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A Fundamental Question: For 
which n does there exist a 
geometric (nk) configuration?

Does there exist some Nk so that 
for all n ≥ Nk, there exists a 
geometric (nk) configuration?



n = 2: N2 = 3

n = 3: N3 = 9
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Cyclic configuration [0,1,3] for all n ≥ 9



n=4: N4 = 20 or 24
n ≤17 18 19 20 21 22 23 24 25 26 27…

# NONE 2 NONE ≥1 ≥1 ≥1 ? ≥1 ≥1 ≥1 ≥1

(Grünbaum 2000, 2002, 2006; 2009),  
Bokowski & Shewe 2013, Bokowski & Pilaud 2015, 2016)

N4 ≤ 210: combine two constructions  
24 ≤ N4 ≤ 209: ad hoc constructions

What can we say about N5? Nk for larger k? 

(Cuntz 2018)



Systematic constructions:  
“Grünbaum Incidence Calculus”



…

General idea
(184) x (204) (214) (224) ?? (244) (254) (264) (274) … (m4) …

(5775) (5785) … (6005)

(6015) (6025) … (6255)
(6255) (6265) … (6505)

(24m+15) (24m+25) … (24m+m5)

(1085) (1205) (1265) (1325) (1445) (1505) (1565) (1625) … (6m5) …

(4335) (4345) … (4505)

(6495) (6505) … (6755)

AFFINE REPLICATION

AFFINE SWITCH

Eventually, the bands begin to overlap!



Affine Replication
(mk-1) → ( (k+1)mk) with m parallel lines
Construct k-1 copies of a configuration C so that corresponding image 
points are collinear, and corresponding image lines are concurrent!
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common point of intersection lying on A. We denote this point by F`. By condition
(i) in (1), for di↵erent lines `, `0 2 C the points F`, F`0 di↵er from each other; they
also di↵er from each point of the configurations Ci (i = 1, 2, . . . , k � 1). We denote
the set {F` : ` 2 C} of points lying on A by F .

(4) Let P be any point of C. Since the a�nities ↵i are all orthogonal a�nities (with the
common axis A), the k-tuple of points P,↵1(P ), . . . ,↵k�1(P ) lies on a line perpen-
dicular to A (and avoids A, by condition (i)). We denote this line by `P . Clearly, we
have altogether m such lines, one for each point of C, with no two of them coinciding,
by condition (ii). We denote this set {`P : P 2 C} of lines by L.

(5) Put D = C0 [ C1 [ · · · [ Ck�1 [ F [ L.

Figure 2. A�ne replication AR(4, 3) applied to a quadrilateral, i.e. a (42)
configuration; it results in a (163) configuration. The corresponding ordinary
quadrangles are shaded (the starting, hence each of the three quadrangles are
parallelograms). The axis A is shown by a dashed line.

The conditions of the construction imply that D is a ((k + 1)mk) configuration. Moreover,
by construction, D has a pencil of m parallel lines. Figures 2 and 3 show two examples of
a�ne replication, first starting with a (42) configuration to produce a (163) configuration,
and then starting with the (93) Pappus configuration to produce a (454) configuration.

Remark 1. The orthogonal a�nities used in the construction are just a particular case of the
axial a�nities called strains [4]; they can be replaced by other types of axial a�nities, namely,
by oblique a�nities (each with the same (oblique) direction), and even, by shears (where the
direction of a�nity is parallel with the axis) [4], while suitably adjusting conditions (i–iii) in
(1).

We may summarize the above discussion as follows:

Lemma 5. If a�ne replication AR(m, k) is applied to any (mk�1) configuration, the result
is a (((k + 1)m)k) configuration with a pencil of m parallel lines.



Affine Replication
(mk-1) → ( (k+1)mk) with m parallel lines

Main Tool: Use k-1 axial affinities with the same axis and parallel vectors

(42) → (163)

4 parallel lines
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Affine Replication
(mk-1) → ( (k+1)mk) with m parallel lines

Pappus configuration (93) → (454) with 9 parallel lines



Affine Switch
Construct a “band” ((k-1)m+1)k, …,  ((k-1)m+p)k of consecutive k-
configurations from an initial (mk) configuration with parallel lines

GEOMETRIC (nk) CONFIGURATIONS EXIST FOR ALMOST ALL n 9

Example 1. Figure 5 illustrates an application of this construction to the Pappus configu-
ration P (cf. Figure 1). Removing only one line from the horizontal pencil results in a (193)
configuration, shown in Figure 5(a). Removing two or three lines results in a (203) or (213)
configuration, respectively, shown in Figures 5(b) and 5(c). (Observe that since the Pappus
configuration has 9 points, the maximal total number of lines in independent pencils is 3,
since any three disjoint lines in the configuration contain all the points of the configuration.)
Taken together the three configurations, we have: [(193), (203), (213)] = AS+(9, 3, 3).

(a) A (193) configuration (b) A (203) configuration (c) A (213) configuration

Figure 5. Configurations (193), (203), and (213), constructed from applying
the a�ne switch construction to the realization of the Pappus configuration
with a pencil of 3 parallel lines, shown in Figure 1, by deleting one, two, or
three lines respectively. (The vertical axis of a�nity, denoted by dashed line,
does not belong to the configuration.)

Since axial a�nities play a crucial role in the constructions described above, we recall a basic
property. The proof of the following proposition is constructive, hence it provides a simple
tool for a basically synthetic approach to these constructions, which is especially useful when
using dynamic geometry software to construct these configurations.

Proposition 10. An axial a�nity ↵ is determined by its axis and the pair of points (P, P 0),
where P is any point not lying on the axis, and P 0 denotes the image of P , i.e. P 0 = ↵(P ).

Proof. In what follows, for any point X, we denote its image ↵(X) by X 0. Let Q be an
arbitrary point not lying on the axis and di↵erent from P . Take the line PQ, and assume
that it intersects the axis in a point F (see Figure 6a). Thus PQ = FP . Take now the line
F 0P 0, i.e., the image of FP . Since F is a fixed point, i.e. F 0 = F , we have F 0P 0 = FP 0. This
means that Q0 lies on FP 0, i.e. P 0Q0 = FP 0. To find Q0 on FP 0, we use the basic property
of axial a�nities that for all points X not lying on the axis, the lines XX 0 are parallel with
each other (we recall that the direction of these lines is called the direction of the a�nity).



Affine Switch

((21 ⋅ 3 − 3 + 4)4) = ((21 ⋅ 3 + 1)4)

((21 ⋅ 3 + 2)4)

(214)

M1 = 

h1 − j1
h1

0

0
h1 + j1

h1

M2 = 

h2 − j2
h2

0

0
h2 + j2

h2



Affine Switch
• Using k-1 affine transformations of the form 

   

corresponding image points are collinear, 
and when (deleted) configuration lines are 
parallel to the x-axis, the corresponding 
lines intersect at a single point on the y-
axis!


• Given (mk) with p configuration-disjoint lines 
parallel to x-axis, can simultaneously 
construct  
((k-1)m+1)k, …,  ((k-1)m+p)k

Mh,j =
h − j

h
0

0 h + j
h

GEOMETRIC (nk) CONFIGURATIONS EXIST FOR ALMOST ALL n 9

Example 1. Figure 5 illustrates an application of this construction to the Pappus configu-
ration P (cf. Figure 1). Removing only one line from the horizontal pencil results in a (193)
configuration, shown in Figure 5(a). Removing two or three lines results in a (203) or (213)
configuration, respectively, shown in Figures 5(b) and 5(c). (Observe that since the Pappus
configuration has 9 points, the maximal total number of lines in independent pencils is 3,
since any three disjoint lines in the configuration contain all the points of the configuration.)
Taken together the three configurations, we have: [(193), (203), (213)] = AS+(9, 3, 3).

(a) A (193) configuration (b) A (203) configuration (c) A (213) configuration

Figure 5. Configurations (193), (203), and (213), constructed from applying
the a�ne switch construction to the realization of the Pappus configuration
with a pencil of 3 parallel lines, shown in Figure 1, by deleting one, two, or
three lines respectively. (The vertical axis of a�nity, denoted by dashed line,
does not belong to the configuration.)

Since axial a�nities play a crucial role in the constructions described above, we recall a basic
property. The proof of the following proposition is constructive, hence it provides a simple
tool for a basically synthetic approach to these constructions, which is especially useful when
using dynamic geometry software to construct these configurations.

Proposition 10. An axial a�nity ↵ is determined by its axis and the pair of points (P, P 0),
where P is any point not lying on the axis, and P 0 denotes the image of P , i.e. P 0 = ↵(P ).

Proof. In what follows, for any point X, we denote its image ↵(X) by X 0. Let Q be an
arbitrary point not lying on the axis and di↵erent from P . Take the line PQ, and assume
that it intersects the axis in a point F (see Figure 6a). Thus PQ = FP . Take now the line
F 0P 0, i.e., the image of FP . Since F is a fixed point, i.e. F 0 = F , we have F 0P 0 = FP 0. This
means that Q0 lies on FP 0, i.e. P 0Q0 = FP 0. To find Q0 on FP 0, we use the basic property
of axial a�nities that for all points X not lying on the axis, the lines XX 0 are parallel with
each other (we recall that the direction of these lines is called the direction of the a�nity).



Constructing consecutive configurations 
Consecutive configurations (ak), ((a+1)k), …, (bk): abbreviate [a:b]k

(Xk-1)
((k+1)Xk) 
with X 
parallel lines

Affine Replication [ ((k-1)(k+1)X+1 : ((k-1)(k+1)X+X)]kAffine switch

[ ((k-1)(k+1)X : ((k-1)(k+1)X+X)]k

((X+1)k-1)
((k+1)(X+1)k) 
with X+1 
parallel lines

[ ((k-1)(k+1)(X+1) : ((k-1)(k+1)(X+1)+X+1)]kAffine Replication Affine switch

Consecutive when X ≥ k2 - 2 



Easy induction…

Theorem (B., Gévay, Pisanski 2021):  
For any k ≥ 2, the number Nk exists. 


Proof: 
Base case: N2 = 3. 
Induction Hypothesis: Nk-1 exists. 
Inductive step: Nk ≤ (k2 - 1) max(Nk-1, k2 - 2).



Bounds

 is the current record;   NR
k N̄k = (k2 − 1) max(NR

k−1, k2 − 2)



Can we do better?
a, a + d, a + 2d, …, X, …t-configurations

(t + 2)a, (t + 2)(a + d), (t + 2)(a + 2d), …(t+1) configurations

Affine Replication

Affine Replication

…

k-configurations
(k + 1)!
(t + 1)!

a,
(k + 1)!
(t + 1)!

(a + d),
(k + 1)!
(t + 1)!

(a + 2d), …

Starting t-configuration X produces k-configuration with  parallel lines 
k!

(t + 1)!
X

(t + 3)(t + 2)a, (t + 3)(t + 2)(a + d), (t + 3)(t + 2)(a + 2d), …(t+2)-configurations

Affine Replication



Can we do better?
a, a + d, a + 2d, …, X, …t-configurations

…

Affine Switch

[(k − 1)
(k + 1)!
(t + 1)!

X : (k − 1)
(k + 1)!
(t + 1)!

X +
k!

(t + 1)!
X],

[(k − 1)
(k + 1)!
(t + 1)!

(X + d) : (k − 1)
(k + 1)!
(t + 1)!

(X + d) +
k!

(t + 1)!
(X + d)]…

Overlap when X ≥ (k2 − 1)d −
(t + 1)!

k!

k-configurations
(k + 1)!
(t + 1)!

a,
(k + 1)!
(t + 1)!

(a + d),
(k + 1)!
(t + 1)!

(a + 2d), …



New Bounds

Recursively define   

with 

N̂k = (k2 − 1) min
3≤t≤k−1 { k!

(t + 1)!
max {N̂t, k2 − 1}}

N̂3 = 9, N̂4 = 24

N̂5 = (52 − 1) min
3≤t≤4 { 5!

(t + 1)!
max {N̂t,52 − 1}} = 24 min { 5!

4!
max{9,24},

5!
5!

max{24,24}} =

N̂6 = (62 − 1) min
3≤t≤5 { 6!

(t + 1)!
max {N̂t,62 − 1}} = 35 min { 6!

4!
max{9,35},

6!
5!

max{24,35},
6!
6!

max{576,35}} = 35(35 ⋅ 6) =

N̂10 = 99 min { 10!
4!

max{9,99},
10!
5!

max{24,99},
10!
6!

max{576,99},
10!
7!

max{7350,99}, …,
10!
10!

max{N̂9,99}} =
10!
6!

⋅ 576 ⋅ 99 = 287400960

…

576

7350

Old bounds: N5 ≤ 576, N6 ≤ 20160

t=3 t=4 t=5

t=3 t=4

t=3 t=4 t=5



New bounds
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Table 2. Bounds on Nk produced from Theorem 13. The values for NR
k

given in this table agree with the record values listed in Table 1 for all k  5
(boldface), and are strictly better for k � 6.

k N̂k = NR
k formula initial sequence

4 24 - -
5 576 (52 � 1)2 t = 4
6 7 350 6(62 � 1)2 t = 4
7 96 768 7 · 6 · (72 � 1)2 t = 4
8 1 333 584 8!

5!(8
2 � 1)2 t = 4

9 19 353 600 9!
5!(9

2 � 1)2 t = 4
10 287 400 960 10!

6! · 576 · (102 � 1) t = 5

11 3 832 012 800 11!
6! · 576 · (11

2 � 1) t = 5
...
24 ⇡ 2.85⇥ 1026 24!

6! · 576 · (24
2 � 1) t = 5

25 ⇡ 8.39⇥ 1027 25!
6! · (25

2 � 1)2 t = 5
26 ⇡ 8.02⇥ 1030 26!

6! · (26
2 � 1)2 t = 5

...
32 ⇡ 3.82⇥ 1038 32!

6! · (32
2 � 1)2 t = 5

33 ⇡ 1.38⇥ 1040 33!
7! · 7350 · (332 � 1) t = 6

...
85 ⇡ 2.97⇥ 10132 85!

7! · 7350 · (852 � 1) t = 6
86 ⇡ 2.63⇥ 10134 86!

7! · (86
2 � 1)2 t = 6

...
109 ⇡ 4.04⇥ 10180 109!

7! (109
2 � 1)2 t = 6

110 ⇡ 4.61⇥ 10182 110!
8! · 7!

5! · (7
2 � 1)2 · (1102 � 1) t = 7

N̂10 = (k2 � 1) min
3t9

{N(k, t, N̂t, 1)}

= 99min

⇢
10!

4!
max{N̂3 = 9, 99}, 10!

5!
max{N̂4 = 24, 99}, 10!

6!
max{N̂5 = 576, 99},

10!

7!
max{N̂6 = 7350, 99}, . . . , 10!

10!
max{N̂9, 99}

�

= 99min

⇢
10!

4!
99,

10!

5!
99,

10!

6!
576,

10!

7!
N̂6, . . . , N̂9

�

Since 6 · 99 > 576 (and the values N̂t for 6  t  9 much larger than either), the minimum
of that list is actually 10!

6! 576, and the computation for N̂10 starts with the sequence of
consecutive 5-configurations (5765), (5775), . . . rather than with (244), (254), . . .. Sequences
with t = 5 begin to dominate when 6(k2 � 1) > 576 = (52 � 1)2; that is, when k � d

p
97e =

10. Sequences with t = 6 begin to dominate when 7(k2 � 1) > 6(62 � 1)2 = 7350, or
k �

⌃p
1051

⌥
= 33. Sequences with t = 7 will dominate when 8(k2 � 1) > 7 · 6 · (72 � 1)2,



How can we do better?
k = 4: does there exist a (234) configuration?

k = 5: Ad hoc constructions and additional 
Grünbaum Calculus constructions! 

(485): smallest known 5-configuration



More Grünbaum Calculus 
operations



Parallel Switch
Flexible! There exists a 
line whose points can be 
positioned as we like!

(mk) → (kmk)



Deleted Unions
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points `i respectively. Let C2 be a configuration with n2 points and lines with the property
that some line N of C2 contains points v1, . . . , vk that satisfy

cr(v1, v2; v3, vj) = cr(`1, `2; `3, `j) (1)

for j = 4, . . . , k.

To construct the configuration DU(C1, C2), which has n1 + n2 � 1 points and lines, delete
the point p from C1, delete the line N from C2, and position C2 so that the points vi are
identified with the points `i. To do such placement precisely, note that because of the cross
ratio constraint (1), any projective transformation ⇡ that maps the line N of C2 to the line `
crossing C1 in such a way that points v1, v2, v3 are sent to `1, `2, `3 will send all the points vi
to all the points `i, since projective transformations preserves cross ratios of collinear points.
(See below for one way to explicitly construct such a transformation.)

Each point vi has k � 1 lines from C2 (the line N was deleted) and the single line Li from
C1 passing through it. Each line Li has k � 1 points from C1 and the single point vi from
C2. All other point- and line-incidences are retained from the original configurations, so the
result is an ((n1 + n2 � 1)k) configuration.

An obvious question is where to find configurations C2 with the property that one line has
points that can be placed as needed for the correct cross ratio. An extremely fruitful source
for configurations C2 is flexible configurations. Figure 1 shows a very simple version of the
construction, DU(103, 93), a (183) configuration, combining the cyclic (103) configuration
with the Pappus configuration, which has a line that is flexible.

L3

L2

L1

Show Objects

v1

v2

v3

p

Figure 1. An (183) configuration DU(103, 93), combining the cyclic (103)
configuration with the Pappus configuration. The white point p and the dashed
green line are not elements of the configuration.

A second obvious source is to use a configuration C1 and its geometric polar C 0
1 = ⇤A(C1),

where A is any conic (often, when C1 is a configuration with rotational symmetry, we take
A to be a circle concentric with the center of symmetry). In this case, we abbreviate the
construction as DU(C) or DU(1), and we extend it iteratively as DU(t) or DU(C, t). The
underlying idea of this version of the construction is straightforward, but it is worth being
clear about the specifics of implementation.

(103) + (93) → ((10+9 - 1)3)
Especially nice with flexible configurations!



Deleted Unions

Especially nice with flexible configurations — combine with parallel switch!

(485) → (48+ 240 - 15) = (2875)



Deleted Unions

(93) → (173); in general (nk) → (2n-1k)

• Construct (nk) configuration C and a 
conic


• Choose point P to delete


• Intersect a line  through the lines L1, 
…, Lk through P to form 


• Construct polar C* with images v1, …, 
vk of L1, …, Lk


• Find a collineation to map the image 
points v1,v2,v3 to  and apply 
the collineation to C*; projective 
geometry says vi 


• Delete the polar and the point P, line 

ℓ
ℓ1, …, ℓk

ℓ1, ℓ2, ℓ3

↦ ℓi

ℓ



Deleted Unions
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Figure 4. The DU(3) construction applied to a (93) configuration produces
a (333) configuration. Open points have been deleted from the original config-
uration (shown in black in the middle), and the dashed lines are the lines `1,
`2, `3 which are not lines of the final configuration. This figure illustrates that
the construction can be applied independently multiple times, even to points
that are collinear in the original construction.

2.3. The Distributed Deletion and Union (DDU) construction. The distributed dele-
tion and union construction modifies the deleted union construction described in the previous
subsection, and we present here a version which can be applied in the particular case of 5-
configurations. However, it can be varied and extended in several di↵erent ways, so as to be
applicable to other types of configurations as well. In our case, the construction starts from
two (not necessarily distinct) configurations, (m5) and (n5), and produces a ((2m+2n�2)5)
configuration; it consists of the following steps.

(93) → (333); in general (nk) → (((t+1)n - t)k)

DU(3)



Deleted Unions

DU((485), 1) = (955)



Distributed Deleted Unions

M

(b1)
(b2)

(b3)

(a1)
(a2)

(a3)(a1)
(a2)

(a3)

(b1)
(b2)

(b3)

(a1)
(a2)

(a3)

(m5) + (n5) → (2m +2n - 25)

Lots of projective geometry…



Systematic constructions



Systematic 5-configurations

(8m5):  A-series A(m; 3,3; 1,2,4)

BOUNDS ON (n5) AND (n6) CONFIGURATIONS 11

has other extra incidences that cause it to not be a 5-configuration. However, the (965)
configuration A(12; 5, 5; 1, 4, 6) does exist and has p = q = 4.

(a) An example of a 5-configuration constructed as
part of the A-series, A(10; 3, 3; 1, 2, 4)

v;

L;v1

L1

ab

v2

L2v12

L12

ba

v3

L3

L13

v13

L23

v23L123

v123

ba ab

d1

d1 d1

d1

d2

d2

d2

d2
d3

d3

d3

d3 Zm

(b) The general reduced Levi graph for
A(m; a, b; d1, d2, d3). Colors of symmetry classes
match those in the configuration in (a).

Figure 7. The (8m5) A-series configurations, and their reduced Levi graphs

3.2. 5-configurations that are h-astral in E+. A celestial 4-configuration with symbol
m#(s1, t1; . . . ; sh, th) is a polycyclic (actually, polydihedral) (mh4) configuration with h sym-
metry classes of points and lines and a reduced Levi graph shown in Figure ??. It has been
described in a number of references; see, e.g., [8, Section ??] (under the name h-astral,
although h-astral typically refers to any polycyclic configuration with h symmetry classes)
and [?]). Following [3], we say that a diameter of a celestial configuration passes through
the center of the configuration and one point of the symmetry class v0, and a mid-diameter
is the rotation of a diameter by ⇡

m . If m is even, then diameters connect points (v0)i and
(v0)i+m

2
, and mid-diameters may or may not pass through configuration points depending on

parity considerations of the celestial configuration symbol, while if m is odd, mid-diameters
and diameters coincide.

In [8, p. 235], Grünbaum describes two configurations which are h-astral in the extended
Euclidean plane, formed by adding diameters to certain celestial 4-configurations to form
pencils of 5 parallel lines, and then adding certain points at infinity at the intersections of
the pencils in such a way that each point of the configuration lies on 5 lines, and each line
passes through 5 points. He provides two examples of this construction: one produces a (605)
configuration (which is actually astral—that is, it has bk+1

2 c symmetry classes of points and
lines, where k = 5—in E+) by adding diameters and points at infinity to (2)12#(4, 1; 4, 5),
and one which produces a (505) configuration with 5 symmetry classes in E+, by adding
diameters and points at infinity to the celestial configuration 10#(1, 2; 3, 4; 2, 1; 4, 3).
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has other extra incidences that cause it to not be a 5-configuration. However, the (965)
configuration A(12; 5, 5; 1, 4, 6) does exist and has p = q = 4.

(a) An example of a 5-configuration constructed as
part of the A-series, A(10; 3, 3; 1, 2, 4)

v;

L;v1

L1

ab

v2

L2v12

L12

ba

v3

L3

L13

v13

L23

v23L123

v123

ba ab

d1

d1 d1

d1

d2

d2

d2

d2
d3

d3

d3

d3 Zm

(b) The general reduced Levi graph for
A(m; a, b; d1, d2, d3). Colors of symmetry classes
match those in the configuration in (a).

Figure 7. The (8m5) A-series configurations, and their reduced Levi graphs

3.2. 5-configurations that are h-astral in E+. A celestial 4-configuration with symbol
m#(s1, t1; . . . ; sh, th) is a polycyclic (actually, polydihedral) (mh4) configuration with h sym-
metry classes of points and lines and a reduced Levi graph shown in Figure ??. It has been
described in a number of references; see, e.g., [8, Section ??] (under the name h-astral,
although h-astral typically refers to any polycyclic configuration with h symmetry classes)
and [?]). Following [3], we say that a diameter of a celestial configuration passes through
the center of the configuration and one point of the symmetry class v0, and a mid-diameter
is the rotation of a diameter by ⇡

m . If m is even, then diameters connect points (v0)i and
(v0)i+m

2
, and mid-diameters may or may not pass through configuration points depending on

parity considerations of the celestial configuration symbol, while if m is odd, mid-diameters
and diameters coincide.

In [8, p. 235], Grünbaum describes two configurations which are h-astral in the extended
Euclidean plane, formed by adding diameters to certain celestial 4-configurations to form
pencils of 5 parallel lines, and then adding certain points at infinity at the intersections of
the pencils in such a way that each point of the configuration lies on 5 lines, and each line
passes through 5 points. He provides two examples of this construction: one produces a (605)
configuration (which is actually astral—that is, it has bk+1

2 c symmetry classes of points and
lines, where k = 5—in E+) by adding diameters and points at infinity to (2)12#(4, 1; 4, 5),
and one which produces a (505) configuration with 5 symmetry classes in E+, by adding
diameters and points at infinity to the celestial configuration 10#(1, 2; 3, 4; 2, 1; 4, 3).

A(m; a, b; d1, d2, d3)



Systematic 5-configurations

Diameters + ∞ to 4-celestial 4-configurations

(10q5) for m ≥ 5

Celestial 
2q#(2,1;4,3; 1,2;3,4)



Systematic 5-configurations

Diameters + ∞  to 5-celestial 4-configurations
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∞

Figure 10. “5-celestial diameters + 1”

3.3. Nesting celestial 4-configurations to produce 5-configurations. In [4], new 5-
configurations (in particular, the first known class of movable 5-configurations) were de-
veloped by “nesting” certain celestial 4-configurations and connecting them via repeated
applications of the Crossing Spans Lemma (see, e.g., [2]) and Configuration Construction
Lemma. In particular, given any h-celestial cohort m#§;T where S = {s1, . . . , sh} and
T = {t1, . . . , th}, if S \ T = ?, then the construction in [4] produces a (mh2

5) configura-
tion.

While a general understanding of parameters that correspond to celestial configurations for
large values of h does not exist, there are known results for h = 2, 3, 4 (see [?, 8, ?] among
others) that are particularly relevant for the construction of small (n5) configurations.

Proposition 4. The following cohorts of systematic celestial configurations produce infinite
classes of 5-configurations with useful smallest elements:

(1) The systematic 2-celestial cohort 6q#{3q � 1, 1}; {2q, 3q � 2} produces a (24q5) con-
figuration with symbol [2q#{3q � 1, 1}; {2q, 3q � 2}] ⇤ 2 for all q � 2; the case where

(12q+65), q≥5

Celestial (2q+1)#(5,1;2,3;4,5;1,2;3,4)



Systematic 5-configurations

“Nesting” celestial 4-configurations
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This construction generalizes in a straightforward way.

Lemma 6. Given a celestial configuration cohort m#S;T with the property that S \ T = ?
and if h is even, T is partitioned into two subsets each of size h/2 where all the entries
are the same, while if h is odd, all elements of T are equal, the construction [m#S;T ] ⇤ 20

produces a (2mh5) configuration.

Note that small celestial cohorts that satisfy the requirements of Lemma 6 are somewhat
rare. However, the infinite cohort 3q#{1, 2, . . . , 2k�1

}; {q, q, . . . , q} for q = 2k+1
3 ,k odd, and

k > 2 described in [4, Theorem 5.3] produces infinitely many cohorts of this type, including
33#{1, 2, 4, 8, 16}, {11, 11, 11, 11, 11} which constructs a (3305) configuration, but the size of
the corresponding configurations grows quickly.

v11

L1
1v12

L1
2

v13 L1
3

v21

L2
1

v22 L2
2

v23

L2
3

s1

t

s2

t

s3

t+ �
�

s2

t

s3

t

s1

t+ �

�

d

d+ �

d+ �

(a) The reduced Levi graph for
[m#{s1, s2, s3}; {t, t, t}] ⇤ 2.

(b) The (545) configuration [9#{4, 2, 1}; {3, 3, 3}]⇤2.

Figure 11. A new class of 5-configuration, denoted [m#{s1, s2, s3}; {t, t, t}]⇤
2, is constructed similarly to the construction in and produces (18m5) config-
urations in the rare cases when there exists a celestial 4-configuration of the
cohort form m#{s1, s2, s3}; {t, t, t}. The smallest example, a (545) configura-
tion shown to the right, is [9#{4, 2, 1}; {3, 3, 3}] ⇤ 2.

Systematic 5-configurations

• Two Useful Families:


• (18q5), q≥ 5; smallest is (815)


• (27q5), q≥ 3; smallest is (905)


• Two ad-hoc constructions 
produce (485), (545)

“Nesting” celestial 4-configurations



New bounds!

• Systematic and ad hoc 5-configurations


• Affine Replication of 4-configurations


• Then apply: Parallel Switch, DU(t), DDU, Affine Switch, Parallel Switch, 
DU(t)…


• Then look for pairs to apply DU(C, D) where D is flexible (from Parallel 
Switch)



New bounds!

Theorem: N5 ≤ 307.

10 20 30 40
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200

300

400

500

(485)

(3075)



What about N6?
N̂6 = 35 min { 6!

4!
max{9,35},

6!
5!

max{24,35},
6!
6!

max{308,35}} = 35(35 ⋅ 6) = 7350

210 308

No immediate reduction in bounds…

• Smallest is (966)


• Multicelestial (10m6), m≥11


• A(m; 3,3; 1,2,4,5): (16m6), m≥7

• DU(t), DU(C,D)


• Parallel Switch (flexible!)


• Affine Replication, Switch…



What about N6?
12 Leah Wrenn Berman

Fig. 5: A 6-configuration, with m = 11, t0 = 3, t1 = 2, t2 = 1 and s0 = 4, s1 = 5, with
10 symmetry classes of points and 10 symmetry classes of lines. The 0th element of
each symmetry class is shown larger.

Step 2. Construct three sets of vertices, indexed (v /0
0)i, (v /0

1)i, (v /0
2)i, where v

/0
j

is the317

t j-th intersection of the lines L
/0
/0: that is,318

(v /0
j
)i = (L /0

/0)i ^ (L /0
/0)i�t j

.

These correspond to the dark blue, medium blue, and cyan points, respec-319

tively, in the previous examples and in Fig. 5; the upper subscript /0 refers to320

the fact that the new points lie on the lines L
/0
/0. In this step, we constructed321

three classes of vertices, corresponding to the way to choose a subset of S of322

size 0 for the upper index and a subset of T of size 1 for the lower index. (In323

Multicelestial (1106) A-series (1446) 
[(1126), (1286) not intelligible]
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d
0
j

to indicate that the intersection of L /0 with C j that is farther from the origin is536

chosen, or not, to indicate that the nearer intersection is chosen. In particular, the537

configuration shown in Fig. 2b may be denoted as A (5;2,2;1,3).538

If the same construction technique is used to construct A (12;4,4;1,3,5) then539

the resulting configuration — which should be a 5-configuration — has extra in-540

cidences, because of the fact that the configuration A (12;4,4;1) actually pro-541

duces the astral 4-configuration 12#(4,1;4,5), rather than a 3-configuration, which542

would be expected from the general construction technique. The configuration543

A (12;4,4;1,3,5) results in a (966) configuration, shown in Fig. 12, and this is544

the smallest known 6-configuration.545

Fig. 12: The smallest known 6-configuration, a (966) configuration formed by ap-
plying the chiral configuration method to construct A (12;4,4;1,30,5). In this fig-
ure, the vertices and lines v j and L j are blue, the vertices and lines v jk and L jk are
green, and the vertices and lines v123 and L123 are red.Ad hoc (966)



What about N6?

Theorem: N6 ≤ 1208

1208

(966)

(Previous bound was 7350)



Further directions…?



Thank you!
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chosen, or not, to indicate that the nearer intersection is chosen. In particular, the537

configuration shown in Fig. 2b may be denoted as A (5;2,2;1,3).538

If the same construction technique is used to construct A (12;4,4;1,3,5) then539

the resulting configuration — which should be a 5-configuration — has extra in-540

cidences, because of the fact that the configuration A (12;4,4;1) actually pro-541

duces the astral 4-configuration 12#(4,1;4,5), rather than a 3-configuration, which542

would be expected from the general construction technique. The configuration543

A (12;4,4;1,3,5) results in a (966) configuration, shown in Fig. 12, and this is544

the smallest known 6-configuration.545

Fig. 12: The smallest known 6-configuration, a (966) configuration formed by ap-
plying the chiral configuration method to construct A (12;4,4;1,30,5). In this fig-
ure, the vertices and lines v j and L j are blue, the vertices and lines v jk and L jk are
green, and the vertices and lines v123 and L123 are red.


