On some fractional problems with Dirichlet-Neumann boundary conditions

Eduardo Colorado
Universidad Carlos III de Madrid (UC3M)

Research Project PID2019-106122GB.IOO
8 ECM 2020 (Portoroz, $25^{\text {th }}$ June 2021)

The main results of the talk are collected in:

E. C., A. Ortega, The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions. J. Math. Anal. Appl. 473 (2019).

The main results of the talk are collected in:

E. C., A. Ortega, The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions. J. Math. Anal. Appl. 473 (2019).
P. Álvarez-Caudevilla, E. C., A. Ortega, The Positive solutions for semilinear elliptic problems involving an inverse fractional operator. Nonlinear Anal. Real World Appl. 51 (2020).

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities
- Attainability of the Sobolev constant

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities
- Attainability of the Sobolev constant
- Brezis-Nirenberg fractional problem with mixed Dirichlet-Neumann (D-N) boundary conditions

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities
- Attainability of the Sobolev constant
- Brezis-Nirenberg fractional problem with mixed Dirichlet-Neumann (D-N) boundary conditions
- Fractional elliptic problems involving an inverse fractional operator

Fractional Laplacian with D-N boundary data

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero mixed D-N boundary data. Then $\left(\lambda_{n}^{s}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{s}$, also with zero $\mathrm{D}-\mathrm{N}$ boundary conditions.

Fractional Laplacian with D-N boundary data

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero mixed D-N boundary data. Then $\left(\lambda_{n}^{s}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{s}$, also with zero D-N boundary conditions.

The fractional Laplacian $(-\Delta)^{s}$ is well defined in the space of functions that vanish on $\Sigma_{\mathcal{D}}$,

$$
H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)=\left\{u=\sum_{n \geq 1} a_{n} \varphi_{n} \in L^{2}(\Omega):\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}^{2}(\Omega)=\sum_{n \geq 1} a_{n}^{2} \lambda_{n}^{s}<\infty\right\} .
$$

Fractional Laplacian with D-N boundary data

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero mixed D-N boundary data. Then $\left(\lambda_{n}^{s}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{s}$, also with zero D-N boundary conditions.

The fractional Laplacian $(-\Delta)^{s}$ is well defined in the space of functions that vanish on $\Sigma_{\mathcal{D}}$,

$$
H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)=\left\{u=\sum_{n \geq 1} a_{n} \varphi_{n} \in L^{2}(\Omega):\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)}^{2}=\sum_{n \geq 1} a_{n}^{2} \lambda_{n}^{s}<\infty\right\}
$$

As a consequence,

$$
(-\Delta)^{s} u=\sum_{n \geq 1} \lambda_{n}^{s} a_{n} \varphi_{n}
$$

Note that then $\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)=\left\|(-\Delta)^{s / 2} u\right\|_{L^{2}(\Omega)}$.

Fractional Laplacian with D-N boundary data

Following [LM]

- $H_{0}^{s}(\Omega)=H^{s}(\Omega)$ for $0<s \leq \frac{1}{2}$.
- $H_{0}^{s}(\Omega) \subsetneq H^{s}(\Omega)$ for $\frac{1}{2}<s<1$.
[LM] J.-L. Lions, E. Magenes, A Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972.

Fractional Laplacian with D-N boundary data

Following [LM]

- $H_{0}^{s}(\Omega)=H^{s}(\Omega)$ for $0<s \leq \frac{1}{2}$.
- $H_{0}^{s}(\Omega) \subsetneq H^{s}(\Omega)$ for $\frac{1}{2}<s<1$.
[LM] J.-L. Lions, E. Magenes, A Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972.

As a consequence

- $H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)=H^{s}(\Omega)$ for $0<s \leq \frac{1}{2}$.
- $H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) \subsetneq H^{s}(\Omega)$ for $\frac{1}{2}<s<1$.

Fractional Laplacian with D-N boundary data

For the general problem

$$
(P) \begin{cases}(-\Delta)^{s} u=f(x, u) & \text { in } \Omega \\ B(u)=0 & \text { on } \partial \Omega\end{cases}
$$

where we take mixed Dirichlet-Neumann boundary conditions,

$$
B(u)=\chi_{\Sigma_{\mathcal{D}}} u+\chi_{\Sigma_{\mathcal{N}}} \frac{\partial u}{\partial \nu} .
$$

Fractional Laplacian with D-N boundary data

For the general problem

$$
(P) \begin{cases}(-\Delta)^{s} u=f(x, u) & \text { in } \Omega \\ B(u)=0 & \text { on } \partial \Omega\end{cases}
$$

where we take mixed Dirichlet-Neumann boundary conditions,

$$
B(u)=\chi_{\Sigma_{\mathcal{D}}} u+\chi_{\Sigma_{\mathcal{N}}} \frac{\partial u}{\partial \nu} .
$$

- $\Sigma_{\mathcal{D}}$ and $\Sigma_{\mathcal{N}}$ are smooth $(N-1)$-dimensional submanifolds of $\partial \Omega$.
- $\Sigma_{\mathcal{D}}$ is a closed manifold of positive $(N-1)$-dimensional Hausdorff measure,

$$
\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)=\alpha \in\left(0, \mathcal{H}^{N-1}(\partial \Omega)\right) .
$$

- $\Sigma_{\mathcal{D}}$ and $\Sigma_{\mathcal{N}}$ verify $\Sigma_{\mathcal{D}} \cap \Sigma_{\mathcal{N}}=\emptyset, \Sigma_{\mathcal{D}} \cup \Sigma_{\mathcal{N}}=\partial \Omega, \Sigma_{\mathcal{D}} \cap \bar{\Sigma}_{\mathcal{N}}=\Gamma$, where Γ is a smooth ($N-2$)-dimensional submanifold of $\partial \Omega$.

Fractional Laplacian with D-N boundary data

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{s} u=\lambda u+u^{\frac{N+2 s}{N-2 s}}, \quad u>0 & \text { in } \Omega \\ B(u)=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$, and $\Omega \subset \mathbb{R}^{N}$, with $N>2 s, \frac{1}{2}<s<1$.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.

Fractional Laplacian with D-N boundary data

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{s} u=\lambda u+u^{\frac{N+2 s}{N-2 s}}, \quad u>0 & \text { in } \Omega \\ B(u)=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$, and $\Omega \subset \mathbb{R}^{N}$, with $N>2 s, \frac{1}{2}<s<1$.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
Sense of weak/energy solution

$$
\int_{\Omega}(-\Delta)^{s / 2} u(-\Delta)^{s / 2} \varphi d x=\int_{\Omega} f_{\lambda}(u) \varphi d x, \quad \forall \varphi \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) .
$$

We also have an associated energy functional ($2_{s}^{*}=\frac{2 N}{N-2 s}$)

$$
I(u)=\frac{1}{2} \int_{\Omega}\left|(-\Delta)^{s / 2} u\right|^{2} d x-\frac{\lambda}{2} \int_{\Omega} u^{2} d x-\frac{1}{2_{s}^{*}} \int_{\Omega} u^{2_{s}^{*}} d x
$$

which is well defined in $H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)$. Clearly, the critical points of I correspond to solutions to $\left(P_{\lambda}\right)$.

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)$, we define its s-harmonic extension $w=\mathrm{E}_{s}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times[0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

where

$$
B^{*}(w)=w \chi_{\Sigma_{\mathcal{D}}^{*}}+\frac{\partial w}{\partial \nu} \chi_{\Sigma_{\mathcal{N}}^{*}}
$$

with $\Sigma_{\mathcal{D}}^{*}=\Sigma_{\mathcal{D}} \times[0, \infty)$ and $\Sigma_{\mathcal{N}}^{*}=\Sigma_{\mathcal{N}} \times[0, \infty)$.

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)$, we define its s-harmonic extension $w=\mathrm{E}_{s}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times[0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

where

$$
B^{*}(w)=w \chi_{\Sigma_{\mathcal{D}}^{*}}+\frac{\partial w}{\partial \nu} \chi_{\Sigma_{\mathcal{N}}^{*}}
$$

with $\Sigma_{\mathcal{D}}^{*}=\Sigma_{\mathcal{D}} \times[0, \infty)$ and $\Sigma_{\mathcal{N}}^{*}=\Sigma_{\mathcal{N}} \times[0, \infty)$.
The extension function belongs to the space $X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$ defined as the completion of $\left\{z \in \mathcal{C}^{\infty}\left(\mathcal{C}_{\Omega}\right): z=0\right.$ on $\left.\Sigma_{\mathcal{D}}^{*}\right\}$ with respect to the norm

$$
\|z\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)}=\left(\kappa_{s} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}|\nabla z|^{2} d x d y\right)^{1 / 2}
$$

where κ_{s} is a normalization constant.

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)$, we define its s-harmonic extension $w=\mathrm{E}_{s}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times[0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

where

$$
B^{*}(w)=w \chi_{\Sigma_{\mathcal{D}}^{*}}+\frac{\partial w}{\partial \nu} \chi_{\Sigma_{\mathcal{N}}^{*}}
$$

with $\Sigma_{\mathcal{D}}^{*}=\Sigma_{\mathcal{D}} \times[0, \infty)$ and $\Sigma_{\mathcal{N}}^{*}=\Sigma_{\mathcal{N}} \times[0, \infty)$.
Note that the extension operator is an isometry

$$
\left\|\mathrm{E}_{s}(\psi)\right\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}}\left(\mathcal{C}_{\Omega}\right)=\|\psi\|_{H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)}, \quad \forall \psi \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)
$$

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)$, we define its s-harmonic extension $w=\mathrm{E}_{s}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times[0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

where

$$
B^{*}(w)=w \chi_{\Sigma_{\mathcal{D}}^{*}}+\frac{\partial w}{\partial \nu} \chi_{\Sigma_{\mathcal{N}}^{*}}
$$

with $\Sigma_{\mathcal{D}}^{*}=\Sigma_{\mathcal{D}} \times[0, \infty)$ and $\Sigma_{\mathcal{N}}^{*}=\Sigma_{\mathcal{N}} \times[0, \infty)$.
Note that the extension operator is an isometry

$$
\left\|\mathrm{E}_{s}(\psi)\right\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)}=\|\psi\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega), \quad \forall \psi \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) .
$$

Moreover, for any $\varphi \in X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$, we have the following trace inequality

$$
\|\varphi\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)} \geq\|\varphi(\cdot, 0)\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega) .
$$

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$
-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}(x, y)=(-\Delta)^{s} u(x)
$$

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$
-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}(x, y)=(-\Delta)^{s} u(x),
$$

See:
[CS] L. Caffarelli, L. Silvestre, CPDE, 2007.

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$
-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}(x, y)=(-\Delta)^{s} u(x),
$$

See:
[CS] L. Caffarelli, L. Silvestre, CPDE, 2007.

See also:
[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, PRSE, 2013.
[CT] X. Cabré, J. Tan, Adv. Math., 2010.
[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, CPDE, 2011.

Extended problems to one more variable

Denoting

$$
L_{s} w:=-\operatorname{div}\left(y^{1-2 s} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{s}}:=-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(P_{\lambda}^{*}\right) \begin{cases}L_{s} w=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{s}}=\lambda w+w^{\frac{N+2 s}{N-2 s}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

Extended problems to one more variable

Denoting

$$
L_{s} w:=-\operatorname{div}\left(y^{1-2 s} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{s}}:=-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(P_{\lambda}^{*}\right) \begin{cases}L_{s} w=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{s}}=\lambda w+w^{\frac{N+2 s}{N-2 s}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

We say as before that $w \in X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{s} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w+w^{\frac{N+2 s}{N-2 s}}\right) \varphi d x, \quad \forall \varphi \in X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right) .
$$

Extended problems to one more variable

Denoting

$$
L_{s} w:=-\operatorname{div}\left(y^{1-2 s} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{s}}:=-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(P_{\lambda}^{*}\right) \begin{cases}L_{s} w=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{s}}=\lambda w+w^{\frac{N+2 s}{N-2 s}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

We say as before that $w \in X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{s} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w+w^{\frac{N+2 s}{N-2 s}}\right) \varphi d x, \quad \forall \varphi \in X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right) .
$$

Energy functional

$$
J(w)=\frac{\kappa_{s}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}|\nabla w|^{2} d x d y-\frac{\lambda}{2} \int_{\Omega} w^{2} d x-\frac{1}{2_{s}^{*}} \int_{\Omega} w^{2_{s}^{*}} d x
$$

Extended problems to one more variable

Denoting

$$
L_{s} w:=-\operatorname{div}\left(y^{1-2 s} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{s}}:=-\kappa_{s} \lim _{y \searrow 0} y^{1-2 s} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(P_{\lambda}^{*}\right) \begin{cases}L_{s} w=0 & \text { in } \mathcal{C}_{\Omega} \\ B^{*}(w)=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{s}}=\lambda w+w^{\frac{N+2 s}{N-2 s}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

We say as before that $w \in X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{s} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w+w^{\frac{N+2 s}{N-2 s}}\right) \varphi d x, \quad \forall \varphi \in X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right) .
$$

Energy functional

$$
J(w)=\frac{\kappa_{s}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-2 s}|\nabla w|^{2} d x d y-\frac{\lambda}{2} \int_{\Omega} w^{2} d x-\frac{1}{2_{s}^{*}} \int_{\Omega} w^{2_{s}^{*}} d x .
$$

Note that critical points of J in $X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right)$ correspond to critical points of I in $H_{\Sigma_{\mathcal{D}}^{*}}^{s}(\Omega)$.

Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on $\Sigma_{\mathcal{D}}$ with $0<\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)<\mathcal{H}^{N-1}(\partial \Omega)$, then

$$
0<C:=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}^{s}}^{u}(\Omega) \\ u \neq 0}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)}{\|u\|_{L^{2_{S}^{*}}(\Omega)}}
$$

Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on $\Sigma_{\mathcal{D}}$ with $0<\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)<\mathcal{H}^{N-1}(\partial \Omega)$, then

$$
0<C:=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}^{s}}^{u \neq 0}}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)}{\|u\|_{L^{2_{s}^{*}}(\Omega)}}
$$

Hence, in terms of the extension function,

$$
\left(\int_{\Omega} \varphi^{\frac{2 N}{N-2 s}}(x, 0) d x\right)^{\frac{N-2 s}{2 N}} \leq C\|\varphi(\cdot, 0)\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)=C\left\|E_{s}[\varphi(\cdot, 0)]\right\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}}\left(\mathcal{C}_{\Omega}\right) .
$$

Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on $\Sigma_{\mathcal{D}}$ with $0<\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)<\mathcal{H}^{N-1}(\partial \Omega)$, then

$$
0<C:=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}^{s}}^{s}(\Omega) \\ u \not \equiv 0}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)}{\|u\|_{L^{2_{S}^{*}}(\Omega)}}
$$

Hence, in terms of the extension function,

$$
\left(\int_{\Omega} \varphi^{\frac{2 N}{N-2 s}}(x, 0) d x\right)^{\frac{N-2 s}{2 N}} \leq C\|\varphi(\cdot, 0)\|_{H_{\Sigma_{\mathcal{D}}}^{s}}(\Omega)=C\left\|E_{s}[\varphi(\cdot, 0)]\right\|_{X_{\Sigma_{\mathcal{D}}^{*}}^{s}}\left(\mathcal{C}_{\Omega}\right) .
$$

As a consequence, we obtain the following Mixed Trace inequality,

$$
\left(\int_{\Omega} \varphi^{\frac{2 N}{N-2 s}}(x, 0) d x\right)^{1-\frac{2 s}{N}} \leq C \int_{\mathcal{C}_{\Omega}} y^{1-2 s}|\nabla \varphi|^{2} d x d y
$$

for any $\varphi \in X_{\Sigma_{\mathcal{D}}^{*}}^{s}\left(\mathcal{C}_{\Omega}\right)$, where C is a positive constant.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

We define the Sobolev constant "relative to $\Sigma_{\mathcal{D}}$ " as follows,

$$
S\left(\Sigma_{\mathcal{D}}\right)=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) \\ u \not \equiv 0}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)}^{2}}{\|u\|_{L^{2_{s}^{*}}(\Omega)}^{2}}=\inf _{\substack{w \in X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right) \\ w \neq 0}} \frac{\|w\|_{X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right)}^{2}}{\|w(\cdot, 0)\|_{L^{2_{s}^{2}}(\Omega)}^{2}} .
$$

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

We define the Sobolev constant "relative to $\Sigma_{\mathcal{D}}$ " as follows,

$$
S\left(\Sigma_{\mathcal{D}}\right)=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) \\ u \not \equiv 0}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}(\Omega)}^{2}}{\|u\|_{L^{2_{s}^{*}}(\Omega)}^{2}}=\inf _{\substack{w \in X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right) \\ w \neq 0}} \frac{\|w\|_{X_{\Sigma_{\mathcal{D}}}^{s}\left(\mathcal{C}_{\Omega}\right)}^{2}}{\|w(\cdot, 0)\|_{L^{2_{s}^{*}}(\Omega)}^{2}} .
$$

Theorem 1. $S\left(\Sigma_{\mathcal{D}}\right) \leq 2^{-\frac{2 s}{N}} \kappa_{s} S(s, N)$, and even more, if $S\left(\Sigma_{\mathcal{D}}\right)<2^{-\frac{2 s}{N}} \kappa_{s} S(s, N)$ $\Rightarrow S\left(\Sigma_{\mathcal{D}}\right)$ is attained.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

We define the Sobolev constant "relative to $\Sigma_{\mathcal{D}}$ " as follows,

$$
S\left(\Sigma_{\mathcal{D}}\right)=\inf _{\substack{u \in H_{\Sigma_{\mathcal{D}}}^{s}(\Omega) \\
u \neq 0}} \frac{\|u\|_{H_{\Sigma_{\mathcal{D}}}^{s}}^{2}(\Omega)}{\|u\|_{L^{2{ }_{s}^{*}}(\Omega)}^{2}}=\inf _{\substack{w \in X_{\begin{subarray}{c}{s \\
\Sigma_{\mathcal{D}} \\
w \not \equiv 0} }}\left(\mathcal{C}_{\Omega}\right)}\end{subarray}} \frac{\|w\|_{X_{\Sigma_{\mathcal{D}}}^{s}}^{2}\left(\mathcal{C}_{\Omega}\right)}{\|w(\cdot, 0)\|_{L^{2_{s}^{*}}(\Omega)}^{2}} .
$$

Theorem 1. $S\left(\Sigma_{\mathcal{D}}\right) \leq 2^{-\frac{2 s}{N}} \kappa_{s} S(s, N)$, and even more, if $S\left(\Sigma_{\mathcal{D}}\right)<2^{-\frac{2 s}{N}} \kappa_{s} S(s, N)$ $\Rightarrow S\left(\Sigma_{\mathcal{D}}\right)$ is attained.

The key of the proof relies on concentration-compactness arguments by Lions [L]. See [ACP] for similar arguments adapted to mixed problems with $s=1$.
[ACP] A. Abdellaoui, E.C., I. Peral, ADE, 2004.
[L] P.L. Lions, Rev.Mat.Iber, 1985.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

Following [CP, Lemma 4.1] we have the next result.
Lemma 1. Under certain geometrical assumptions on the distribution of $\Sigma_{\mathcal{D}}, \Sigma_{\mathcal{N}}$ on $\partial \Omega$, $\lambda_{1}^{s}(\alpha) \rightarrow 0$, as $\alpha=\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right) \rightarrow 0$.
[CP] E.C., I. Peral, JFA, 2003.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

Following [CP, Lemma 4.1] we have the next result.
Lemma 1. Under certain geometrical assumptions on the distribution of $\Sigma_{\mathcal{D}}, \Sigma_{\mathcal{N}}$ on $\partial \Omega$, $\lambda_{1}^{s}(\alpha) \rightarrow 0$, as $\alpha=\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right) \rightarrow 0$.
[CP] E.C., I. Peral, JFA, 2003.
Lemma 2. $S\left(\Sigma_{\mathcal{D}}\right) \leq C \lambda_{1}^{S}(\alpha)$.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

Following [CP, Lemma 4.1] we have the next result.
Lemma 1. Under certain geometrical assumptions on the distribution of $\Sigma_{\mathcal{D}}, \Sigma_{\mathcal{N}}$ on $\partial \Omega$, $\lambda_{1}^{s}(\alpha) \rightarrow 0$, as $\alpha=\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right) \rightarrow 0$.
[CP] E.C., I. Peral, JFA, 2003.
Lemma 2. $S\left(\Sigma_{\mathcal{D}}\right) \leq C \lambda_{1}^{s}(\alpha)$.
Theorem 2. Under some geometrical assumptions, the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$ is attained.

Sobolev constant relative to $\Sigma_{\mathcal{D}}$

Following [CP, Lemma 4.1] we have the next result.
Lemma 1. Under certain geometrical assumptions on the distribution of $\Sigma_{\mathcal{D}}, \Sigma_{\mathcal{N}}$ on $\partial \Omega$, $\lambda_{1}^{s}(\alpha) \rightarrow 0$, as $\alpha=\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right) \rightarrow 0$.
[CP] E.C., I. Peral, JFA, 2003.
Lemma 2. $S\left(\Sigma_{\mathcal{D}}\right) \leq C \lambda_{1}^{s}(\alpha)$.
Theorem 2. Under some geometrical assumptions, the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$ is attained.

The proof follows by using Theorem 1 and Lemmas 1-2 jointly because $S\left(\Sigma_{\mathcal{D}}\right)$ is as small as we want provided $\alpha \rightarrow 0$, proving that $S\left(\Sigma_{\mathcal{D}}\right)<2^{-\frac{2 s}{N}} \kappa_{s} S(s, N)$.

Main Results

Remember the main problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{s} u=\lambda u+u^{\frac{N+2 s}{N-2 s}}, \quad u>0 & \text { in } \Omega \\ B(u)=0, & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$, and $\Omega \subset \mathbb{R}^{N}$, with $N>2 s, \frac{1}{2}<s<1$.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See $[\mathrm{BN}]$ for points 1,2 , with $s=1$ and Dirichlet boundary data,
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See [BN] for points 1,2 , with $s=1$ and Dirichlet boundary data,
[LPT] for point 3 , with $s=1$ and mixed D-N boundary data, but different hypotheses,
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See [BN] for points 1,2 , with $s=1$ and Dirichlet boundary data,
[LPT] for point 3, with $s=1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1,2 , with $s=1$ and D-N boundary data,
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See [BN] for points 1,2 , with $s=1$ and Dirichlet boundary data,
[LPT] for point 3 , with $s=1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1,2 , with $s=1$ and D-N boundary data,
[ACP] for point 3 in the case $s=1$ with mixed D-N boundary data,
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See [BN] for points 1,2 , with $s=1$ and Dirichlet boundary data,
[LPT] for point 3, with $s=1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1,2 , with $s=1$ and D-N boundary data,
[ACP] for point 3 in the case $s=1$ with mixed D-N boundary data,
[CT] for points 1,2 , with $s=\frac{1}{2}$ and Dirichlet boundary data,
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Main Results

Theorem 3. Assume that $\frac{1}{2}<s<1$ and $N \geq 4 s$. Then problem (P_{λ}):

1. has no solution for $\lambda \geq \lambda_{1}^{s}$,
2. has solution for each $0<\lambda<\lambda_{1}^{s}$,
3. under the some geometrical assumptions, has solution for $\lambda=0$ and $\mathcal{H}^{N-1}\left(\Sigma_{\mathcal{D}}\right)$ sufficiently small.

- 1 can be easily proved by using the first eigenfunction as a test function.
- 3 has been already proved before because of the attainability of the Sobolev constant $S\left(\Sigma_{\mathcal{D}}\right)$.
See [BN] for points 1,2 , with $s=1$ and Dirichlet boundary data,
[LPT] for point 3, with $s=1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1,2 , with $s=1$ and D-N boundary data,
[ACP] for point 3 in the case $s=1$ with mixed D-N boundary data,
[CT] for points 1,2 , with $s=\frac{1}{2}$ and Dirichlet boundary data,
[BCdPS] for points 1,2 in case $\frac{1}{2}<s<1$ and Dirichlet boundary data.
[ACP] A. Abdellaoui, E.C., I. Peral. ADE, 2004.
[BCdPS] B. Barrios, E.C., A. de Pablo, U. Sánchez. JDE, 2012.
[BN] H. Brezis, L. Nirenberg. CPAM, 1983.
[CT] X. Cabré, J. Tan. Adv. Math., 2010.
[G] M. Grossi Rend. Mat., 1990.
[LPT] P.L. Lions, F. Pacella, M. Tricarico Ind. Univ. MJ, 1988.

Variational approach: minimizers

To prove point 2 in Theorem 3, i.e., the existence of solution to $\left(P_{\lambda}\right)$, for $0<\lambda<\lambda_{1}^{s}$, we consider the following quotient

$$
Q_{\lambda}(w)=\frac{\|w\|_{X_{\Sigma_{\mathcal{D}}}^{s}}^{2}\left(\mathcal{C}_{\Omega}\right)}{\|u\|_{L^{2_{s}^{*}}(\Omega)}^{2}}-\lambda u \|_{L^{2}(\Omega)}^{2},
$$

where $w=E_{s}[u]$, and we define

$$
S_{\lambda}(\Omega)=\inf _{\substack{w \in X \mathcal{S}_{\mathcal{D}}^{s}\left(\mathcal{C}_{\Omega}\right) \\ w \neq 0}}\left\{Q_{\lambda}(w)\right\},
$$

in order to find a minimizer.

Fractional elliptic problems, inverse fractional operator

$$
\left(P_{\alpha, \beta}\right)\left\{\begin{array}{cl}
(-\Delta)^{\alpha-\beta} u=\lambda(-\Delta)^{-\beta} u+|u|^{2_{\mu}^{*}-2} u & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

We prove existence or nonexistence of positive solutions depending on the parameter $\lambda>0$, up to the critical value of the exponent p, i.e., for $1<p \leq 2_{\mu}^{*}-1$ where $\mu:=\alpha-\beta$ and $2_{\mu}^{*}=\frac{2 N}{N-2 \mu}$ is the critical exponent of the Sobolev embedding.

Fractional elliptic problems, inverse fractional operator

$$
\left(P_{\alpha, \beta}\right)\left\{\begin{array}{cl}
(-\Delta)^{\alpha-\beta} u=\lambda(-\Delta)^{-\beta} u+|u|^{2_{\mu}^{*}-2} u & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

We prove existence or nonexistence of positive solutions depending on the parameter $\lambda>0$, up to the critical value of the exponent p, i.e., for $1<p \leq 2_{\mu}^{*}-1$ where $\mu:=\alpha-\beta$ and $2_{\mu}^{*}=\frac{2 N}{N-2 \mu}$ is the critical exponent of the Sobolev embedding.

Theorem. For every $\gamma \in\left(0, \lambda_{1}^{\alpha}\right)$, there exists a positive solution for the problem ($P_{\alpha, \beta}$) provided that $N>4 \alpha-2 \beta$.

Thank you for the attention!

