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1 Origin story

Quantum graphs originated from quantum information theory in many
ways:

I (Duan-Severini-Winter) Quantum confusability graphs associated
to quantum channels;

I (Weaver, Kuperberg-Weaver) Symmetric, reflexive quantum rela-
tions, motivated by the study of quantum metric spaces;

I (Musto-Reutter-Verdon) Finite dimensional C∗-algebras equipped
with an analogue of an adjacency matrix, partially inspired by the
graph homomorphism game of Mančinska and Roberson.

Point of view for today: quantum graphs are interesting mathematical
objects in their own right.
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Point of view for today: quantum graphs are interesting mathematical
objects in their own right.

2 Random quantum graphs are asymmetric



1 Origin story

Quantum graphs originated from quantum information theory in many
ways:
I (Duan-Severini-Winter) Quantum confusability graphs associated

to quantum channels;
I (Weaver, Kuperberg-Weaver) Symmetric, reflexive quantum rela-

tions, motivated by the study of quantum metric spaces;
I (Musto-Reutter-Verdon) Finite dimensional C∗-algebras equipped

with an analogue of an adjacency matrix, partially inspired by the
graph homomorphism game of Mančinska and Roberson.
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1 The definitions

Definition
A quantum graph on Mn is:

I an operator subsystem V ⊂Mn, i.e. a subspace satisfying:
• V = V ∗;
• 1 ∈ V ;

I a completely positive map A : Mn →Mn such that:

• m(A⊗A)m∗ = A, where m : Mn⊗Mn →Mn is the multiplication;
• Tr((Ax)y) = Tr(x(Ay)), i.e. A is self-adjoint;
• m(A⊗ Id)m∗(1) = 1.

Are these definitions equivalent?
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1 The equivalences

Operator systems vs projections
Let p : Mn → V be the orthogonal projection wrt the trace. As
B(HSn) 'Mn ⊗Mop

n , we get a corresponding P ∈Mn ⊗Mop
n .

Choi-Jamio lkowski
If P ∈ Mn ⊗ Mop

n is a projection then AP : Mn → Mn given by
AP (x) := (Id⊗n Tr)(P (1⊗ x)) is cp and satisfies m(AP ⊗AP )m∗ =
AP .

If A : Mn → Mn is cp and such that m(A ⊗ A)m∗ = A then PA :=
(A⊗ Id)m∗(1), its Choi matrix, is a projection in Mn ⊗Mop

n .

(A⊗ Id)m∗(1) = 1
n

∑n
i,j=1 A(eij)⊗ eji
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1 Automorphisms of quantum graphs

Automorphisms
We say that a unitary matrix U ∈Mn is an automorphism of a quantum
graph V ⊂Mn if UV U∗ = V .

Translated to the adjacency matrix, it means that A(UxU∗) =
UA(x)U∗.

The degree matrix
Note that if U is an automorphism, then it commutes with the degree
matrix D := A1.

If the spectrum of D is simple then the automorphism group is auto-
matically abelian.
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2 Random models

The easiest thing to do is the following. We fix 0 6 d 6 n2 − 1.
Then we take d independent random Hermitian matrices X1,...,Xd and
consider Vd := span{1, X1, . . . , Xd}.

GUE
The most natural choice is to take Xi from the GUE ensemble.

G(n, M)
The model above corresponds to the Erdős-Rényi random graph
G(n, M) with a fixed number of edges. We can also build a version
of the G(n, p), where we fix the number of vertices and the probability
that a given pair of vertices is connected by an edge.
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2 The results

Theorem (Chirvasitu-W.)
If 1 6 d 6 n2 − 2 then the degree matrix D has almost surely simple
spectrum.

Corollary (Chirvasitu-W.)

If 1 6 d 6 n2−2 then the automorphism group is almost surely abelian.

Theorem (Chirvasitu-W.)

If 2 6 d 6 n2− 3 then the automorphism group is almost surely trivial.
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What about quantum symmetries?
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Thank you for your attention!
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