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First half

. Trees and combinatorial maps

. Universality classes

. Enumeration and scaling limit

. Model for questions in higher dimensions

Second half

. Some 3D models

. Enumeration for colored triangulations which maximize the number
of (d − 2)-simplices at fixed number of d-simplices
[VB + others mentioned in title slide]

Review material except last part



Combinatorial maps

Take polygons and glue into closed surface

→

Properly embedded graphs

. No crossing & up to deformation

. Graph complement is disjoint union of
disks

. Each disk: a face



Maps

. Not a map Planar map

. Vertices, edges and faces

. Other def: factorization of permutations → Hurwitz numbers

. Euler’s formula: Genus h is determined combinatorially

#faces−#edges + #vertices = 2− 2h, h ≥ 0

. For triangulations V ≤ 2 + F/2 Linear bound on number of vertices

Equivalence in 2D

Sphere ⇔ Genus 0 ⇔ Maximize V at fixed F

Not true in higher dimensions!



Families of maps and trees
. General maps, triangulations, quadrangulations, bipartite maps,

hypermaps

. Enumeration [Tutte 60s] Qn = 2·3n
(n+2)(n+1)

(
2n
n

)
∼n→∞

2√
π

12nn−5/2

. Geometry: graph distance, dual graph distance, etc. How do
distances scale with the size? (very active topic last 20 years)

Trees

. Graphs without cycle

. Enumeration w.r.t. number
(internal) nodes

. Also geometric objects: graph
distance

. Also multiple families: plane trees,
binary, etc. Root

. Do trees or maps from different families behave similarly? Not
exactly but at large scales?



Universality
. Common asymptotic and geometric features?

. Macroscopic quantities independent of microscopic details of model

. Develop universal features at large scales

. We do not see the individual polygons anymore

. Collective behavior due to gluing

. For “reasonable” family T of trees

Tn ∼ KT︸︷︷︸
Constant

ρ−nT︸︷︷︸
Exp growth

n−3/2

{
KT &ρT non-universal

exponent −3/2 universal

. For reasonable family of maps M, Mn ∼ KM ρ−nM n−5/2

Universality in the continuum limit

. Size n→∞: asymptotics

. Edge length a→ 0, so that distances remain finite: scaling behavior

a ∼ n−1/2 for trees, a ∼ n−1/4 for maps



Scaling limit of random trees
. Aldous’ thm: convergence to the continuous random tree
. Distances scale like

√
n, Hausdorff dim dH = 2

. Almost surely binary

Simulation by I. Kortchemski



Scaling limit of random planar maps
. Le Gall’s & Miermont’s thm: convergence to the Brownian sphere
. Distances scale like n

1
4 , Hausdorff dim dH = 4

. Almost surely homeomorphic to 2-sphere

Simulation by I. Kortchemski – 3D rendering on Bettinelli’s page



Some classes of random geometry

. Watabiki’s prediction dH = 2
√
25−c+

√
49−c√

25−c+
√
1−c

Species Asymptotics dH Scaling limit

Trees n−3/2 2
Continuous random tree

[Aldous]

Planar n−5/2 4
Brownian sphere
[Le Gall & Miermont]

Planar
+ spanning tree

n−3 3+
√
17

2 ? ??

Planar
+ Ising

n−7/3 7+
√
97

4 ? Huge open problem

Meanders n−
29+

√
145

12 ?
Conjecture

[Di Francesco-Golinelli-Guitter]

Feuilletages (2k)k≥1 [Marckert-Lionni]



In higher dimensions

. Difficult to find a model both solvable and non-trivial!

. Topology and combinatorics of triangulations is more difficult

. Can we recover results from 3D gravity by summing triangulations?

. Universality required if this is viable approach to quantum gravity

Some difficulties

. No topological classification using a single integer

. Euler characteristic vanishes for all orientable 3-manifolds

. Matrix integral approach generalize to tensor integrals, but no
eigenvalues

. Setup to investigate universality

. Generalize triangulations, quadrangulations, etc. to higher dim.
families

. Need to generalize polygons to building blocks

. Still maintaining combin. control enough to enumerate



3-spheres

“Gromov” question

. Is the number of 3d triangulations of the sphere exponentially
bounded w.r.t. number of tetrahedra?

. Rivasseau’s bound n!1/3 using colored triangulations

. Chapuy-Perarnau’s refinement n!1/6 Exact for 3-manifolds!

. Numerical simulations and sub-families. . .

Numerical simulations – Euclidean Dynamical Triangulations

. Monte-Carlo simulations found two phases

. A phase which maximizes the number of edges corresponding to
trees

. A phase which minimizes the number of edges with few vertices
(crumbled)



Sub-families of triangulations

Stack-spheres

. Built by 1→ 4 moves on tetrahedra at random

. Scaling limit is Aldous’ CRT [Albenque-Marckert, Gurau-Ryan]

Locally constructible

. Take a tree of tetrahedra and only glue adjacent faces

. Locally constructible triangulations [Durhuus-Jonsson]

. LCT are exponentially bounded

. Benedetti & Ziegler proved that not all spheres are LC vertex

decomposable

 ( {shellable} ⊆ {constructible} ( {LC} ( {3-spheres}

. Monte-Carlo in progress [private comm. Budd-Lionni]



Combinatorial classi�cation

. Euler’s genus formula for 2p-angulations

V (T )− (p − 1)F (T ) = 2− 2g(T ) ≤ 2

. Which set of triangulations to generalize? Colored triangulations

Gurau’s theorem on colored triangulations

. Bound on number of (d − 2)-simplices

∆d−2(T )− d(d − 1)

4
∆d(T ) = d − ω(T ) ≤ d

. ω(T ) = 2g(T ) for 2D colored triangulations

. Not a topological invariant in d ≥ 3

. Genuine combinatorial extensions of genus!

. Gurau–Schaeffer classification w.r.t. ω(T )

. Investigate universality classes?
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Induced colorings

. Faces colored 0, 1, . . . , d

. (d − 2)-simplices labeled by pairs of colors {a, b}

. (d − 3)-simplices labeled by triples of colors {a, b, c}

. (d − k)-simplices labeled by k-uple of colors

Colors identify all sub-simplices
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Attaching map

Unique gluing which respects all subcolorings
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(d − 2)-simplices and bicolored cyles

d = 3



(d − 2)-simplices and bicolored cyles

d = 3



Revisiting the 2D case

Bipartite 2p-angulations
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. 2p-gon is dual to a cycle with colors {1, 2}

. Color 0 used to glue 2p-gons together
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Generalizing polygons

Colored building blocks and dual bubbles

. Boundary made of (d − 1)-simplices of color 0

. Cone over bdry triangulation → 1 internal vertex, of colors 1, . . . , d

. Dual graph called bubble: connected, all colors except 0

. Edges of color 0 glue bubbles together

. Investigate universality!
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Some theorems
. All PL-manifolds admit a colored triangulation
. See following talks by P. Cristofori and M. R. Casali
. Represent a manifold iff c.c. obtained by removing a color are all

spheres
. Orientability iff colored graph is bipartite
. Topological studies ([L. Grasselli,P. Cristofori and M. R. Casali]) but little

enumeration until 2010!

In combinatorics and math-ph

. Tensor integral to generate colored triangulation via Feynman rules
(GFT context [Gurau])

. Large N limit and combinatorial extension of the genus to higher d

. More large N limits in tensor models and connection to SYK model
[Benedetti-Carrozza-Ferrari-Gurau-Harribey-Klebanov, etc.]

. Some universality classes [VB-Lionni-Thürigen]

. Beyond large N, e.g. higher genus & topological recursion

. GFT renormalization at all orders in perturbation theory



Enumeration of 3D colored triangulations

Thm [VB]

. Take any set of colored building blocks homeomorphic to 3-balls

. Which gluings maximize the number of edges?

. Topologically: 3-spheres Combinatorially: bijection with trees

B

v1

π(v1)

v2

π(v2)

v3

π(v3)

v4

π(v4)

v5 π(v5)

v6 π(v6)

. What about the bound? Example: octahedra [VB-Lionni]

Edges(T ) ≤ 3 + 11Oct(T ) vs Gurau’s Edges(T ) ≤ 3 + 12Oct(T )

. Bound is not universal

. Triangulations which saturate the bond exhibit universality



Other dimensions

Surprise

. In even dim. universality class depends on building blocks

. d = 4

Building block Maximize # triangles

1

2

1

24 4 33

Trees

1
2

1

24 4

3

3

Planar maps
Reproduce all
2D behaviors

Mix Trees of baby universes



Summary

. Investigate universality classes of discretized PL-manifolds

. Combinatorial maps = 2D quantum gravity

. Colored triangulations are nice objects to investigate universality
classes in higher dimensions

. Genuine combinatorial generalization of Euler’s relation

. Maximize number of (D − 2)-simplices

. No new universality classes (yet)

. Need different guiding principles, more focus on topology?

. Other families offering nice meeting ground for topology and
combinatorics?

. Geometry of colored triangulations?



Dual colored 1-skeleton

Colored Duality
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(d − 3)-simplices and tricolored components

d = 3

. Octahedron made of 8 colored tetrahedra

. All boundary faces have color 0

. All internal triangles have colors 1, 2, 3

. Single internal vertex of color {1, 2, 3}

. Dual: cube with colored edges 1, 2, 3
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Colored Building blocks
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. Boundary ⇔ Faces of color 0

. Topological cones over boundary

. Single interior vertex v1···d
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Duals

. Dual to boundary = Dual to CBB with 0 removed

. Graph with colors 1, . . . , d called bubble

. Same as colored graphs but without 0



Colored Building blocks
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Proposition in 3D

. Dual to boundary is a map: Canonical embedding of bubble

. Colored building block homeomorphic to 3-ball ⇔ Planar bubble

. We will be able to use properties of planar maps!



Example of graphs

In 3D graphs are 4-regular with colored edges
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. 4 c.c. with colors {1, 2, 3} → 4 vertices of colors {1, 2, 3} in
triangulation

. C0a(G ) number of bicolored cycles with colors {0, a}

C0(G ) =
3∑

a=1

C0a(G ) dual to (d − 2)-simplices
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