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Vertex coupling

Laplacians on metric graphs need no introduction at this meeting, and we
also know that the nontrivial part of the task concerns matching the wave
functions in the graph vertices.

Recall that to define a QM Hamiltonian, in general it is not sufficient to
specify its differential symbol. To qualify as an observable, the operator
must be self-adjoint, H = H∗, which for an unbounded operator is a
considerably stronger requirement than mere symmetry, H ⊂ H∗.

In physicist’s language this means to demand that that the probability
current must be preserved. Let us illustrate that on an example:
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The most simple case is a star graph with
the state Hilbert space H =

⊕n
j=1 L

2(R+)
and the particle Hamiltonian acting on H
as ψj 7→ −ψ′′j
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Vertex coupling
Since the operator is of second order, the boundary condition involve
the values of functions and the first outward derivatives at the vertex.

These boundary values can be written as columns, Ψ(0) := {ψj(0)} and
Ψ′(0) := {ψ′j(0)}, the entries understood as left limits at the endpoint;
then the most general self-adjoint matching conditions are of the form

AΨ(0) + BΨ′(0) = 0,

where the n × n matrices A,B satisfy the conditions

rank (A,B) = n

AB∗ is Hermitean

V. Kostrykin, R. Schrader: Kirhhoff’s rule for quantum wires, J. Phys. A: Math. Gen. 32 (1999), 595–630.

Naturally, these conditions are non-unique, as A,B can be replaced by
CA,CB with a regular C . This non-uniqueness can be removed by using

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0,

where U is a unitary n × n matrix.
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Vertex coupling
The claim is easy to verify. To see that it is enough to express the
squared norms ‖Ψ(0)± i`Ψ′(0)‖2

Cn and subtract them from each other;
the difference is nothing but the boundary form,

(Hψ,ψ)− (ψ,Hψ) =
n∑

j=1

(ψ̄jψ
′
j − ψ̄′jψj)(0) = 0,

which has to vanish to make the operator self’adjoint.

Note that each term of the sum is, up to the factor 1
2 , nothing but the

probability current in the jth edge, taken in the outward direction.

As a consequence, the two vectors having the same norm must be related
by an n × n unitary matrix; this gives (U − I )Ψ(0) + i`(U + I )Ψ′(0) = 0.

It seems that we have one more parameter, but it is not important because
the matrices corresponding to two different values are related by

U ′ =
(`+ `′)U + `− `′
(`− `′)U + `+ `′

.

Thus we can set ` = 1, which means just a choice of the length scale.
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Why we should care about different couplings?

The answer to this question is: from the simple reason – because they
describe a different physics. We will encounter various manifestation of
this fact but let us illustrate the claim on the example of star graph of
n edges, denoting its different Hamiltonians as HU .

One of them is HD corresponding to U = −I , in other words, each edge
component of HU is a halfline Laplacian with Dirichlet boundary condition,
ψj(0) = 0. The spectrum of these operators is easily found, it implies that
σ(HD) = R+ of multiplicity n.

For any U we have σess(HU) = R+, because (HU − z)−1 − (HD − z)−1

is an operator of finite rank (equal to n) but in addition, there may be
negative eigenvalues.

Their number coincides with the number of eigenvalues of U in the open
upper complex halfplane. Indeed, the matching condition can diagonalized,
and on the appropriate subspaces of

⊕n
j=1 L

2(R+) we get n Robin

problems, φ′j(0) + tan
αj

2 φj(0) = 0 for the eigenvalue eiαj of U.
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Common examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α =∞ gives the Dirichlet U = −I

On the other hand, α = 0 gives Kirchhoff condition mentioned above.

Similarly, U = I − 2
n−iβJ describes the δ′s coupling,

ψ′j (0) = ψ′k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β =∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.

Another generalization of the 1D δ′ interaction is the δ′ coupling:
n∑

j=1

ψ′j (0) = 0, ψj(0)− ψk(0) =
β

n
(ψ′j (0)− ψ′k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I − 2

n+iαJ and Neumann edge decoupling for β =∞.

But there are many other couplings, and one can choose ad hoc to fit
the physics of the problem.
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Hall effect
To motivate our problem, let us recall one the most interesting and
important problems in solid-state physics, the Hall effect,

Source: Wikipedia

in which magnetic field induces a voltage perpendicular to the current.

In the quantum regime the corresponding conductivity is quantized with
a great precision – this fact lead already to two Nobel Prizes.

However, in ferromagnetic material one can observe a similar behavior
also in the absence of external magnetic field – being labeled anomalous.

In contrast to the ‘usual’ quantum Hall effect, its mechanism is not well
understood; it is conjectured that it comes from internal magnetization
in combination with the spin-orbit interaction.
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understood; it is conjectured that it comes from internal magnetization
in combination with the spin-orbit interaction.
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Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the
material structure of the sample is described by lattice of δ-coupled rings
(topologically equivalent to the square lattice we have seen already)

P. Sťreda, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper

Looking at the picture we recognize a flaw in the model: to mimick
the rotational motion of atomic orbitals responsible for the magnetization,
the authors had to impose ‘by hand’ the requirement that the electrons
move only one way on the loops of the lattice. Naturally, such an
assumption cannot be justified from the first principles!
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Breaking the time-reversal invariance
On the other hand, it is possible to break the time-reversal invariance,
not at graph edges but in its vertices

. Consider an example: note that
for a vertex coupling U the on-shell S-matrix at the momentum k is

S(k) =
k − 1 + (k + 1)U

k + 1 + (k − 1)U
,

in particular, we have U = S(1). If we thus require that the coupling
leads to the ‘maximum rotation’ at k = 1, it is natural to choose

U =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

1 0 0 0 · · · 0 0


,

Writing the coupling componentwise for vertex of degree N, we have

(ψj+1 − ψj) + i(ψ′j+1 + ψ′j) = 0 , j ∈ Z (modN) ,

which is non-trivial for N ≥ 3 and obviously non-invariant w.r.t. the
reverse in the edge numbering order, or equivalently, w.r.t. the complex
conjugation representing the time reversal.
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Star graphs: spectrum and scattering
Consider first a star graph with N semi-infinite edges and the above
coupling. Obviously, we have σess(H) = R+

. It is also easy to check that
H has eigenvalues −κ2, where

κ = tan
πm

N

with m running through 1, . . . , [N2 ] for N odd and 1, . . . , [N−1
2 ] for N even.

Thus σdisc(H) is always nonempty, in particular, H has a single negative
eigenvalue for N = 3, 4 which is equal to −3 and −1, respectively.

As for the scattering, we know that S(k) = k−1+(k+1)U
k+1+(k−1)U . It might seem

that transport becomes trivial at small and high energies, since it looks
like we have limk→0 S(k) = −I and limk→∞ S(k) = I .

However, caution is needed; the formal limits lead to a false result if
+1 or −1 are eigenvalues of U. A counterexample is the (scale invariant)
Kirchhoff coupling where U has only ±1 as its eigenvalues; the on-shell
S-matrix is then independent of k and it is not a multiple of the identity.
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The vertex parity enters the game

Denoting for simplicity η := 1−k
1+k , a straightforward computation gives

Sij(k) =
1− η2

1− ηN
{
−η 1− ηN−2

1− η2
δij + (1− δij) η(j−i−1)(modN)

}
,

in particular, for N = 3, 4, respectively, we get

1 + η

1 + η + η2

 − η
1+η

1 η

η − η
1+η

1

1 η − η
1+η

 and
1

1 + η2


−η 1 η η2

η2 −η 1 η

η η2 −η 1

1 η η2 −η


We see that limk→∞ S(k) = I holds for N = 3 and more generally for
all odd N, while for the even ones the limit is not a multiple of identity.
This is is related to the fact that in the latter case U has both ±1 as its
eigenvalues, while for N odd −1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.
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Comparison of two lattices

0
0 0

Spectral condition for the two cases are easy to derive,

16i ei(θ1+θ2) k sin k`
[
(k2 − 1)(cos θ1 + cos θ2) + 2(k2 + 1) cos k`

]
= 0

and respectively

16i e−i(θ1+θ2) k2 sin k`
(

3 + 6k2 − k4 + 4dθ(k2 − 1) + (k2 + 3)2 cos 2k`
)

= 0 ,

where dθ := cos θ1 + cos(θ1 − θ2) + cos θ2 and 1
` (θ1, θ2) ∈ [−π

` ,
π
` ]2 is the

quasimomentum. They are tedious to solve except the flat band cases,
sin k` = 0, however, we can present the band solution in a graphical form

P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283–287.
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A picture is worth of thousand words

For the two lattices, respectively, we get (with ` = 3
2 , dashed ` = 1
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Comparison summary

Some features are common:

the number of open gaps is always infinite

the gaps are centered around the flat bands except the lowest one

for some values of ` a band may degenerate

the negative spectrum is always nonempty, the gaps become
exponentially narrow around star graph eigenvalues as `→∞

But the high energy behavior of these lattices is substantially different:

the spectrum is dominated by bands for square lattices

it is dominated by gaps for hexagonal lattices

Naturally, this is not the only way to break the time symmetry. A simple
modification is to change the inherent length scale replacing the above
matching condition by (ψj+1 − ψj) + i`(ψ′j+1 + ψ′j) = 0 for some ` > 0.
This does not matter for stars, of course, but it already does for lattices.

Let us mention one more involved choice of the vertex coupling.
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An interpolation

One can interpolate between the δ-coupling and the present one taking
e.g., for U the circulant matrix with the eigenvalues

λk (t) =

 e−i(1−t)γ for k = 0;

− eiπt(
2k
n
−1) for k ≥ 1

for all t ∈ [0, 1], where n−iα
n+iα = e−iγ

. Taking, for instance, α = 0 and

−4(
√

2 + 1), respectively, we have the following spectral patterns
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P.E., O. Turek, M. Tater: A family of quantum graph vertex couplings interpolating between different symmetries,
J. Phys. A: Math. Theor. 51 (2018), 285301.
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Another topic: band edges positions
Looking for extrema of the dispersion functions, people usually seek
them at the border of the respective Brillouin zone

. Quantum graphs
provide a warning: there are examples of a periodic graph in which
(some) band edges correspond to internal points of the Brillouin zone

J.M. Harrison, P. Kuchment, A. Sobolev, B. Winn: On occurrence of spectral edges for periodic operators inside the
Brillouin zone, J. Phys. A: Math. Theor. 40 (2007), 7597–7618.

P.E., P. Kuchment, B. Winn: On the location of spectral edges in Z-periodic media, J. Phys. A: Math. Theor. 43 (2010),
474022.

The second one shows that this may be true even for graphs periodic in
one direction

The number of connecting edges had to be N ≥ 2. An example:
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Band edges, continued

In the same paper we showed that if N = 1, the band edges correspond
to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant
w.r.t. time reversal. To show that this assumption was essential consider
a comb-shaped graph with our non-invariant coupling at the vertices

r r r r r r r r r r
Its analysis shows:

two-sided comb is transport-friendly, bands dominate

one-sided comb is transport-unfriendly, gaps dominate

sending the one side edge lengths to zero in a two-sided comb
we get the one-sided comb transport but the limit is non-uniform

and what about the dispersion curves?
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Two-sided comb: dispersion curves
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P.E., D. Vašata: Spectral properties of Z periodic quantum chains without time reversal invariance, in preparation
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Discrete symmetry: Platonic solid graphs
Topological properties of our vertex coupling can be manifested in
many other ways

. Consider, e.g., finite equilateral graphs consisting
of Platonic solids edges

Source: Wikipedia Commons

and assume the described coupling in the vertices. The corresponding
spectra are discrete but their high-energy behavior differs:

for tetrahedron, cube, icosahedron, and dodecahedron the square
roots of ev’s approach integer multiples of π with an O(k−1) error

octahedron also has such eigenvalues, but in addition it has two
other series: those behaving as k = 2πn ± 2

3π for n ∈ Z, and as
k = πn + 1

2π with an O(k−2) error

no such distinction exists for more common couplings such as δ
P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101
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spectra are discrete but their high-energy behavior differs:
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octahedron also has such eigenvalues, but in addition it has two
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Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction

.
Consider again a loop chain, first tightly connected

4 

2 

1 

3 

 

 

 

 

 

 

   

 

 

 

The spectrum of the corresponding Hamiltonian looks as follows:

Theorem

The spectrum of H0 consists of the absolutely continuous part which
coincides with the interval [0,∞), and a family of infinitely degenerate
eigenvalues, the isolated one equal to −1, and the embedded ones equal
to the positive integers.

M. Baradaran, P.E., M. Tater: Ring chains with vertex coupling of a preferred orientation, Rev. Math. Phys.33 (2021),
2060005.
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A loosely connected chain
Replace the direct coupling of adjacent rings by connecting segments
of length ` > 0, still with the same vertex coupling.
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Theorem

The spectrum of H` has for any fixed ` > 0 the following properties:

Any non-negative integer is an eigenvalue of infinite multiplicity.
Away of the non-negative integers the spectrum is absolutely
continuous having a band-and-gap structure.
The negative spectrum is contained in (−∞,−1) consisting of a single
band if ` = π, otherwise there is a pair of bands and −3 6∈ σ(H`).
The positive spectrum has infinitely many gaps.
Pσ(H`) := limK→∞

1
K |σ(H`) ∩ [0,K ]| = 0 holds for any ` > 0.
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The limit `→ 0+

The quantity Pσ(H`) in the last claim of the theorem is the probability
of being in the spectrum, which was introduced in

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113
(2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what
happens if the the connecting links lengths shrink to zero. From the
general result derived in

G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges,
Adv. Math. 352 (2019), 632–669.

we know that σ(H`)→ σ(H0) in the set sense as `→ 0+.

We have, however, obviously Pσ(H0) = 1, hence our example shows that
the said convergence may be rather nonuniform!

Note also that if we violate the mirror symmetry of the chain, we have
instead Pσ(H0) = 1

2 independently of where exactly we place the vertex.

M. Baradaran, P.E., M. Tater: Spectrum of periodic chain graphs with time-reversal non-invariant vertex coupling,
arXiv:2012.14344.
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One more example: transport properties

Consider strips cut of the following two types of lattices:

ℓ2

ℓ1

. . .

...

...

g1 g2 g3 g4 gN gN+1

f1 f2 f3 fN

ℓ2

ℓ2

ℓ1

ℓ3

g1

h1

f1

e1

g2

h2

f2

e2

g3

h3

f3

e3

gN

hN

fN

eN

hN+1

gN+1

. . .

...

...

In both cases we impose the ‘rotating’ coupling at the vertices

. By
Floquet decomposition we are able reduce the task to investigation of a
‘one cell layer’. We use the Ansatz aeikx + be−ikx for the wave functions
e, fj , gj , hj with the appropriate coefficients at the graphs edges

This time we ask in which part of the ‘guide’ are the generalized
eigenfunction dominantly supported

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 23 -



One more example: transport properties

Consider strips cut of the following two types of lattices:

ℓ2

ℓ1

. . .

...

...

g1 g2 g3 g4 gN gN+1

f1 f2 f3 fN

ℓ2

ℓ2

ℓ1

ℓ3

g1

h1

f1

e1

g2

h2

f2

e2

g3

h3

f3

e3

gN

hN

fN

eN

hN+1

gN+1

. . .

...

...

In both cases we impose the ‘rotating’ coupling at the vertices. By
Floquet decomposition we are able reduce the task to investigation of a
‘one cell layer’. We use the Ansatz aeikx + be−ikx for the wave functions
e, fj , gj , hj with the appropriate coefficients at the graphs edges

This time we ask in which part of the ‘guide’ are the generalized
eigenfunction dominantly supported

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 23 -



One more example: transport properties

Consider strips cut of the following two types of lattices:

ℓ2

ℓ1

. . .

...

...

g1 g2 g3 g4 gN gN+1

f1 f2 f3 fN

ℓ2

ℓ2

ℓ1

ℓ3

g1

h1

f1

e1

g2

h2

f2

e2

g3

h3

f3

e3

gN

hN

fN

eN

hN+1

gN+1

. . .

...

...

In both cases we impose the ‘rotating’ coupling at the vertices. By
Floquet decomposition we are able reduce the task to investigation of a
‘one cell layer’. We use the Ansatz aeikx + be−ikx for the wave functions
e, fj , gj , hj with the appropriate coefficients at the graphs edges

This time we ask in which part of the ‘guide’ are the generalized
eigenfunction dominantly supported

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 23 -



Transport properties, continued

Theorem

In the rectangular-lattice strip, for a fixed K ∈
(
0, 1

2π
)
, consider k > 0

obeying k 6∈ ⋃n∈N0

(
nπ−K
`2

, nπ+K
`2

)
. With the natural normalization of the

generalized eigenfunction corresponding to energy k2, its components at
the leftmost and rightmost vertical edges are of order O(k−1) as k →∞.

In the ‘brick-lattice’ strip, consider momenta k > 0 such that

k 6∈
⋃

n∈N0

(
nπ − K

`1
,
nπ + K

`1

)
∪
⋃

n∈N0

(
nπ − K

`2
,
nπ + K

`2

)
∪
⋃

n∈N0

(
nπ − K

`3
,
nπ + K

`3

)
.

Adopting the same normalization as above and denoting by q
(m)
j with

m = 1, . . . , 8, the coefficients of wave function components for the edges
directed down and right from vertices of the jth vertical line, we have

q
(m)
j = O(k1−j) as k →∞.

P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

Remark: Note that the ‘brick-lattice’ strip is not a topological insulator!
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PT -symmetry
Having two research areas, each based of a strong concept, it is natural
to look for connecting links. This applies, in particular, to quantum graphs
and PT -symmetry, also intensely studied in the last three decades.

C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having PT -symmetry, Phys. Rev. Lett. 80
(1988), 5243–5246.

C.M. Bender: PT -symmetric quantum theory, J. Phys.: Conf. Ser. 631 (2015), 012002.

It started from the observation that Schrödinger operators with complex
potentials can have a real spectrum, and while the importance of this fact
for QM remains a matter of dispute for those who are not PT -proselytes,
the idea found a number of applications in various areas.

The focus is, of course, on nontrivial situations when neither parity nor the
time-reversal invariance were preserved but their composition was. The
known examples of PT -symmetry in quantum graphs go beyond the class
of self-adjoint Hamiltonians.

A. Hussein, D. Krejčǐŕık, P. Siegl: Non-selfadjoint quantum graphs, Trans. Amer. Math. Soc. 367 (2015), 2921–2957.

P. Kurasov, B. Majidzadeh Garjani: Quantum graphs: PT -symmetry and reflection symmetry of the spectrum, J. Math.
Phys. 58 (2017), 023506.

D.U. Matrasulov, K.K.Sabirov, J.R. Yusupov: PT -symmetric quantum graphs, J. Phys. A: Math. Theor. 52 (2019),
155302.
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Vertex coupling symmetries
In our example we worked with a coupling which was obviously time-
reversal asymmetric. Let us now adopt a more general point of view.

As usual in QM, a symmetry is described by an operator H → H leaving
the Hamiltonian is invariant. In our case the nontrivial part concerns the
matching condition: a particular symmetry is associated with an invertible
map in the space of the boundary values, Θ : Cn → Cn, such that we have
(U − I )ΘΨ(0) + i(U + I )ΘΨ′(0) = 0 for all admissible Ψ, or equivalently

Θ−1UΘ = U.

One asks which operators are associated with the parity and time reversal
transformations. The latter is simpler. Operator ΘT is antilinear and
idempotent, in the absence of internal degrees of freedom it is just the
complex conjugation. Using the unitarity, UT Ū = ŪUT = I we see that
Ψ̄ satisfies the matching condition with the transposed matrix, that is,

Θ−1
T UΘT = ΘT UΘT = UT ,

and consequently, the HU is T -invariant if and only if U = UT .
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reversal asymmetric. Let us now adopt a more general point of view.

As usual in QM, a symmetry is described by an operator H → H leaving
the Hamiltonian is invariant. In our case the nontrivial part concerns the
matching condition: a particular symmetry is associated with an invertible
map in the space of the boundary values, Θ : Cn → Cn, such that we have
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Ψ̄ satisfies the matching condition with the transposed matrix, that is,

Θ−1
T UΘT = ΘT UΘT = UT ,

and consequently, the HU is T -invariant if and only if U = UT .

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 26 -



Vertex coupling symmetries
In our example we worked with a coupling which was obviously time-
reversal asymmetric. Let us now adopt a more general point of view.

As usual in QM, a symmetry is described by an operator H → H leaving
the Hamiltonian is invariant. In our case the nontrivial part concerns the
matching condition: a particular symmetry is associated with an invertible
map in the space of the boundary values, Θ : Cn → Cn, such that we have
(U − I )ΘΨ(0) + i(U + I )ΘΨ′(0) = 0 for all admissible Ψ, or equivalently

Θ−1UΘ = U.

One asks which operators are associated with the parity and time reversal
transformations. The latter is simpler. Operator ΘT is antilinear and
idempotent, in the absence of internal degrees of freedom it is just the
complex conjugation. Using the unitarity, UT Ū = ŪUT = I we see that
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How to describe mirror transformations?
This also immediately implies that a (self-adjoint) quantum graph is
PT -symmetric if and only if the mirror transformation acts analogously,

Θ−1
P UΘP = ΘPUΘP = UT .

Note that the QG concept per se does not need an ambient space, but
investigation of spatial reflections forces us to think of embedding in the
Euclidean space. For simplicity we regard our star graph as planar, but the
conclusion certainly extends to more general situations.

Note that ΘP does not mean to reverse the edge orientation as they are
all parametrized in the same outward direction. Neither is ΘP associated
with reversing the edge numeration; that leads to a double transpose of U,
both with respect to the diagonal and antidiagonal, however, such a
change means just renaming the graph edges.

To see which operator can facilitate the similarity between U and UT , we
use the unitarity of the matrix: there is a unitary V such that VUV ∗ is
diagonal, and as such equal to its transpose. It follows that the matrix Θ
satisfying ΘUΘ = UT is of the form Θ = V TV .
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How to describe mirror transformations?
We know how V looks like: the jth column of V ∗ coincides with φTj ,
where φj is the jth normalized eigenvector of U. Consequently, we have

Θij = (φ̄i , φj), i , j = 1, . . . , n ;

the expression is nontrivial due to complex conjugation in the left entry.

Denoting by {νj} the ‘natural’ basis in the boundary value space, namely
ν1 = (1, 0, . . . , 0)T , etc., we see that the above operator Θ maps νj to
((φ̄1, φj), . . . (φ̄n, φj))T , so it general it is difficult to associate such a Θ
with a mirror transformation.

The situation changes, however, when we restrict our attention to the
subset of circulant matrices, i.e. those of the form

U =


c1 c2 · · · cn−1 cn

cn c1 c2 cn−1

... cn c1
. . .

...

c3
. . .

. . . c2

c2 c3 · · · cn c1

.
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Circulant matrices
The unitarity requires that

cj =
1

n

(
λ1 + λ2ω

−j + λ3ω
−2j + · · ·+ λnω

−(n−1)j
)
, j = 1, . . . , n,

where λj , j = 1, . . . , n, are eigenvalues of U and ω := e2πi/n. The
corresponding eigenvectors are independent of the choice of the cj ’s,

φj =
1√
n

(
1, ωj , ω2j , . . . , ω(n−1)j

)T
, j = 1, . . . , n.

Furthermore, the eigenvalues can be written in terms of the matrix entries
as λj =

∑n
k=1 ckω

j(k−1). The diagonalization is achieved in this case by
the discrete Fourier transformation,

V ∗ =
1√
n


1 1 1 1 . . . 1

1 ω ω2 ω3 . . . ω(n−1)

1 ω2 ω4 ω6 . . . ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) ω3(n−1) . . . ω(n−1)2

.
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Mirror transformation for circulant matrices

ΘP =


1 0 0 · · · 0 0 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 1 0
... . .

. ...

0 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0



This has the needed properties, preserving the edge e1, as well as ek+1 if
n = 2k , and among the remaining ones it switches ej with en+2−j , and
moreover, the same will be true if we renumber the edges.

Thus we have found a class of vertex couplings exhibiting a PT -symmetry.
It depends on 2n real parameters, out of the number n2 which characterize
an arbitrary self-adjoint coupling. Among them, a subset depending on
n + 1 parameters is separately symmetric with respect to the time
inversion and mirror transformation, while in the (n − 1)-parameter
complement the PT -symmetry is nontrivial.

The examples we discussed above belong, of course, to the latter subset.
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It remain to say

Thank you for your attention!

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 31 -



It remain to say

Thank you for your attention!

P. Exner: Time-reversal asymmetry in QG MS48: Analysis of Graphs June 24, 2021 - 31 -


