar arguments adapted to mixed problems with s = 1.

[ACP] A. Abdellaoui, E.C., I. Peral, ADE, 2004.
[L] P.L. Lions, Rev.Mat.Iber, 1985.
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Sobolev constant relative to ΣD

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of ΣD , ΣN on ∂Ω,
λs1(α) → 0, as α = HN−1(ΣD) → 0.

[CP] E.C., I. Peral, JFA, 2003.
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Lemma 2. S(ΣD) ≤ Cλs1(α).
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Sobolev constant relative to ΣD

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of ΣD , ΣN on ∂Ω,
λs1(α) → 0, as α = HN−1(ΣD) → 0.

[CP] E.C., I. Peral, JFA, 2003.

Lemma 2. S(ΣD) ≤ Cλs1(α).

Theorem 2. Under some geometrical assumptions, the Sobolev constant S(ΣD) is attained.

The proof follows by using Theorem 1 and Lemmas 1-2 jointly because S(ΣD) is as small as

we want provided α→ 0, proving that S(ΣD) < 2−
2s
N κsS(s,N).
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Main Results
Remember the main problem

(Pλ)







(−∆)su = λu+ u
N+2s
N−2s , u > 0 in Ω,

B(u) = 0, on ∂Ω,

where λ > 0, and Ω ⊂ RN , with N > 2s, 1
2
< s < 1.
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Main Results
Theorem 3. Assume that 1

2
< s < 1 and N ≥ 4s. Then problem (Pλ):

1. has no solution for λ ≥ λs1,

2. has solution for each 0 < λ < λs1,

3. under the some geometrical assumptions, has solution for λ = 0 and HN−1(ΣD)

sufficiently small.
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Variational approach: minimizers
To prove point 2 in Theorem 3, i.e., the existence of solution to (Pλ), for 0 < λ < λs1, we
consider the following quotient

Qλ(w) =

‖w‖2
Xs

ΣD
(CΩ)

− λ‖u‖2
L2(Ω)

‖u‖2
L2∗s (Ω)

,

where w = Es[u], and we define

Sλ(Ω) = inf
w∈Xs

ΣD
(CΩ)

w 6≡0

{

Qλ(w)
}

,

in order to find a minimizer.
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Fractional elliptic problems, inverse fractional operator

(Pα,β)







(−∆)α−βu = λ(−∆)−βu+ |u|2
∗
µ−2

u in Ω,

u = 0 on ∂Ω,

We prove existence or nonexistence of positive solutions depending on the parameter λ > 0,
up to the critical value of the exponent p, i.e., for 1 < p ≤ 2∗µ − 1 where µ := α− β and

2∗µ = 2N
N−2µ

is the critical exponent of the Sobolev embedding.
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





(−∆)α−βu = λ(−∆)−βu+ |u|2
∗
µ−2

u in Ω,

u = 0 on ∂Ω,

We prove existence or nonexistence of positive solutions depending on the parameter λ > 0,
up to the critical value of the exponent p, i.e., for 1 < p ≤ 2∗µ − 1 where µ := α− β and

2∗µ = 2N
N−2µ

is the critical exponent of the Sobolev embedding.

Theorem. For every γ ∈ (0, λα1 ), there exists a positive solution for the problem (Pα,β)

provided that N > 4α− 2β.
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Thank you for the attention!
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