

Random quantum graphs are asymmetric

8th ECM, Portorož

Mateusz Wasilewski (joint work with Alexandru Chirvasitu) KU Leuven (FWO postdoc) 24th of June 2021

1 Outline

1 Quantum graphs

2 Random quantum graphs

Quantum graphs originated from quantum information theory in many ways:

Quantum graphs originated from quantum information theory in many ways:

Quantum graphs originated from quantum information theory in many ways:

- (Duan-Severini-Winter) Quantum confusability graphs associated to quantum channels;
- (Weaver, Kuperberg-Weaver) Symmetric, reflexive quantum relations, motivated by the study of quantum metric spaces;

KU LEUVE

Quantum graphs originated from quantum information theory in many ways:

- (Duan-Severini-Winter) Quantum confusability graphs associated to quantum channels;
- (Weaver, Kuperberg-Weaver) Symmetric, reflexive quantum relations, motivated by the study of quantum metric spaces;
- (Musto-Reutter-Verdon) Finite dimensional C*-algebras equipped with an analogue of an adjacency matrix, partially inspired by the graph homomorphism game of Mančinska and Roberson.

Quantum graphs originated from quantum information theory in many ways:

- (Duan-Severini-Winter) Quantum confusability graphs associated to quantum channels;
- (Weaver, Kuperberg-Weaver) Symmetric, reflexive quantum relations, motivated by the study of quantum metric spaces;
- (Musto-Reutter-Verdon) Finite dimensional C*-algebras equipped with an analogue of an adjacency matrix, partially inspired by the graph homomorphism game of Mančinska and Roberson.

Point of view for today: quantum graphs are interesting mathematical objects in their own right.

Definition

Definition

A quantum graph on M_n is:

▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:

Definition

A quantum graph on M_n is:

▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:

•
$$V = V^*;$$

Definition

A quantum graph on M_n is:

▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:

•
$$V = V^*;$$

• $1 \in V;$

Definition

A quantum graph on M_n is:

- ▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:
 - $V = V^*;$
 - $1 \in V$;

▶ a completely positive map $A: M_n \to M_n$ such that:

Definition

- ▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:
 - $V = V^*;$
 - $1 \in V$;
- ▶ a completely positive map $A: M_n \to M_n$ such that:
 - $m(A \otimes A)m^* = A$, where $m: M_n \otimes M_n \to M_n$ is the multiplication;

Definition

- ▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:
 - $V = V^*;$
 - $1 \in V$;
- ▶ a completely positive map $A: M_n \to M_n$ such that:
 - $m(A \otimes A)m^* = A$, where $m: M_n \otimes M_n \to M_n$ is the multiplication;
 - Tr((Ax)y) = Tr(x(Ay)), i.e. A is self-adjoint;

Definition

- ▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:
 - $V = V^*;$
 - $1 \in V$;
- ▶ a completely positive map $A: M_n \to M_n$ such that:
 - $m(A \otimes A)m^* = A$, where $m: M_n \otimes M_n \to M_n$ is the multiplication;
 - Tr((Ax)y) = Tr(x(Ay)), i.e. A is self-adjoint;
 - $m(A \otimes \operatorname{Id})m^*(1) = 1.$

Definition

A quantum graph on M_n is:

▶ an operator subsystem $V \subset M_n$, i.e. a subspace satisfying:

•
$$V = V^*;$$

•
$$1 \in V;$$

▶ a completely positive map $A: M_n \to M_n$ such that:

• $m(A \otimes A)m^* = A$, where $m: M_n \otimes M_n \to M_n$ is the multiplication;

KU LEU

- Tr((Ax)y) = Tr(x(Ay)), i.e. A is self-adjoint;
- $m(A \otimes \operatorname{Id})m^*(1) = 1$.

Are these definitions equivalent?

Operator systems vs projections

Let $p: M_n \to V$ be the orthogonal projection wrt the trace. As $B(HS_n) \simeq M_n \otimes M_n^{op}$, we get a corresponding $P \in M_n \otimes M_n^{op}$.

Operator systems vs projections

Let $p: M_n \to V$ be the orthogonal projection wrt the trace. As $B(HS_n) \simeq M_n \otimes M_n^{op}$, we get a corresponding $P \in M_n \otimes M_n^{op}$.

Choi-Jamiołkowski If $P \in M_n \otimes M_n^{\text{op}}$ is a projection then $A_P : M_n \to M_n$ given by $A_P(x) := (\operatorname{Id} \otimes n \operatorname{Tr})(P(\mathbb{1} \otimes x))$ is cp and satisfies $m(A_P \otimes A_P)m^* = A_P$.

Operator systems vs projections

Let $p: M_n \to V$ be the orthogonal projection wrt the trace. As $B(HS_n) \simeq M_n \otimes M_n^{op}$, we get a corresponding $P \in M_n \otimes M_n^{op}$.

Choi-Jamiołkowski If $P \in M_n \otimes M_n^{\text{op}}$ is a projection then $A_P : M_n \to M_n$ given by $A_P(x) := (\operatorname{Id} \otimes n \operatorname{Tr})(P(\mathbb{1} \otimes x))$ is cp and satisfies $m(A_P \otimes A_P)m^* = A_P$. If $A : M_n \to M_n$ is cp and such that $m(A \otimes A)m^* = A$ then $P_A := (A \otimes \operatorname{Id})m^*(\mathbb{1})$, its Choi matrix, is a projection in $M_n \otimes M_n^{\text{op}}$.

Operator systems vs projections

Let $p: M_n \to V$ be the orthogonal projection wrt the trace. As $B(HS_n) \simeq M_n \otimes M_n^{op}$, we get a corresponding $P \in M_n \otimes M_n^{op}$.

Choi-Jamiołkowski If $P \in M_n \otimes M_n^{\text{op}}$ is a projection then $A_P : M_n \to M_n$ given by $A_P(x) := (\operatorname{Id} \otimes n \operatorname{Tr})(P(\mathbb{1} \otimes x))$ is cp and satisfies $m(A_P \otimes A_P)m^* = A_P$. If $A : M_n \to M_n$ is cp and such that $m(A \otimes A)m^* = A$ then $P_A := (A \otimes \operatorname{Id})m^*(\mathbb{1})$, its Choi matrix, is a projection in $M_n \otimes M_n^{\text{op}}$.

$$(A \otimes \mathrm{Id})m^*(\mathbb{1}) = \frac{1}{n}\sum_{i,j=1}^n A(e_{ij}) \otimes e_{ji}$$

Automorphisms

We say that a unitary matrix $U \in M_n$ is an automorphism of a quantum graph $V \subset M_n$ if $UVU^* = V$.

Automorphisms

We say that a unitary matrix $U \in M_n$ is an automorphism of a quantum graph $V \subset M_n$ if $UVU^* = V$.

Translated to the adjacency matrix, it means that $A(UxU^*) = UA(x)U^*$.

Automorphisms

We say that a unitary matrix $U \in M_n$ is an automorphism of a quantum graph $V \subset M_n$ if $UVU^* = V$.

Translated to the adjacency matrix, it means that $A(UxU^*) = UA(x)U^*$.

The degree matrix

Note that if U is an automorphism, then it commutes with the degree matrix D := A1.

Automorphisms

We say that a unitary matrix $U \in M_n$ is an automorphism of a quantum graph $V \subset M_n$ if $UVU^* = V$.

Translated to the adjacency matrix, it means that $A(UxU^{\ast})=UA(x)U^{\ast}.$

The degree matrix

Note that if U is an automorphism, then it commutes with the degree matrix D := A1. If the spectrum of D is simple then the automorphism group is auto-

matically abelian.

2 Outline

Quantum graphs

2 Random quantum graphs

2 Random models

The easiest thing to do is the following. We fix $0 \le d \le n^2 - 1$. Then we take d independent random Hermitian matrices X_1, \dots, X_d and consider $V_d := \operatorname{span}\{1, X_1, \dots, X_d\}$.

2 Random models

The easiest thing to do is the following. We fix $0 \le d \le n^2 - 1$. Then we take d independent random Hermitian matrices X_1, \dots, X_d and consider $V_d := \operatorname{span}\{1, X_1, \dots, X_d\}$.

GUE

The most natural choice is to take X_i from the GUE ensemble.

2 Random models

The easiest thing to do is the following. We fix $0 \le d \le n^2 - 1$. Then we take d independent random Hermitian matrices X_1, \dots, X_d and consider $V_d := \operatorname{span}\{1, X_1, \dots, X_d\}$.

GUE

The most natural choice is to take X_i from the GUE ensemble.

G(n, M)

The model above corresponds to the Erdős-Rényi random graph G(n, M) with a fixed number of edges. We can also build a version of the G(n, p), where we fix the number of vertices and the probability that a given pair of vertices is connected by an edge.

2 The results

Theorem (Chirvasitu-W.)

If $1 \leq d \leq n^2 - 2$ then the degree matrix D has almost surely simple spectrum.

2 The results

Theorem (Chirvasitu-W.)

If $1 \leq d \leq n^2 - 2$ then the degree matrix D has almost surely simple spectrum.

Corollary (Chirvasitu-W.)

If $1 \leq d \leq n^2 - 2$ then the automorphism group is almost surely abelian.

2 The results

Theorem (Chirvasitu-W.)

If $1 \leq d \leq n^2 - 2$ then the degree matrix D has almost surely simple spectrum.

Corollary (Chirvasitu-W.)

If $1 \leqslant d \leqslant n^2 - 2$ then the automorphism group is almost surely abelian.

Theorem (Chirvasitu-W.)

If $2 \leq d \leq n^2 - 3$ then the automorphism group is almost surely trivial.

What about quantum symmetries?

Thank you for your attention!

