Enumeration and universality classes of colored triangulations
 (for quantum gravity)

Valentin Bonzom

with R. Gurau, V. Rivasseau, L. Lionni, S. Dartois, A. Tanasa

LIPN - Sorbonne Paris Nord
IRIF - Université de Paris
June 23-24, 2021 8ECM
Applied Combinatorial and Geometric Topology
(MS - ID 34)

First half

\triangleright Trees and combinatorial maps
\triangleright Universality classes
\triangleright Enumeration and scaling limit
\triangleright Model for questions in higher dimensions

Second half

\triangleright Some 3D models
\triangleright Enumeration for colored triangulations which maximize the number of $(d-2)$-simplices at fixed number of d-simplices
[VB + others mentioned in title slide]

Review material except last part

Combinatorial maps

$\underline{\text { Take polygons and glue into closed surface }}$

Properly embedded graphs
\triangleright No crossing \& up to deformation
\triangleright Graph complement is disjoint union of disks
\triangleright Each disk: a face

Maps

\triangleright Not a map

Planar map

\triangleright Vertices, edges and faces
\triangleright Other def: factorization of permutations \rightarrow Hurwitz numbers
\triangleright Euler's formula: Genus h is determined combinatorially

$$
\# \text { faces }-\# \text { edges }+\# \text { vertices }=2-2 h, \quad h \geq 0
$$

\triangleright For triangulations $V \leq 2+F / 2$ Linear bound on number of vertices
Equivalence in 2D

Sphere \Leftrightarrow Genus $0 \Leftrightarrow$ Maximize V at fixed F
Not true in higher dimensions!

Families of maps and trees

\triangleright General maps, triangulations, quadrangulations, bipartite maps, hypermaps
\triangleright Enumeration [Tutte 60s] $Q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} \sim_{n \rightarrow \infty} \frac{2}{\sqrt{\pi}} 12^{n} n^{-5 / 2}$
\triangleright Geometry: graph distance, dual graph distance, etc. How do distances scale with the size?

Trees

\triangleright Graphs without cycle
\triangleright Enumeration w.r.t. number (internal) nodes
\triangleright Also geometric objects: graph distance
\triangleright Also multiple families: plane trees, binary, etc.

\triangleright Do trees or maps from different families behave similarly? Not exactly but at large scales?

Universality

\triangleright Common asymptotic and geometric features?
\triangleright Macroscopic quantities independent of microscopic details of model
\triangleright Develop universal features at large scales
\triangleright We do not see the individual polygons anymore
\triangleright Collective behavior due to gluing
\triangleright For "reasonable" family \mathcal{T} of trees

$$
T_{n} \sim \underbrace{K_{\mathcal{T}}}_{\text {Constant }} \underbrace{\rho_{\mathcal{T}}^{-n}}_{\text {Exp growth }} n^{-3 / 2} \quad\left\{\begin{array}{l}
K_{\mathcal{T}} \& \rho_{\mathcal{T}} \text { non-universal } \\
\text { exponent }-3 / 2 \text { universal }
\end{array}\right.
$$

\triangleright For reasonable family of maps $\mathcal{M}, \quad M_{n} \sim K_{\mathcal{M}} \rho_{\mathcal{M}}^{-n} n^{-5 / 2}$

Universality in the continuum limit

\triangleright Size $n \rightarrow \infty$: asymptotics
\triangleright Edge length $a \rightarrow 0$, so that distances remain finite: scaling behavior

$$
a \sim n^{-1 / 2} \quad \text { for trees, } \quad a \sim n^{-1 / 4} \quad \text { for maps }
$$

Scaling limit of random trees

\triangleright Aldous' thm: convergence to the continuous random tree
\triangleright Distances scale like \sqrt{n}, Hausdorff $\operatorname{dim} d_{H}=2$
\triangleright Almost surely binary

Simulation by I. Kortchemski

Scaling limit of random planar maps

\triangleright Le Gall's \& Miermont's thm: convergence to the Brownian sphere
\triangleright Distances scale like $n^{\frac{1}{4}}$, Hausdorff $\operatorname{dim} d_{H}=4$
\triangleright Almost surely homeomorphic to 2-sphere

Simulation by I. Kortchemski - 3D rendering on Bettinelli's page

Some classes of random geometry

\triangleright Watabiki's prediction $d_{H}=2 \frac{\sqrt{25-c}+\sqrt{49-c}}{\sqrt{25-c}+\sqrt{1-c}}$

Species	Asymptotics	d_{H}	Scaling limit
Trees	$n^{-3 / 2}$	2	Continuous random tree [Aldous]
Planar	$n^{-5 / 2}$	4	Brownian sphere [Le Gall \& Miermont]
Planar + spanning tree	n^{-3}	$\frac{3+\sqrt{17} ?}{2} ?$??
Planar $+~ I s i n g ~$	$n^{-7 / 3}$	$\frac{7+\sqrt{97} ?}{4} ?$	Huge open problem
Meanders	$n^{-\frac{29+\sqrt{145}}{12} ?}$		Conjecture [Di Francesco-Golinelli-Guitter]
Feuilletages		$\left(2^{k}\right)_{k \geq 1}$	[Marckert-Lionni]

In higher dimensions

\triangleright Difficult to find a model both solvable and non-trivial!
\triangleright Topology and combinatorics of triangulations is more difficult
\triangleright Can we recover results from 3D gravity by summing triangulations?
\triangleright Universality required if this is viable approach to quantum gravity

Some difficulties

No topological classification using a single integer
Euler characteristic vanishes for all orientable 3-manifolds
Matrix integral approach generalize to tensor integrals, but no eigenvalues
\triangleright Setup to investigate universality
\triangleright Generalize triangulations, quadrangulations, etc. to higher dim. families
\triangleright Need to generalize polygons to building blocks
\triangleright Still maintaining combin. control enough to enumerate

3-spheres

"Gromov" question

\triangleright Is the number of 3d triangulations of the sphere exponentially bounded w.r.t. number of tetrahedra?
\triangleright Rivasseau's bound $n!^{1 / 3}$ using colored triangulations
\triangleright Chapuy-Perarnau's refinement $n!^{1 / 6} \quad$ Exact for 3-manifolds!
\triangleright Numerical simulations and sub-families...

Numerical simulations - Euclidean Dynamical Triangulations

\triangleright Monte-Carlo simulations found two phases
\triangleright A phase which maximizes the number of edges corresponding to trees
\triangleright A phase which minimizes the number of edges with few vertices (crumbled)

Sub-families of triangulations

Stack-spheres

\triangleright Built by $1 \rightarrow 4$ moves on tetrahedra at random
\triangleright Scaling limit is Aldous' CRT [Albenque-Marckert, Gurau-Ryan]

Locally constructible

\triangleright Take a tree of tetrahedra and only glue adjacent faces
\triangleright Locally constructible triangulations [Durhuus-Jonsson]
\triangleright LCT are exponentially bounded
\triangleright Benedetti \& Ziegler proved that not all spheres are LC

$$
\left\{\begin{array}{c}
\text { vertex } \\
\text { decomposable }
\end{array}\right\} \subsetneq\{\text { shellable }\} \subseteq\{\text { constructible }\} \subsetneq\{\mathrm{LC}\} \subsetneq\{3 \text {-spheres }\}
$$

\triangleright Monte-Carlo in progress [private comm. Budd-Lionni]

Combinatorial classification

\triangleright Euler's genus formula for $2 p$-angulations

$$
V(T)-(p-1) F(T)=2-2 g(T) \leq 2
$$

\triangleright Which set of triangulations to generalize? Colored triangulations

Gurau's theorem on colored triangulations

\triangleright Bound on number of $(d-2)$-simplices

$$
\Delta_{d-2}(T)-\frac{d(d-1)}{4} \Delta_{d}(T)=d-\omega(T) \leq d
$$

$\triangleright \omega(T)=2 g(T)$ for 2D colored triangulations
\triangleright Not a topological invariant in $d \geq 3$
\triangleright Genuine combinatorial extensions of genus!
\triangleright Gurau-Schaeffer classification w.r.t. $\omega(T)$
\triangleright Investigate universality classes?

Colored simplex

Induced colorings
\triangleright Faces colored $0,1, \ldots, d$

Colors identify all sub-simplices

Colored simplex

Induced colorings
\triangleright Faces colored $0,1, \ldots, d$
$\triangleright(d-2)$-simplices labeled by pairs of colors $\{a, b\}$

Colors identify all sub-simplices

Colored simplex

Induced colorings
\triangleright Faces colored $0,1, \ldots, d$
$\triangleright(d-2)$-simplices labeled by pairs of colors $\{a, b\}$
$\triangleright(d-3)$-simplices labeled by triples of colors $\{a, b, c\}$

Colors identify all sub-simplices

Colored simplex

Induced colorings
\triangleright Faces colored $0,1, \ldots, d$
$\triangleright(d-2)$-simplices labeled by pairs of colors $\{a, b\}$
$\triangleright(d-3)$-simplices labeled by triples of colors $\{a, b, c\}$
$\triangleright(d-k)$-simplices labeled by k-uple of colors
Colors identify all sub-simplices

Attaching map

Unique gluing which respects all subcolorings

Gluing determined by face color
\triangleright Graphical representation

Attaching map

Unique gluing which respects all subcolorings

Gluing determined by face color
\triangleright Graphical representation

(d -2)-simplices and bicolored cyles

$$
d=3
$$

(d -2)-simplices and bicolored cyles

$$
d=3
$$

Revisiting the 2D case

Bipartite $2 p$-angulations

Revisiting the 2D case

Bipartite $2 p$-angulations

Revisiting the 2D case

Bipartite $2 p$-angulations

Revisiting the 2D case

Bipartite $2 p$-angulations

$\triangleright 2 p$-gon is dual to a cycle with colors $\{1,2\}$
\triangleright Color 0 used to glue $2 p$-gons together

Generalizing polygons

Colored building blocks and dual bubbles

\triangleright Boundary made of $(d-1)$-simplices of color 0
\triangleright Cone over bdry triangulation $\rightarrow 1$ internal vertex, of colors $1, \ldots, d$
\triangleright Dual graph called bubble: connected, all colors except 0
\triangleright Edges of color 0 glue bubbles together
\triangleright Investigate universality!

Some theorems

\triangleright All PL-manifolds admit a colored triangulation
\triangleright See following talks by P. Cristofori and M. R. Casali spheres
Orientability iff colored graph is bipartite
\triangleright Topological studies ([L. Grasselli,P. Cristofori and M. R. Casali]) but little enumeration until 2010!

In combinatorics and math-ph

> Tensor integral to generate colored triangulation via Feynman rules (GFT context [Gurau])
> \triangleright Large N limit and combinatorial extension of the genus to higher d More large N limits in tensor models and connection to SYK model [Benedetti-Carrozza-Ferrari-Gurau-Harribey-Klebanov, etc.]

> Some universality classes [VB-Lionni-Thürigen]
> Beyond large N, e.g. higher genus \& topological recursion
> \triangleright GFT renormalization at all orders in perturbation theory

Enumeration of 3D colored triangulations

Thm [VB]

\triangleright Take any set of colored building blocks homeomorphic to 3-balls
\triangleright Which gluings maximize the number of edges?
\triangleright Topologically: 3-spheres
Combinatorially: bijection with trees

\triangleright What about the bound? Example: octahedra [VB-Lionni]

$$
\operatorname{Edges}(T) \leq 3+11 \mathrm{Oct}(T) \quad \text { vs Gurau's } \quad \operatorname{Edges}(T) \leq 3+12 \operatorname{Oct}(T)
$$

\triangleright Bound is not universal
\triangleright Triangulations which saturate the bond exhibit universality

Other dimensions

Surprise

\triangleright In even dim. universality class depends on building blocks
$\triangleright d=4$

Building block	Maximize \# triangles	
$2(2)$	Trees	
Mix	Trees of baby universes	

Summary

\triangleright Investigate universality classes of discretized PL-manifolds
\triangleright Combinatorial maps $=2 \mathrm{D}$ quantum gravity
\triangleright Colored triangulations are nice objects to investigate universality classes in higher dimensions
\triangleright Genuine combinatorial generalization of Euler's relation
\triangleright Maximize number of $(D-2)$-simplices
\triangleright No new universality classes (yet)
\triangleright Need different guiding principles, more focus on topology?
\triangleright Other families offering nice meeting ground for topology and combinatorics?
\triangleright Geometry of colored triangulations?

Dual colored 1-skeleton

Colored Duality

Triangulation	Graph
d-simplex	Vertex
$(d-1)$-simplex of color c	Edge of color c

Dual colored 1-skeleton

Colored Duality

Triangulation	Graph
d-simplex	Vertex
$(d-1)$-simplex of color c	Edge of color c
$(d-2)$-simplex with 2 colors	Bicol cycle

Dual colored 1-skeleton

Colored Duality

Triangulation	Graph
d-simplex	Vertex
$(d-1)$-simplex of color c	Edge of color c
$(d-2)$-simplex with 2 colors	Bicol cycle
$(d-3)$-simplex with 3 colors	Tricol c.c.

$(d-3)$-simplices and tricolored components

$d=3$
\triangleright Octahedron made of 8 colored tetrahedra
\triangleright All boundary faces have color 0
\triangleright All internal triangles have colors 1, 2, 3
\triangleright Single internal vertex of color $\{1,2,3\}$
\triangleright Dual: cube with colored edges 1, 2, 3

Colored Building blocks

Cones
\triangleright Boundary \Leftrightarrow Faces of color 0
\triangleright Topological cones over boundary
\triangleright Single interior vertex $v_{1 \cdots d}$

Colored Building blocks

Duals

\triangleright Dual to boundary $=$ Dual to CBB with 0 removed
\triangleright Graph with colors $1, \ldots, d$ called bubble
\triangleright Same as colored graphs but without 0

Colored Building blocks

Proposition in 3D

\triangleright Dual to boundary is a map: Canonical embedding of bubble
\triangleright Colored building block homeomorphic to 3-ball \Leftrightarrow Planar bubble
\triangleright We will be able to use properties of planar maps!

Example of graphs

In 3D graphs are 4-regular with colored edges

$\triangleright 4$ c.c. with colors $\{1,2,3\} \rightarrow 4$ vertices of colors $\{1,2,3\}$ in triangulation
$\triangleright C_{0 a}(G)$ number of bicolored cycles with colors $\{0, a\}$

$$
C_{0}(G)=\sum_{a=1}^{3} C_{0 a}(G) \quad \text { dual to }(d-2) \text {-simplices }
$$

Example of graphs

In 3D graphs are 4-regular with colored edges

$\triangleright 4$ c.c. with colors $\{1,2,3\} \rightarrow 4$ vertices of colors $\{1,2,3\}$ in triangulation
$\triangleright C_{0 a}(G)$ number of bicolored cycles with colors $\{0, a\}$

$$
C_{0}(G)=\sum_{a=1}^{3} C_{0 a}(G) \quad \text { dual to }(d-2) \text {-simplices }
$$

