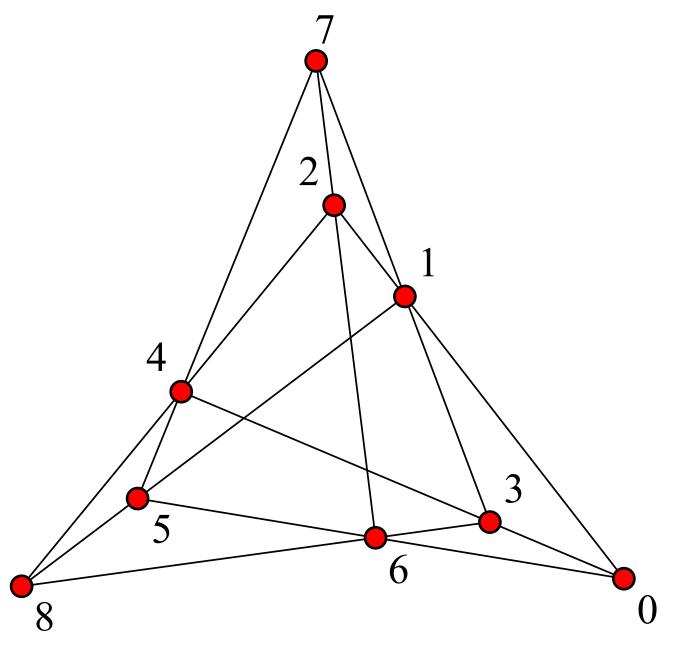
Connected (n_k) configurations exist for almost all n

Leah Wrenn Berman Joint work with Gábor Gévay and Tomaž Pisanski

June 23, 2021 • ECM 8

Minisymposium on Configurations

(geometric) k-configuration, (n_k) configuration



3-configuration

(9₃) configuration

n points n straight lines k lines/point k points/line

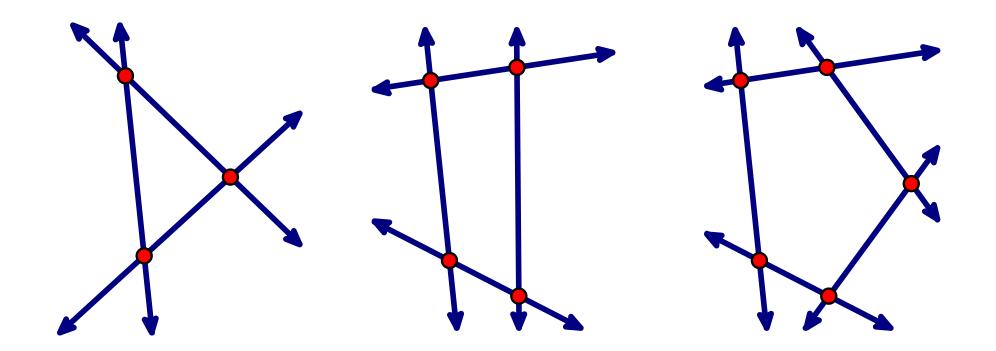
A	В	С	D	E	F	G	Н	
0	0	0	1	1	2	2	3	4
1	3	5	3	5	4	6	6	5
2	4	6	7	8	8	7	8	7

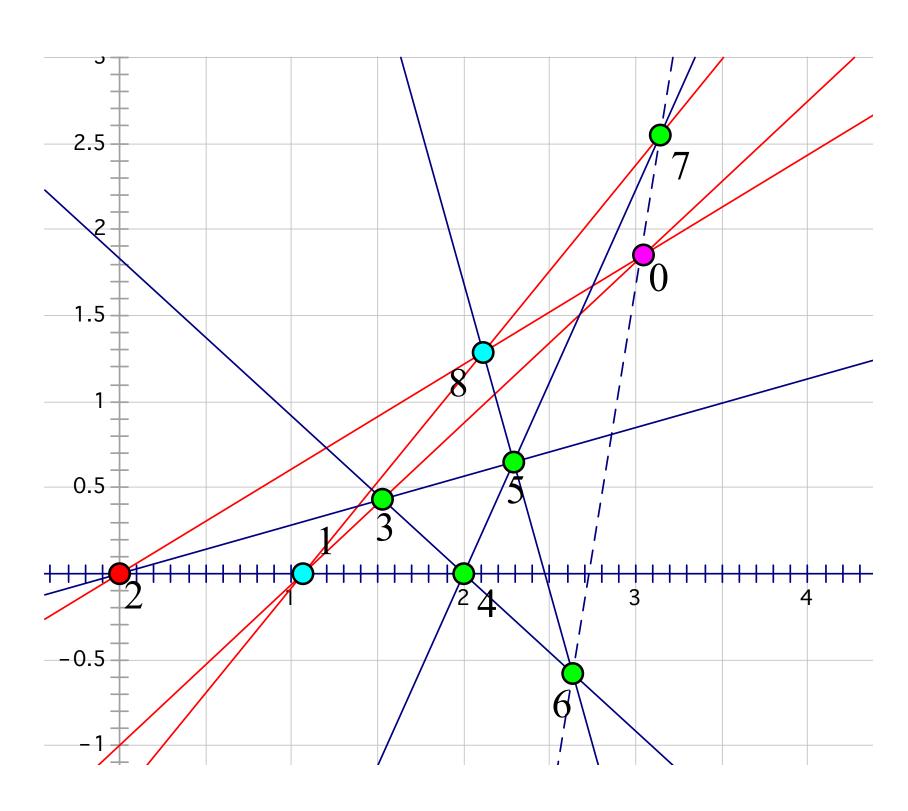
A Fundamental Question: For which n does there exist a geometric (n_k) configuration?

Does there exist some N_k so that for all $n \ge N_k$, there exists a geometric (n_k) configuration?

$$n = 2$$
: $N_2 = 3$

$$n = 3: N_3 = 9$$





Cyclic configuration [0,1,3] for all $n \ge 9$

$n=4: N_4=20 \text{ or } 24$

n		19				27
#		NONE				

(Grünbaum 2000, 2002, 2006; 2009),

Bokowski & Shewe 2013, Bokowski & Pilaud 2015, 2016)

(Cuntz 2018)

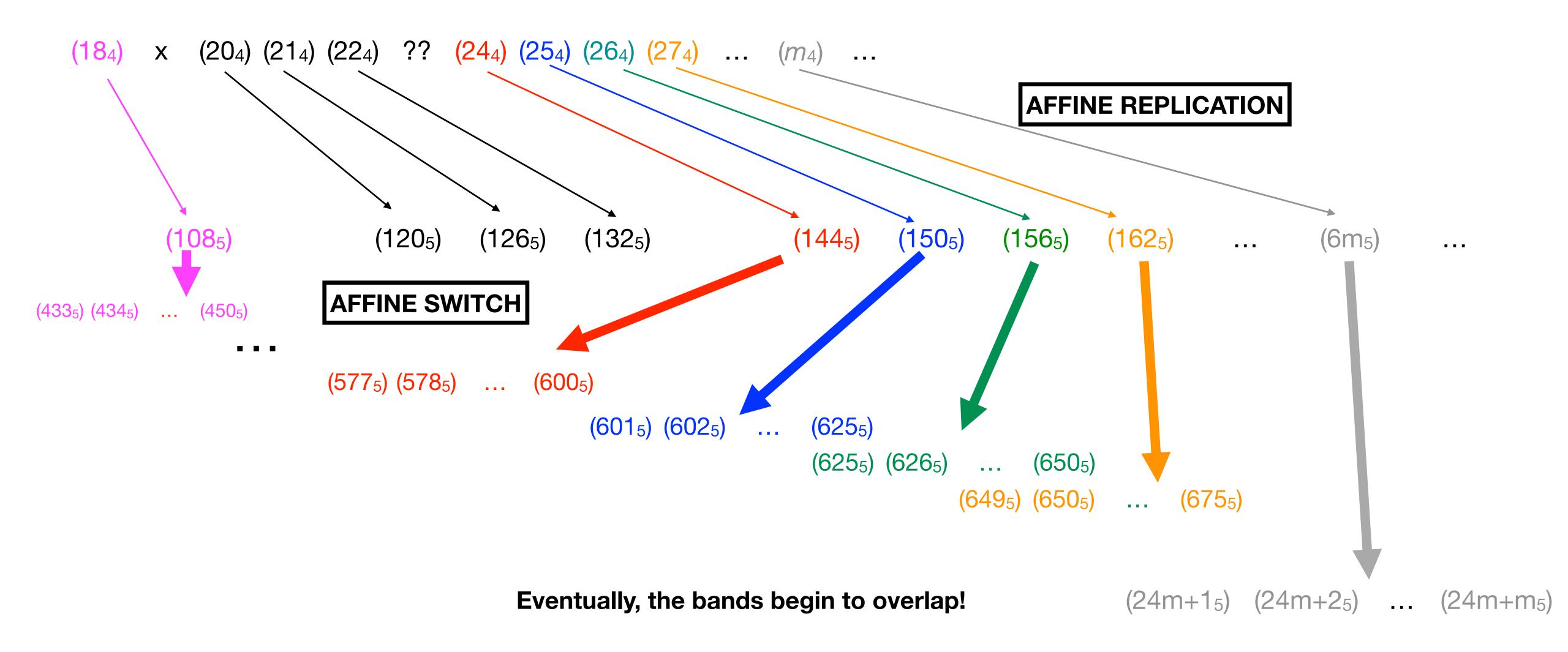
 $N_4 \le 210$: combine two constructions

 $24 \le N_4 \le 209$: ad hoc constructions

What can we say about N_5 ? N_k for larger k?

Systematic constructions: "Grünbaum Incidence Calculus"

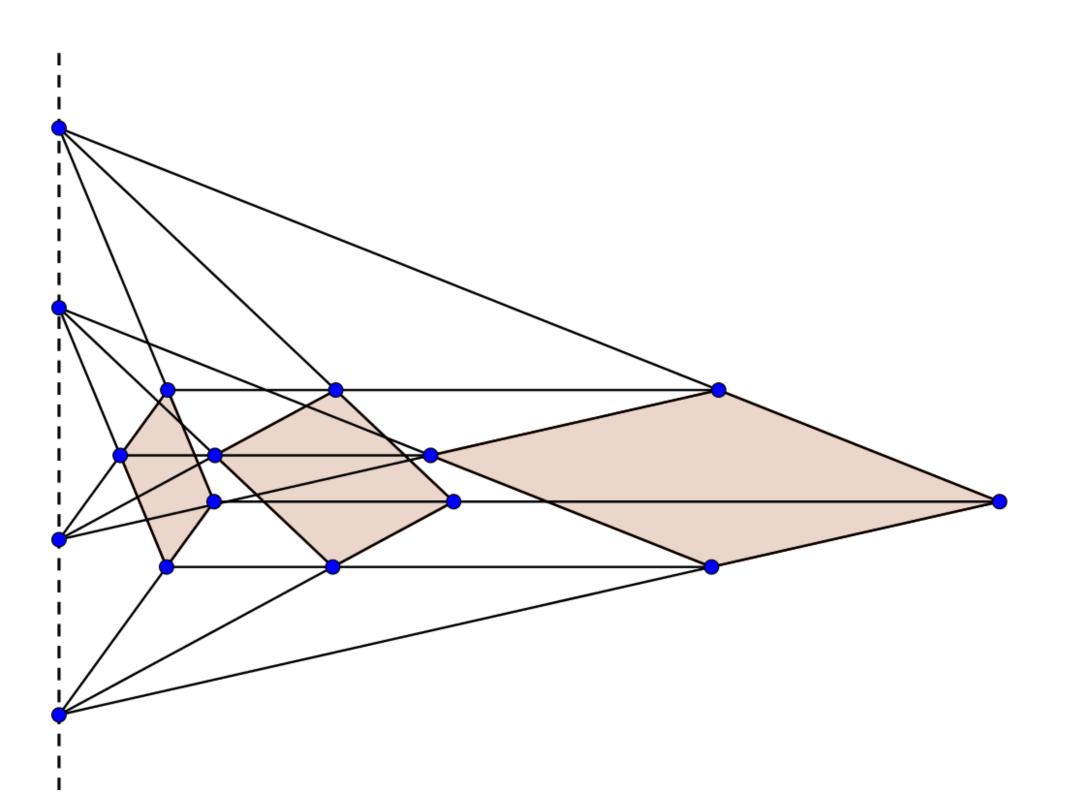
General idea



Affine Replication

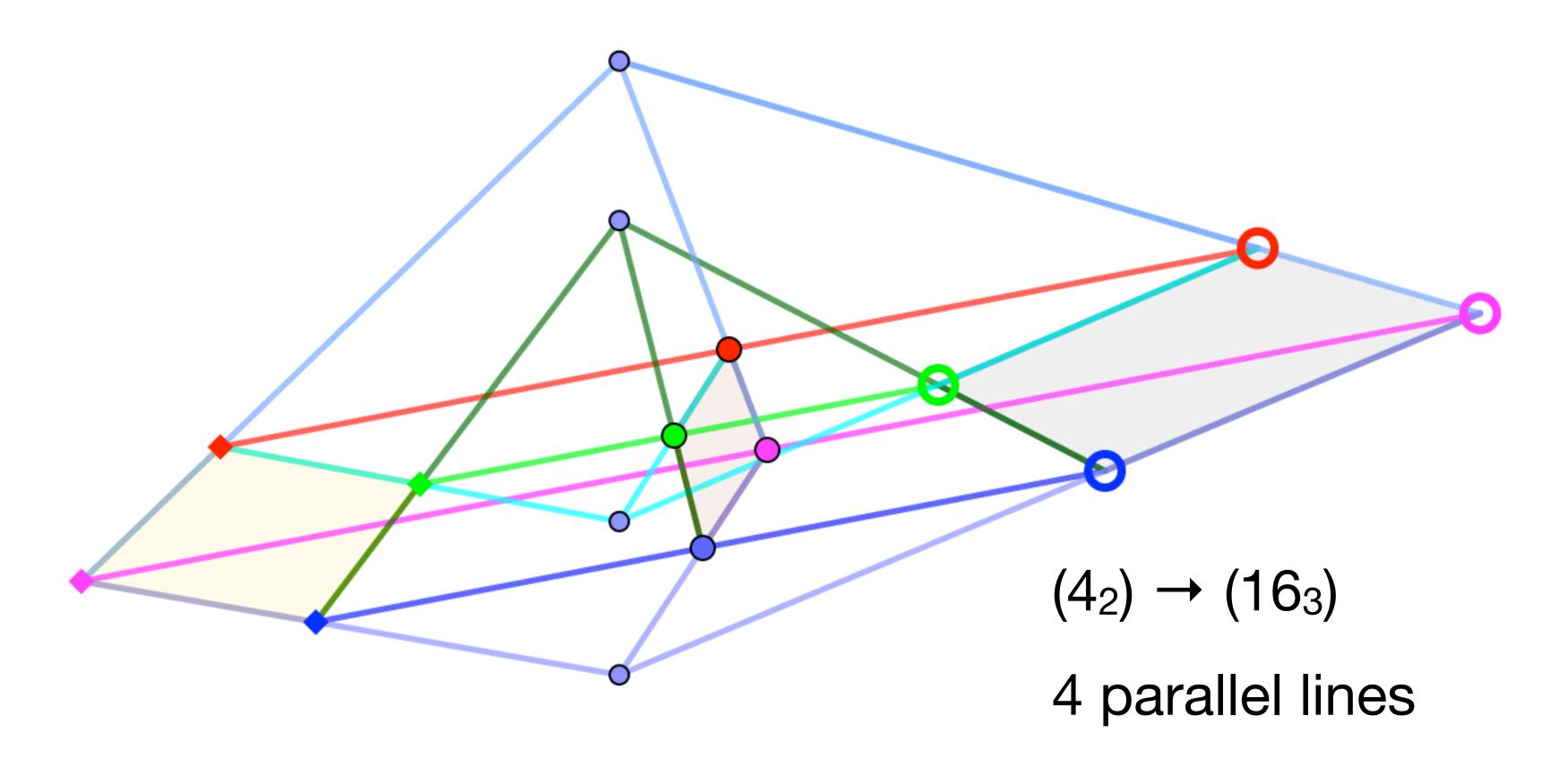
$$(m_{k-1}) \rightarrow ((k+1)m_k)$$
 with m parallel lines

Construct *k*-1 copies of a configuration *C* so that corresponding image points are collinear, and corresponding image lines are concurrent!



Affine Replication

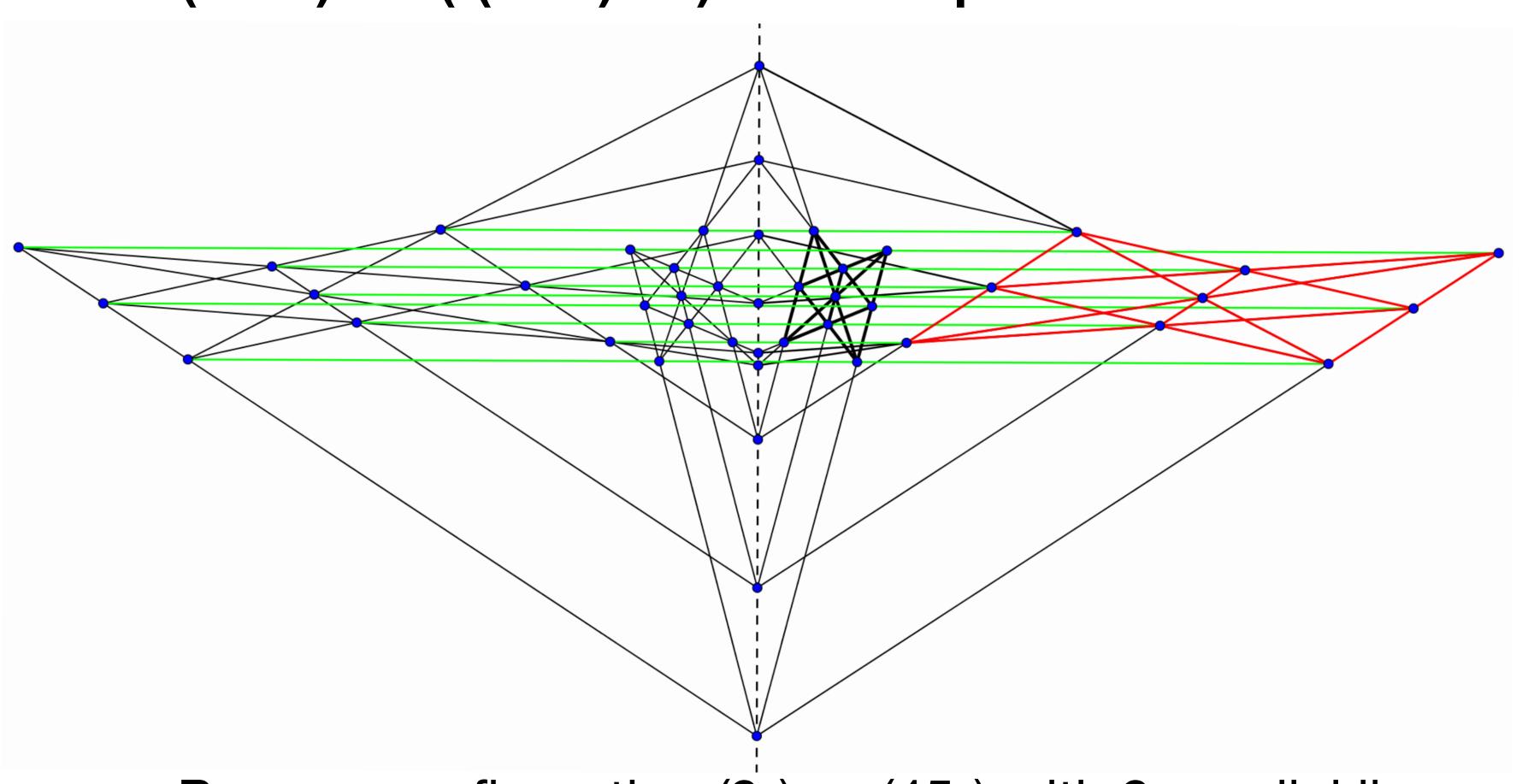
 $(m_{k-1}) \rightarrow ((k+1)m_k)$ with m parallel lines



Main Tool: Use k-1 axial affinities with the same axis and parallel vectors

Affine Replication

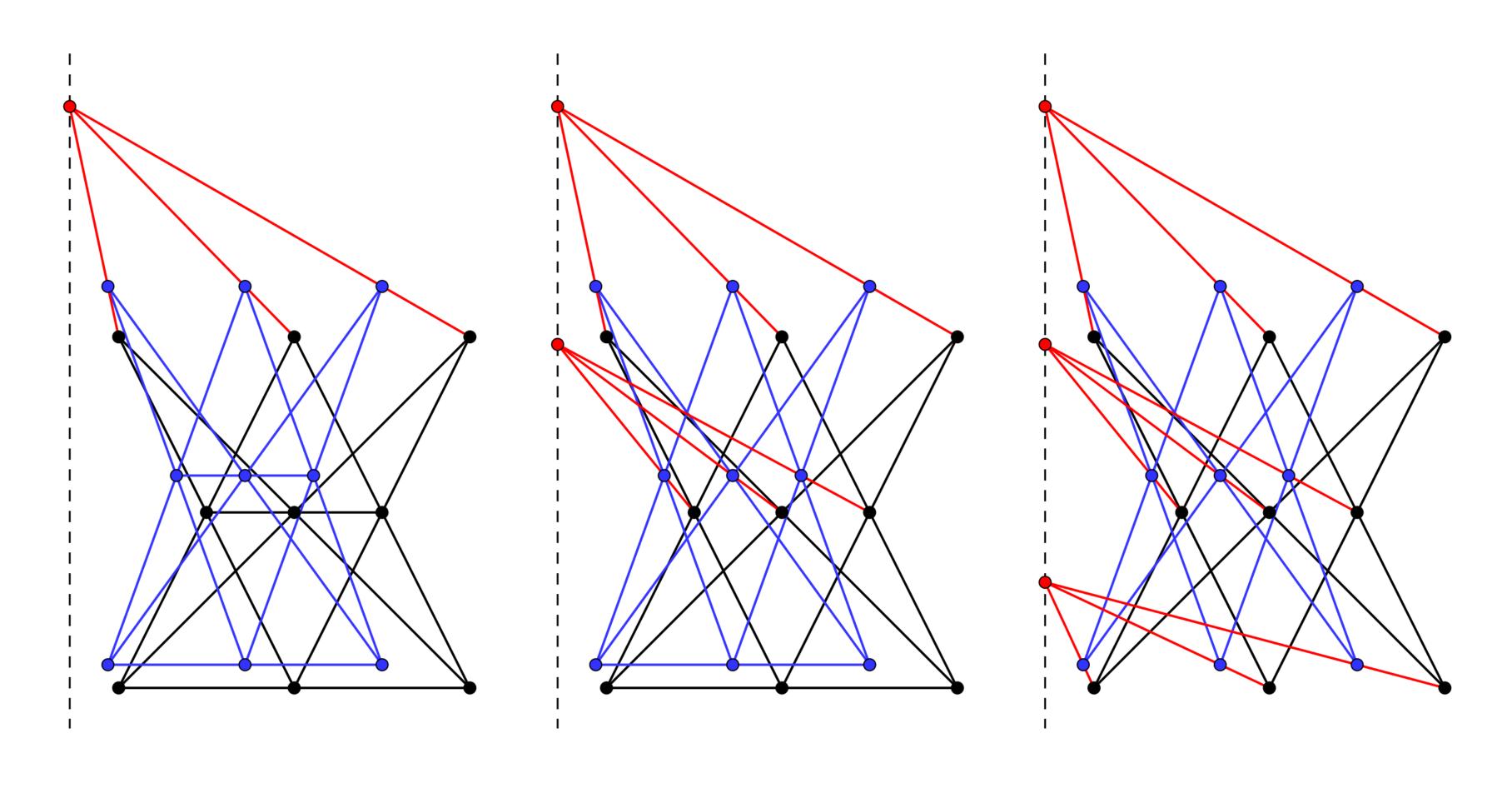
 $(m_{k-1}) \rightarrow ((k+1)m_k)$ with m parallel lines



Pappus configuration (9₃) \rightarrow (45₄) with 9 parallel lines

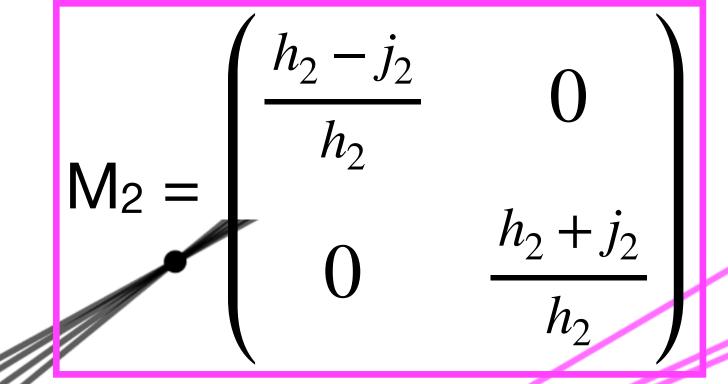
Affine Switch

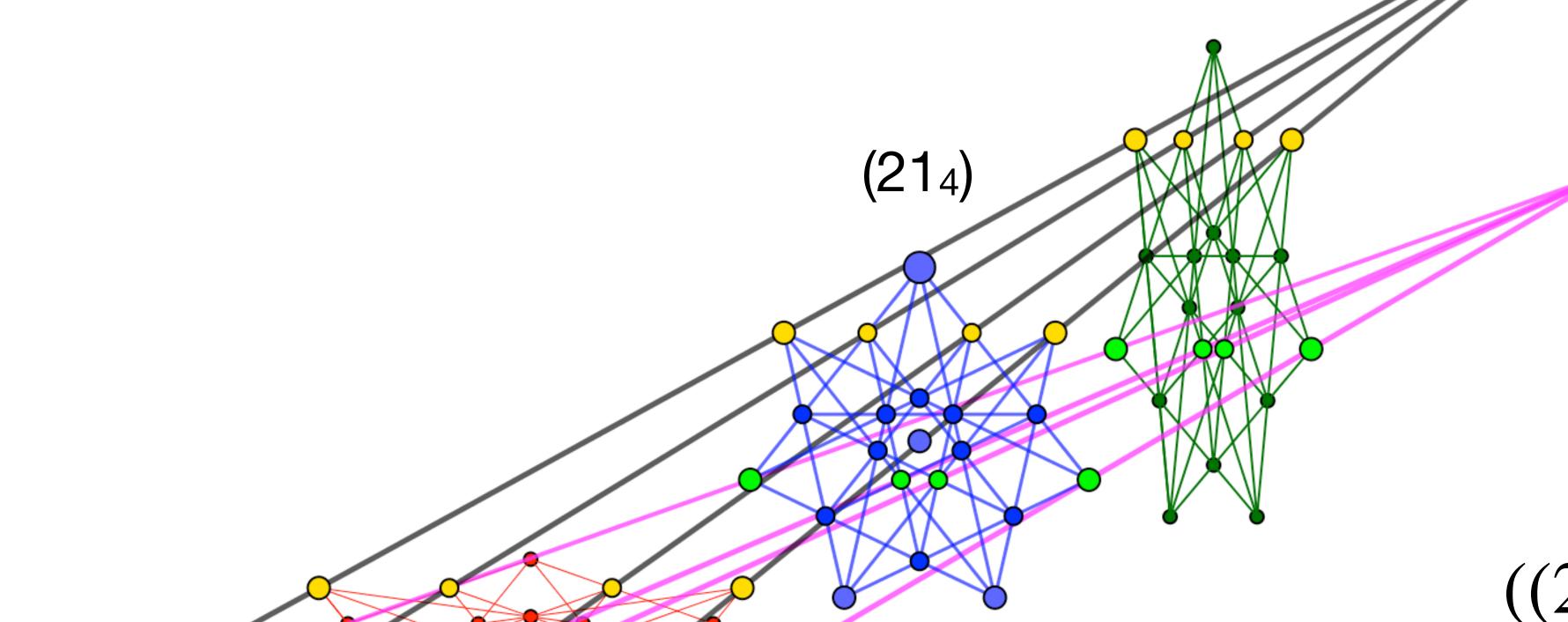
Construct a "band" ((k-1)m+1)_k, ..., ((k-1)m+p)_k of consecutive k-configurations from an initial (m_k) configuration with parallel lines



$$\mathsf{M}_1 = \begin{pmatrix} \frac{h_1 - j_1}{h_1} & 0\\ 0 & \frac{h_1 + j_1}{h_1} \end{pmatrix}$$

Affine Switch





$$((21 \cdot 3 + 2)_4)$$

$$((21 \cdot 3 - 3 + 4)_4) = ((21 \cdot 3 + 1)_4)$$

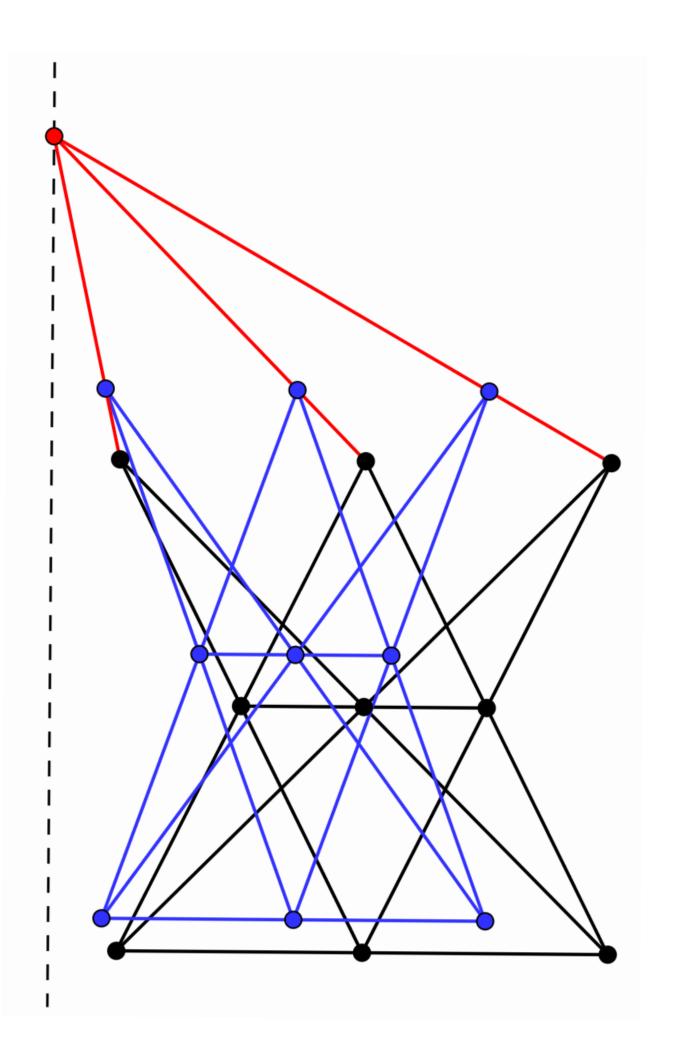
Affine Switch

Using k-1 affine transformations of the form

$$M_{h,j} = \begin{pmatrix} \frac{h-j}{h} & 0\\ 0 & \frac{h+j}{h} \end{pmatrix}$$

corresponding image points are collinear, and when (deleted) configuration lines are parallel to the *x*-axis, the corresponding lines intersect at a single point on the *y*-axis!

Given (m_k) with p configuration-disjoint lines parallel to x-axis, can simultaneously construct
 ((k-1)m+1)_k, ..., ((k-1)m+p)_k



Constructing consecutive configurations

Consecutive configurations (a_k) , $((a+1)_k)$, ..., (b_k) : abbreviate $[a:b]_k$

Consecutive when $X \ge k^2 - 2$

Easy induction...

Theorem (B., Gévay, Pisanski 2021):

For any $k \ge 2$, the number N_k exists.

Proof:

Base case: $N_2 = 3$.

Induction Hypothesis: N_{k-1} exists. Inductive step: $N_k \le (k^2 - 1) \max(N_{k-1}, k^2 - 2)$.

Bounds

k	\bar{N}_k with $N_2^R = 3$	$ \bar{N}_k \text{ with } N_3^R = 9 $	\bar{N}_k with $N_4^R=24$	N_k^R
$\overline{2}$	3	_	_	3
3	56	9	_	9
4	840	210	24	24
5	20160	5040	576	576
6	705600	176400	20 160	20 160
7	33868800	8467200	967 680	967 680
8	2133734400	533433600	60963840	60963840
9	170698752000	42674688000	4877107200	4877107200
10	16899176448000	$oxed{4224794112000}$	482833612800	482833612800

 N_k^R is the current record; $\bar{N}_k = (k^2 - 1) \max(N_{k-1}^R, k^2 - 2)$

Can we do better?

t-configurations

$$a, a + d, a + 2d, ..., X, ...$$

Affine Replication

(t+1) configurations

$$(t+2)a, (t+2)(a+d), (t+2)(a+2d), \dots$$

Affine Replication

(t+2)-configurations

$$(t+3)(t+2)a, (t+3)(t+2)(a+d), (t+3)(t+3)(t+2)(a+2d), \dots$$

...

Affine Replication

k-configurations

$$\frac{(k+1)!}{(t+1)!}a, \frac{(k+1)!}{(t+1)!}(a+d), \frac{(k+1)!}{(t+1)!}(a+2d), \dots$$

Starting *t*-configuration X produces k-configuration with $\frac{1}{(t)}$

$$\frac{X}{(t+1)!}$$
 parallel lines

Can we do better?

t-configurations

•••

k-configurations

$$a, a + d, a + 2d, ..., X, ...$$

$$\frac{(k+1)!}{(t+1)!}a, \frac{(k+1)!}{(t+1)!}(a+d), \frac{(k+1)!}{(t+1)!}(a+2d), \dots$$

Affine Switch

$$\left[\frac{(k-1)\frac{(k+1)!}{(t+1)!}X:(k-1)\frac{(k+1)!}{(t+1)!}X+\frac{k!}{(t+1)!}X\right],$$

$$\left[\frac{(k-1)\frac{(k+1)!}{(t+1)!}(X+d)}{(t+1)!}(X+d) + \frac{k!}{(t+1)!}(X+d) + \frac{k!}{(t+1)!}(X+d) \right] \dots$$

Overlap when
$$X \ge (k^2 - 1)d - \frac{(t+1)!}{k!}$$

New Bounds

Old bounds: $N_5 \le 576$, $N_6 \le 20160$

Recursively define
$$\hat{N}_k = (k^2 - 1) \min_{3 \leq t \leq k-1} \left\{ \frac{k!}{(t+1)!} \max \left\{ \hat{N}_t, k^2 - 1 \right\} \right\}$$
 with $\hat{N}_3 = 9$, $\hat{N}_4 = 24$

$$\hat{N}_{5} = (5^{2} - 1) \min_{3 \le t \le 4} \left\{ \frac{5!}{(t+1)!} \max \left\{ \hat{N}_{t}, 5^{2} - 1 \right\} \right\} = 24 \min \left\{ \frac{5!}{4!} \max\{9,24\}, \frac{5!}{5!} \max\{24,24\} \right\} = \mathbf{576}$$

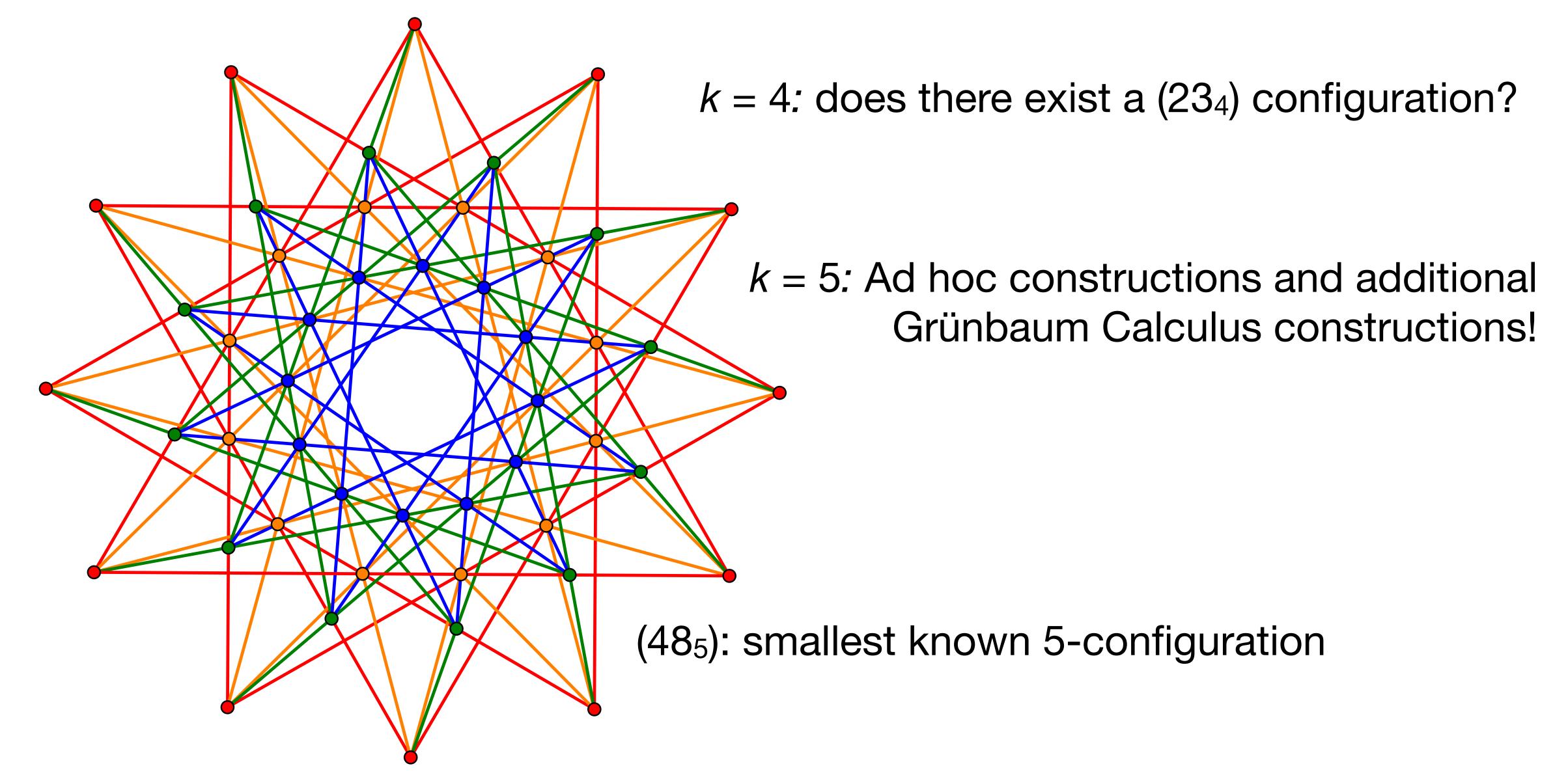
$$\hat{N}_{6} = (6^{2} - 1) \min_{3 \le t \le 5} \left\{ \frac{6!}{(t+1)!} \max \left\{ \hat{N}_{t}, 6^{2} - 1 \right\} \right\} = 35 \min \left\{ \frac{6!}{4!} \max\{9,35\}, \frac{6!}{5!} \max\{24,35\}, \frac{6!}{6!} \max\{576,35\} \right\} = 35(35 \cdot 6) = \mathbf{7350}$$

$$\hat{N}_{10} = 99 \min \left\{ \frac{10!}{4!} \max\{9,99\}, \frac{10!}{5!} \max\{24,99\}, \frac{10!}{6!} \max\{576,99\}, \frac{10!}{7!} \max\{7350,99\}, \dots, \frac{10!}{10!} \max\{\hat{N}_{9},99\} \right\} = \frac{10!}{6!} \cdot 576 \cdot 99 = 287400960$$

New bounds

$oxed{k}$	$\hat{N}_k = N_k^R$	formula	initial sequence
$\overline{4}$	24	-	_
5	576	$(5^2-1)^2$	t=4
6	7350	$6(6^2-1)^2$	t=4
7	96 768	$7 \cdot 6 \cdot (7^2 - 1)^2$	t=4
8	1333584	$\frac{8!}{5!}(8^2-1)^2$	t=4
9	19353600	$\frac{9!}{5!}(9^2-1)^2$	t=4
10	287400960	$\frac{10!}{6!} \cdot 576 \cdot (10^2 - 1)$	$\mathbf{t} = 5$
11	3832012800	$\frac{11!}{6!} \cdot 576 \cdot (11^2 - 1)$	$egin{array}{c} t = 4 \ t = 4 \ t = 4 \ t = 4 \ t = 5 \ t = 5 \ \end{array}$
•		$7 \cdot 6 \cdot (7^{2} - 1)^{2}$ $\frac{8!}{5!}(8^{2} - 1)^{2}$ $\frac{9!}{5!}(9^{2} - 1)^{2}$ $\frac{10!}{6!} \cdot 576 \cdot (10^{2} - 1)$ $\frac{11!}{6!} \cdot 576 \cdot (11^{2} - 1)$	
$\frac{1}{24}$			t=5
25	$\approx 8.39 \times 10^{27}$	$rac{25!}{6!} \cdot (\mathbf{25^2} - 1)^{2}$	$ \begin{aligned} t &= 5 \\ t &= 5 \\ t &= 5 \end{aligned} $
26	$\approx 8.02 \times 10^{30}$	$ \frac{\frac{24!}{6!} \cdot 576 \cdot (24^2 - 1)}{\frac{25!}{6!} \cdot (25^2 - 1)^2} $ $ \frac{\frac{26!}{6!} \cdot (26^2 - 1)^2}{6!} $	t=5
•			
32	$\approx 3.82 \times 10^{38}$	$\frac{32!}{6!} \cdot (32^2 - 1)^2$	t=5
33	$\approx 1.38 \times 10^{40}$	$\frac{32!}{6!} \cdot (32^2 - 1)^2$ $\frac{33!}{7!} \cdot 7350 \cdot (33^2 - 1)$	$\begin{array}{c} t = 5 \\ \mathbf{t} = 6 \end{array}$
•			

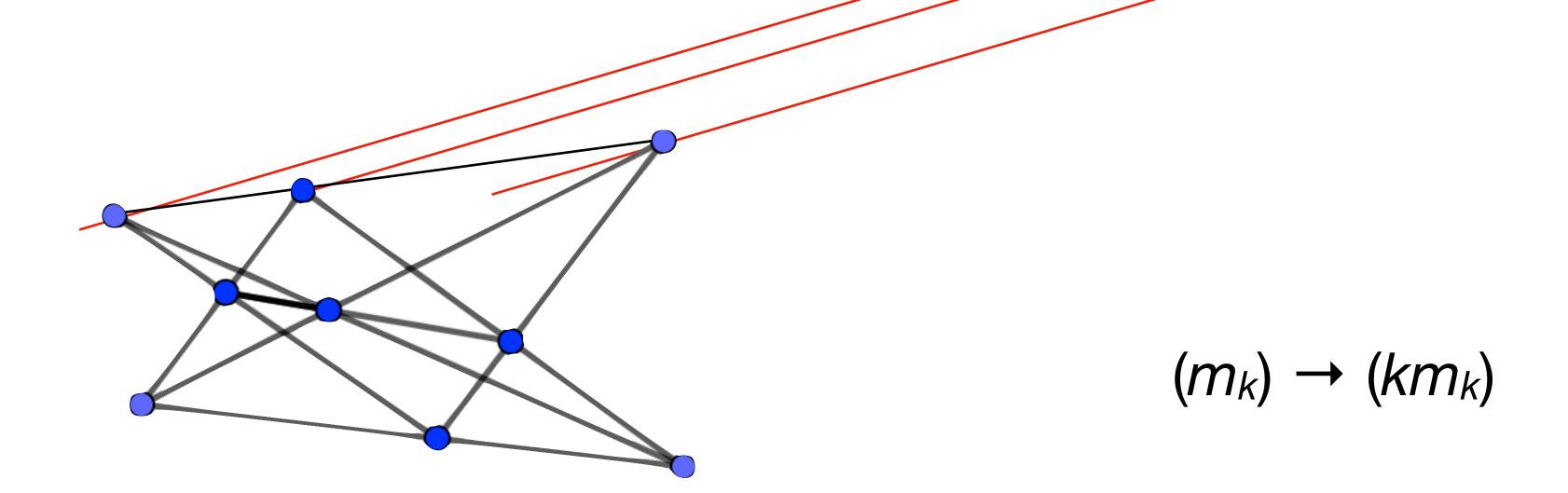
How can we do better?

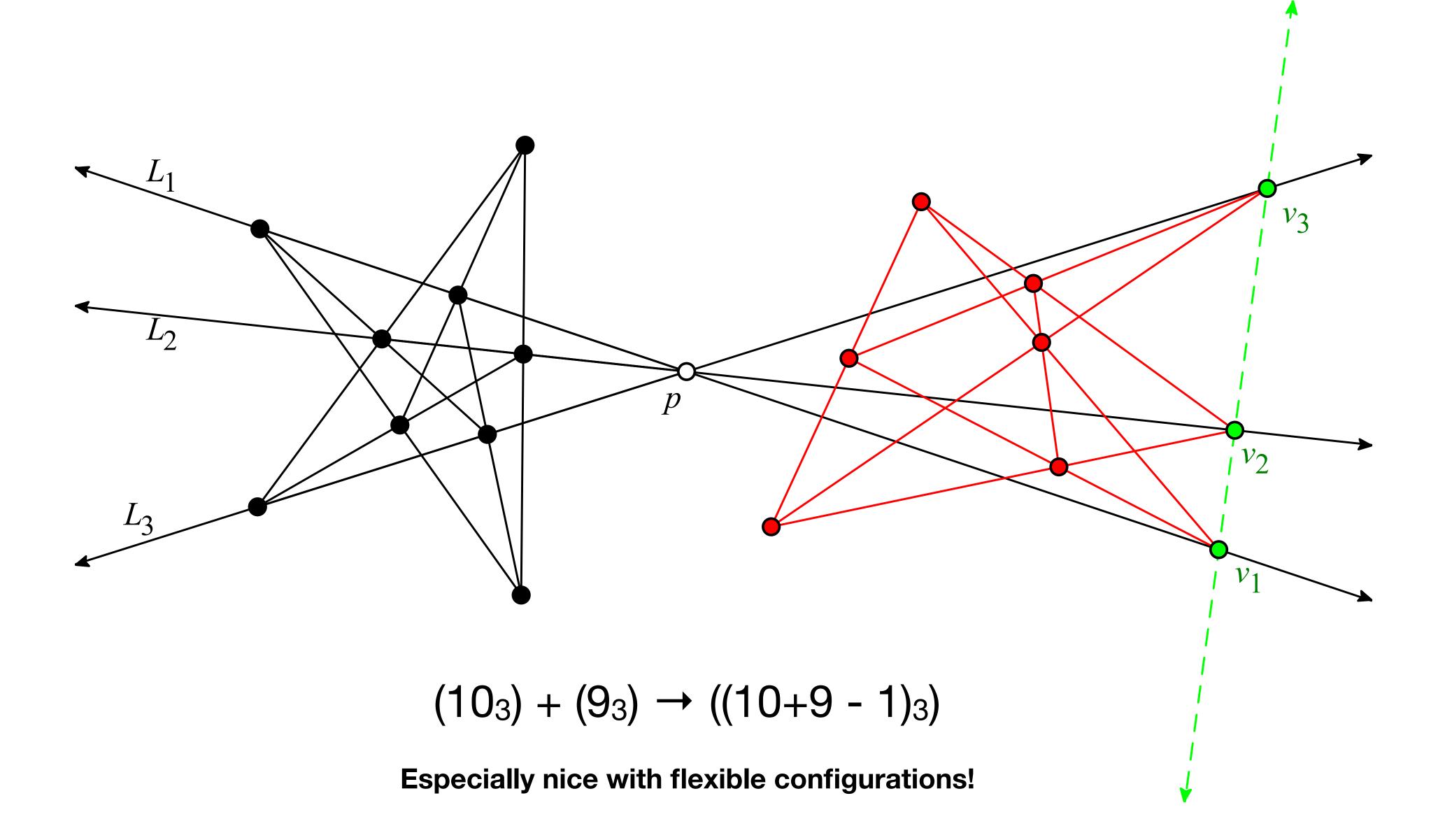


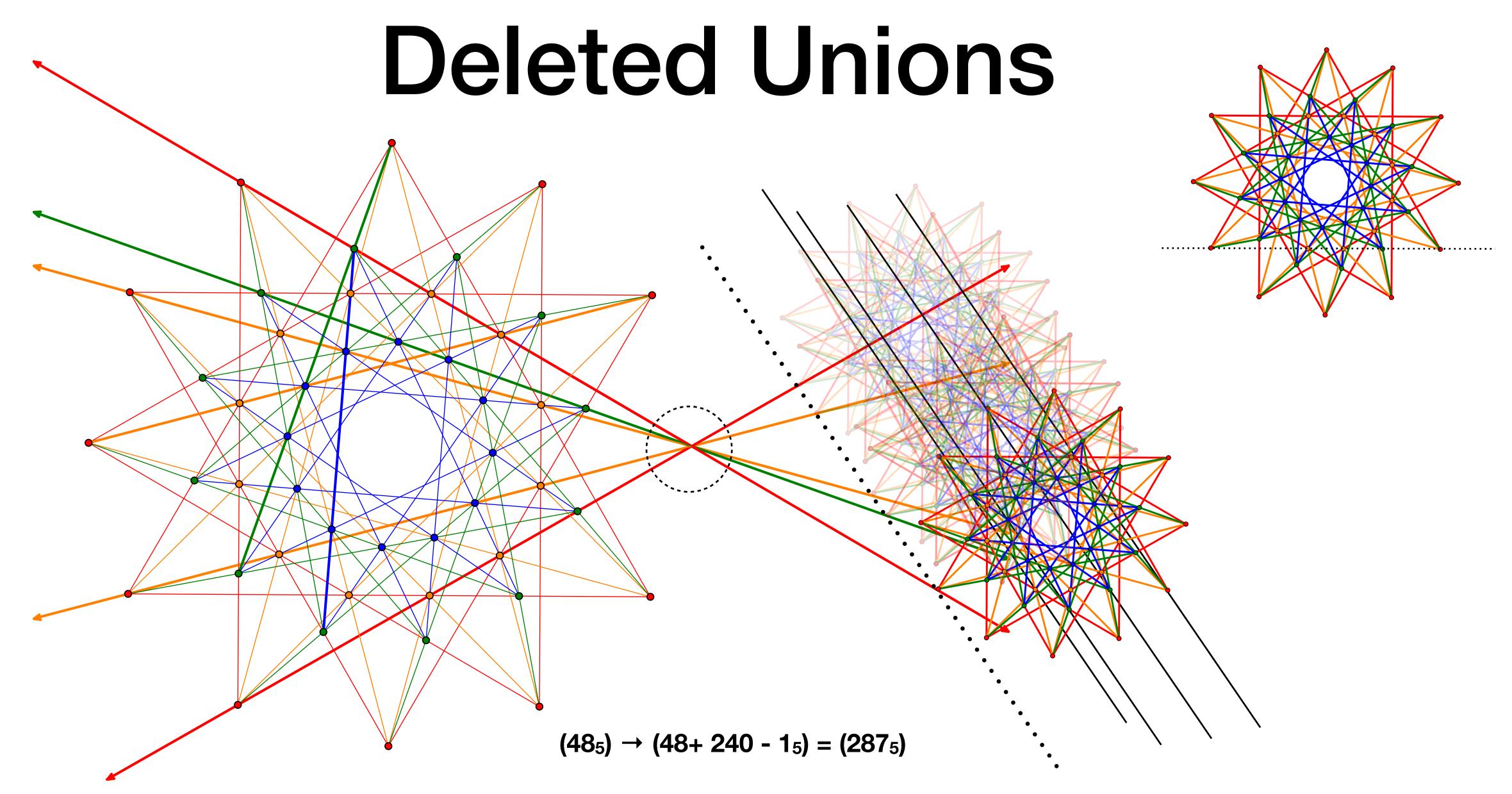
More Grünbaum Calculus operations

Parallel Switch

Flexible! There exists a line whose points can be positioned as we like!

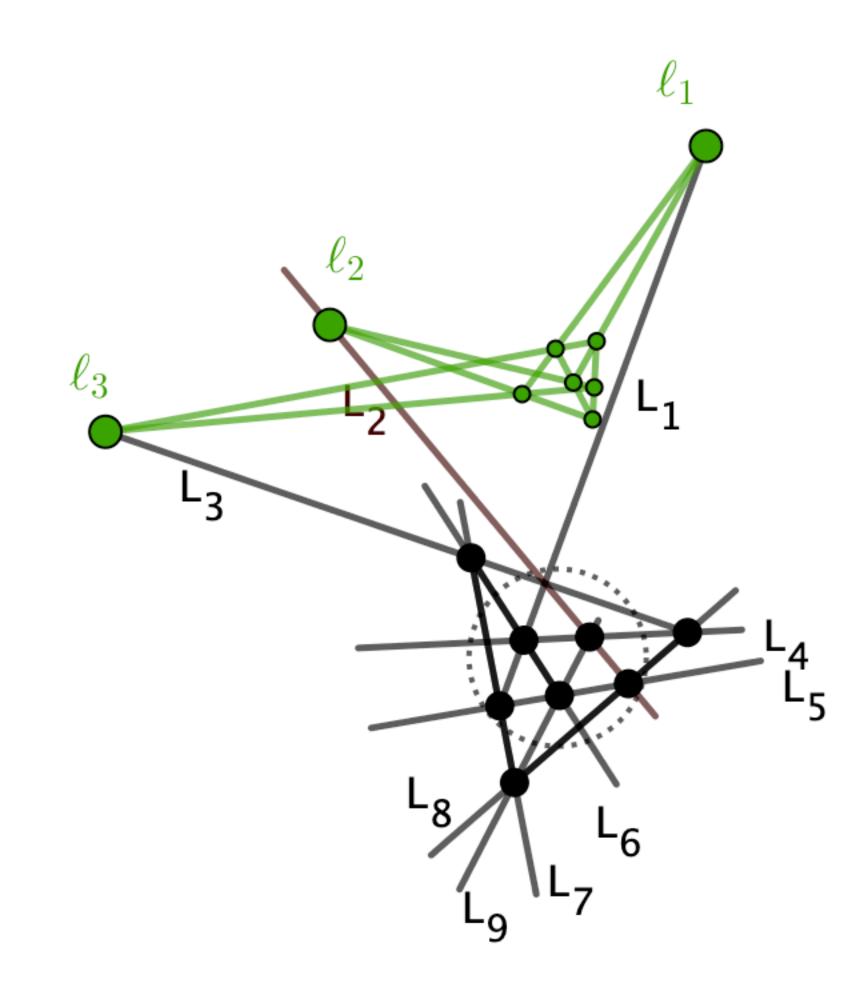




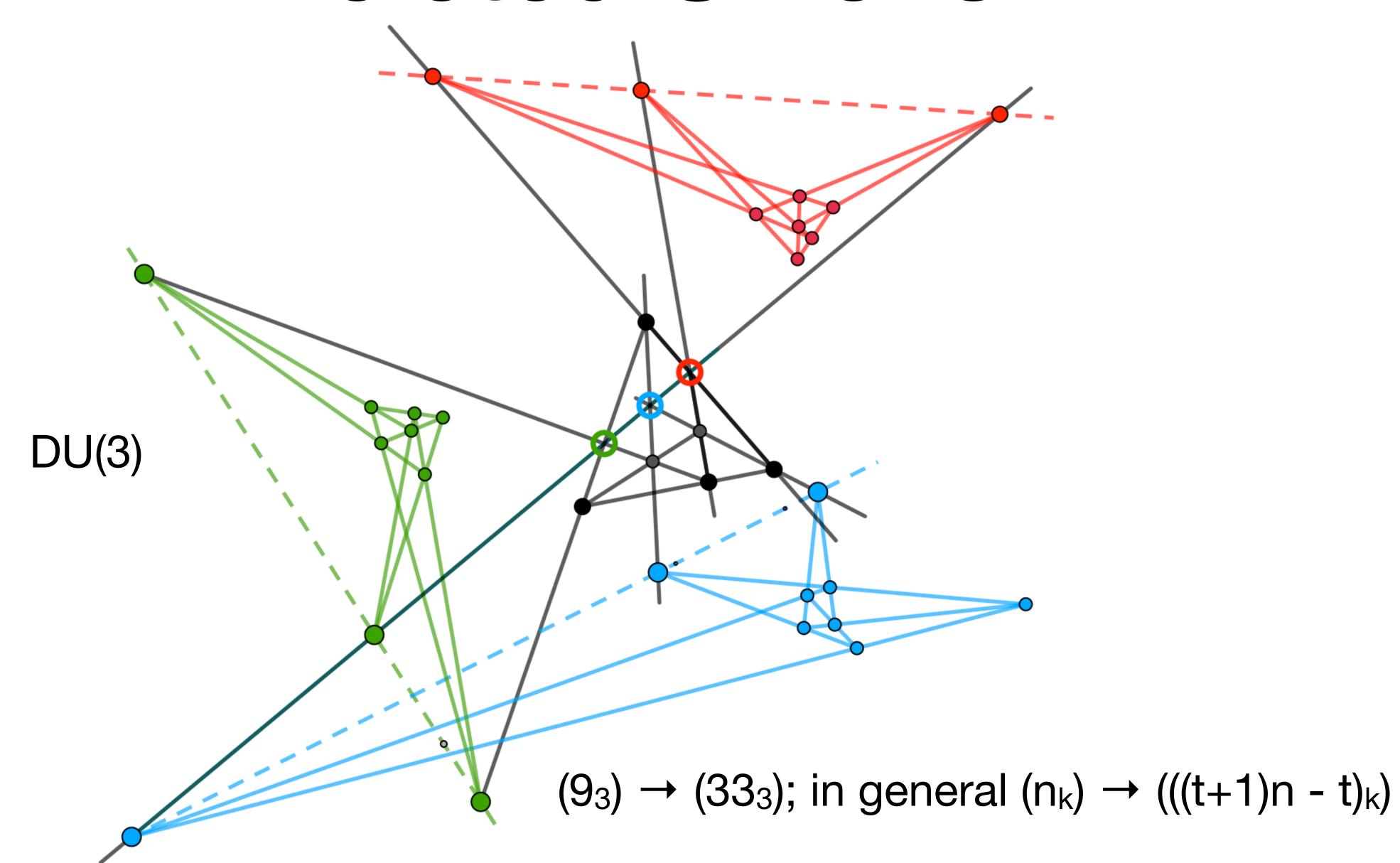


Especially nice with flexible configurations — combine with parallel switch!

- Construct (*n_k*) configuration *C* and a conic
- Choose point P to delete
- Intersect a line ℓ through the lines L_1 , ..., L_k through P to form $\ell_1, ..., \ell_k$
- Construct polar C^* with images $v_1, ..., v_k$ of $L_1, ..., L_k$
- Find a collineation to map the image points v_1, v_2, v_3 to ℓ_1, ℓ_2, ℓ_3 and apply the collineation to C^* ; projective geometry says $v_i \mapsto \ell_i$
- Delete the polar and the point P, line ℓ

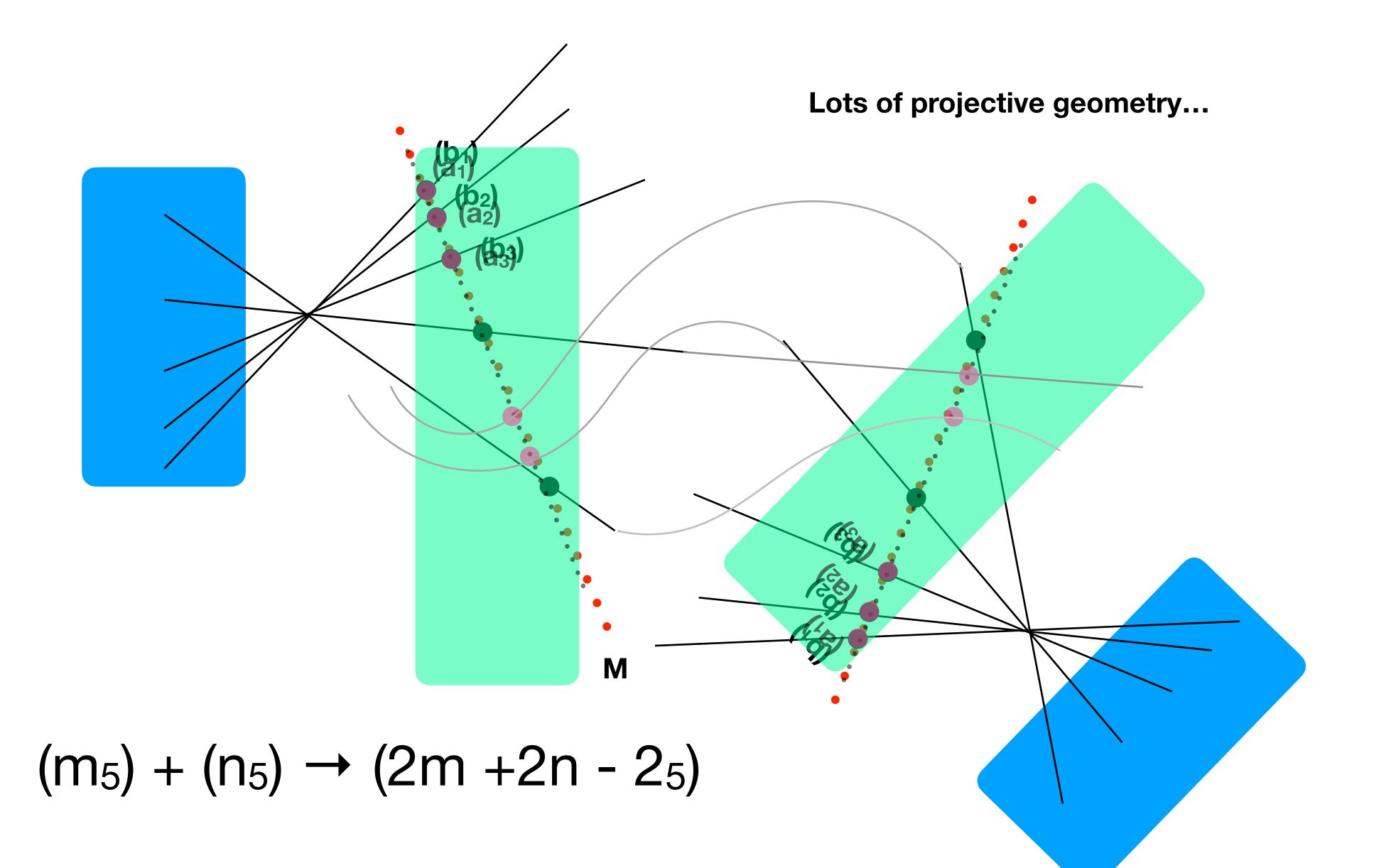


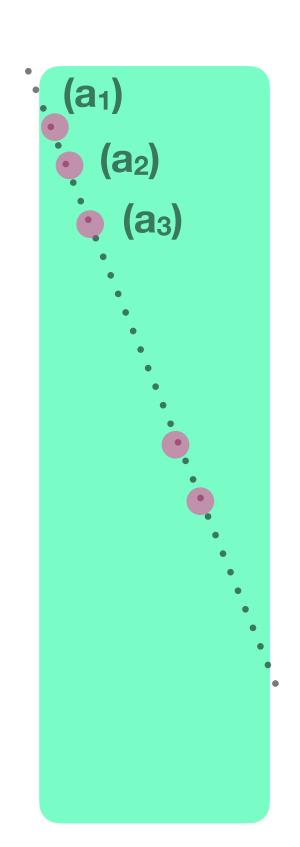
 $(9_3) \rightarrow (17_3)$; in general $(n_k) \rightarrow (2n-1_k)$



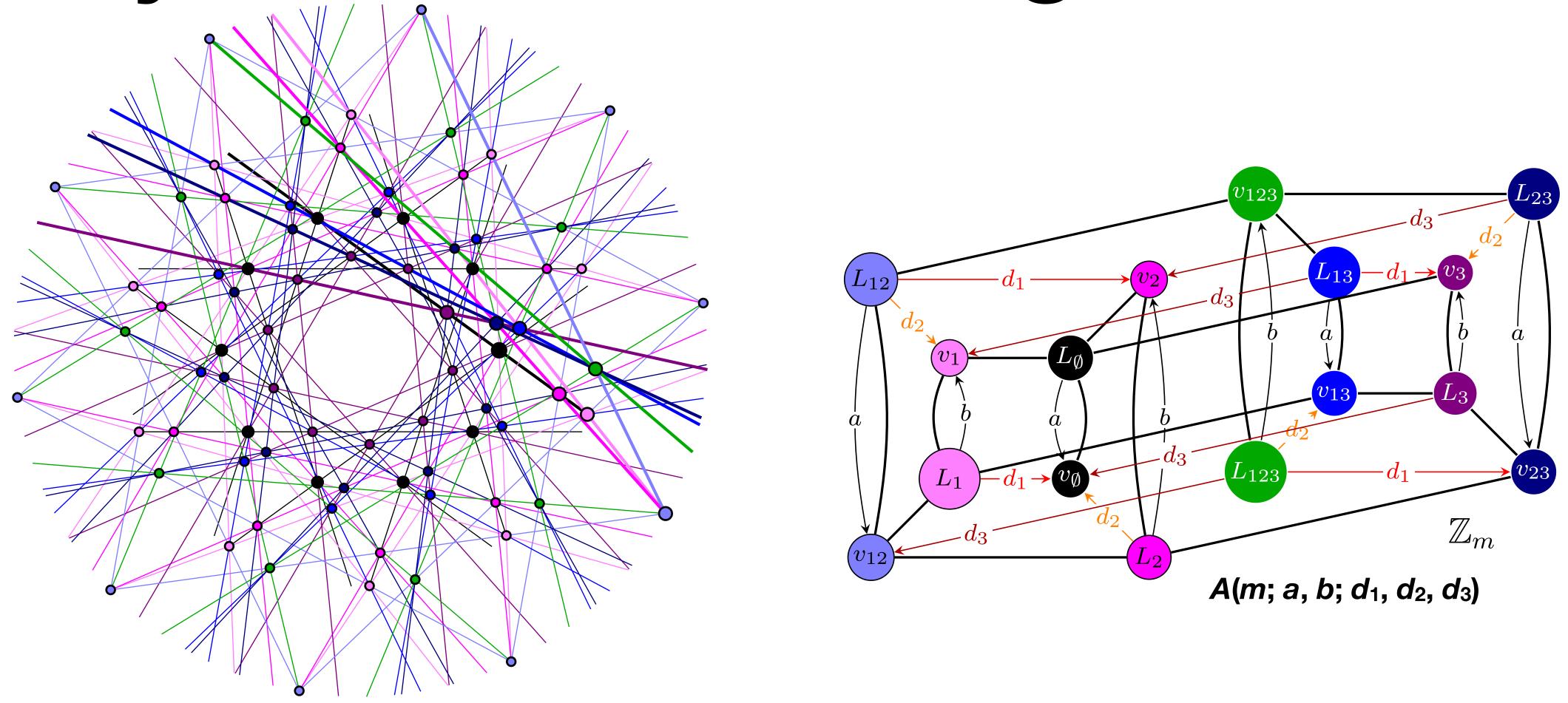


Distributed Deleted Unions





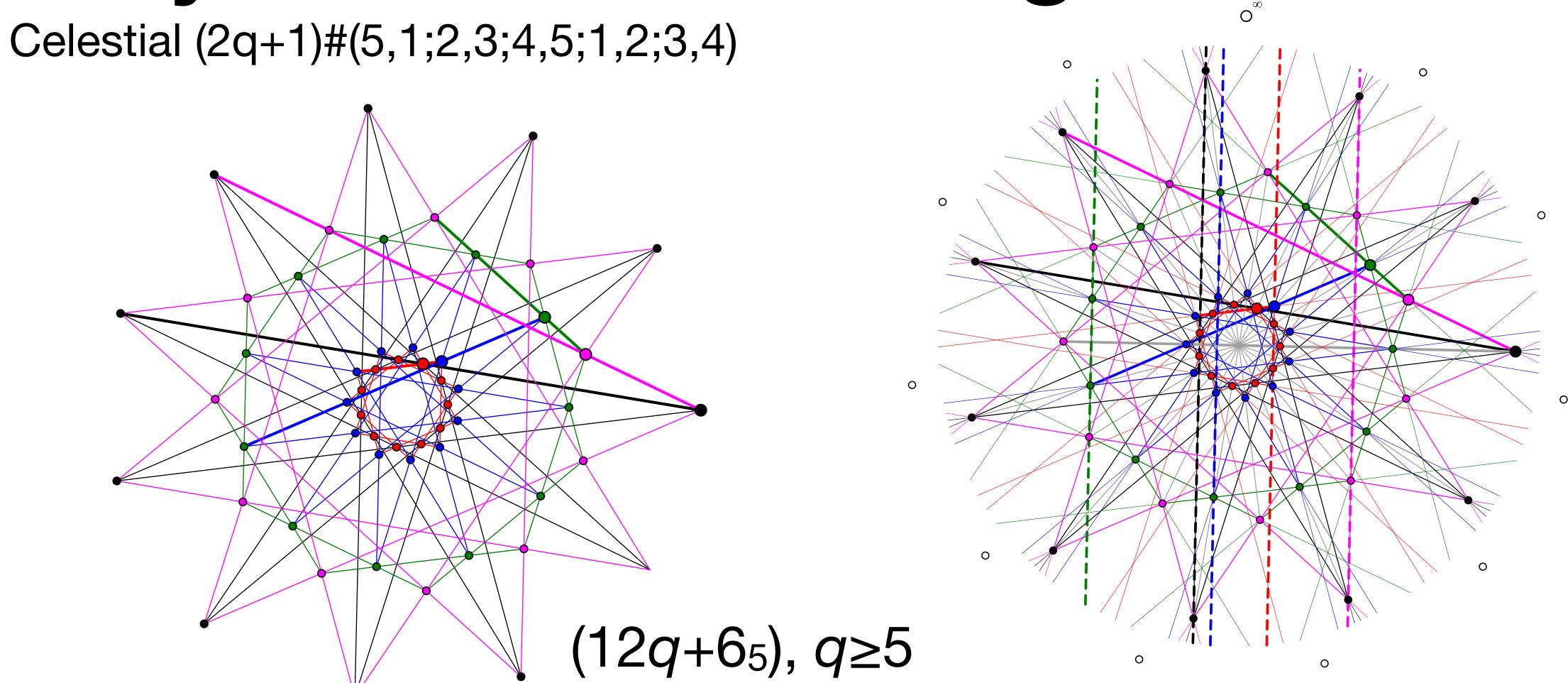
Systematic constructions



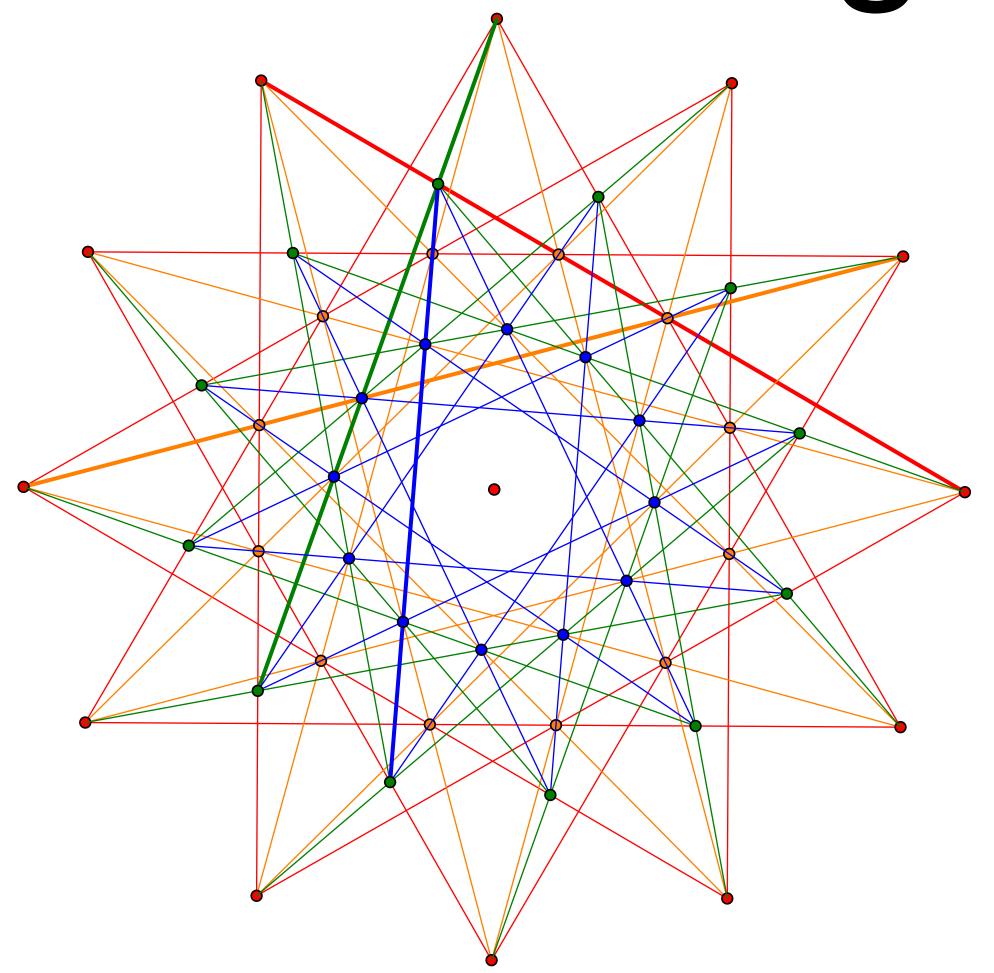
 $(8m_5)$: A-series A(m; 3,3; 1,2,4)

Celestial 2q#(2,1;4,3; 1,2;3,4) $(10q_5) \text{ for m} \ge 5$

Diameters + ∞ to 4-celestial 4-configurations

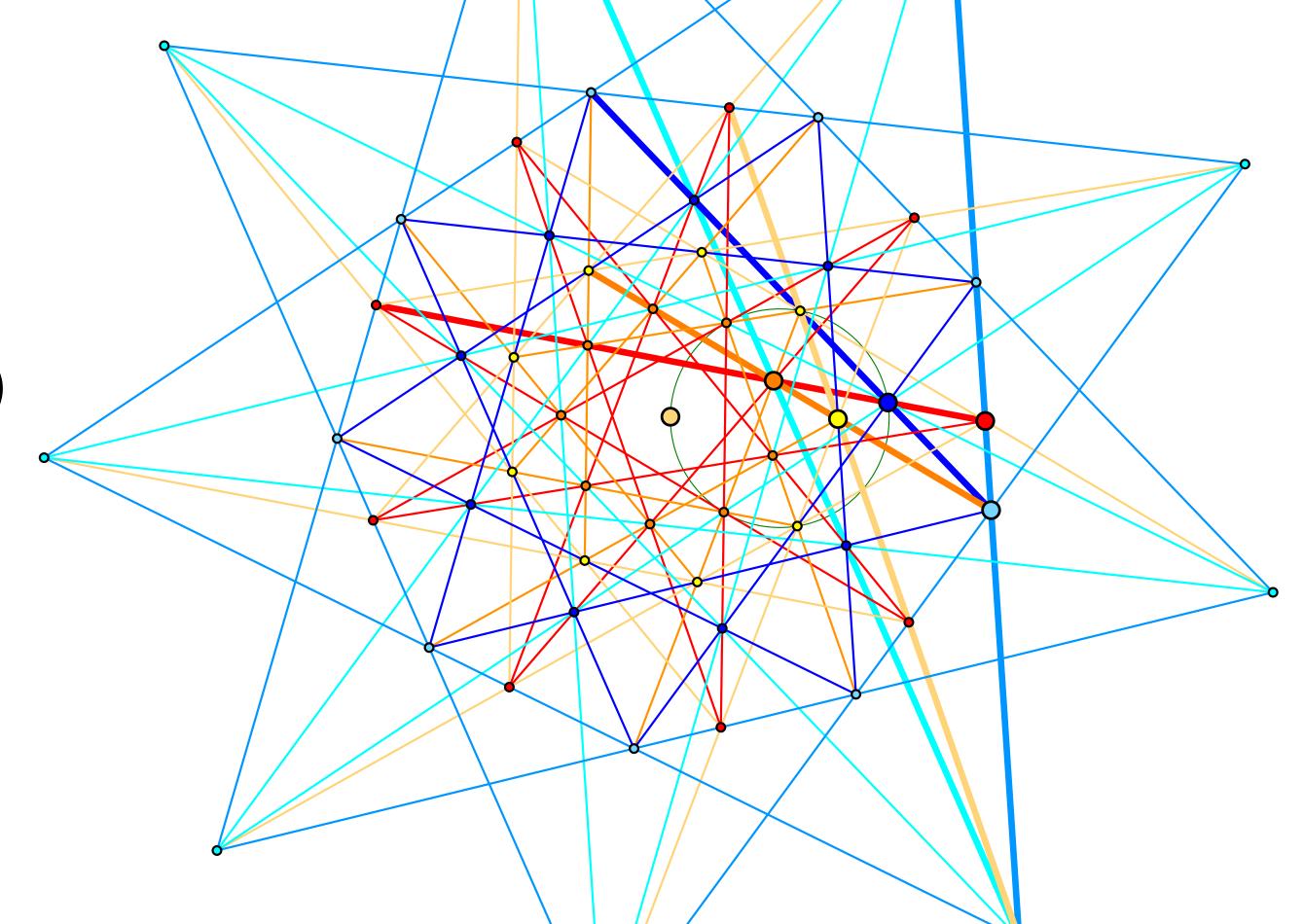


Diameters + ∞ to 5-celestial 4-configurations



"Nesting" celestial 4-configurations

- Two Useful Families:
 - (18q₅), q≥ 5; smallest is (81₅)
 - $(27q_5)$, $q \ge 3$; smallest is (90_5)
- Two ad-hoc constructions produce (48₅), (54₅)

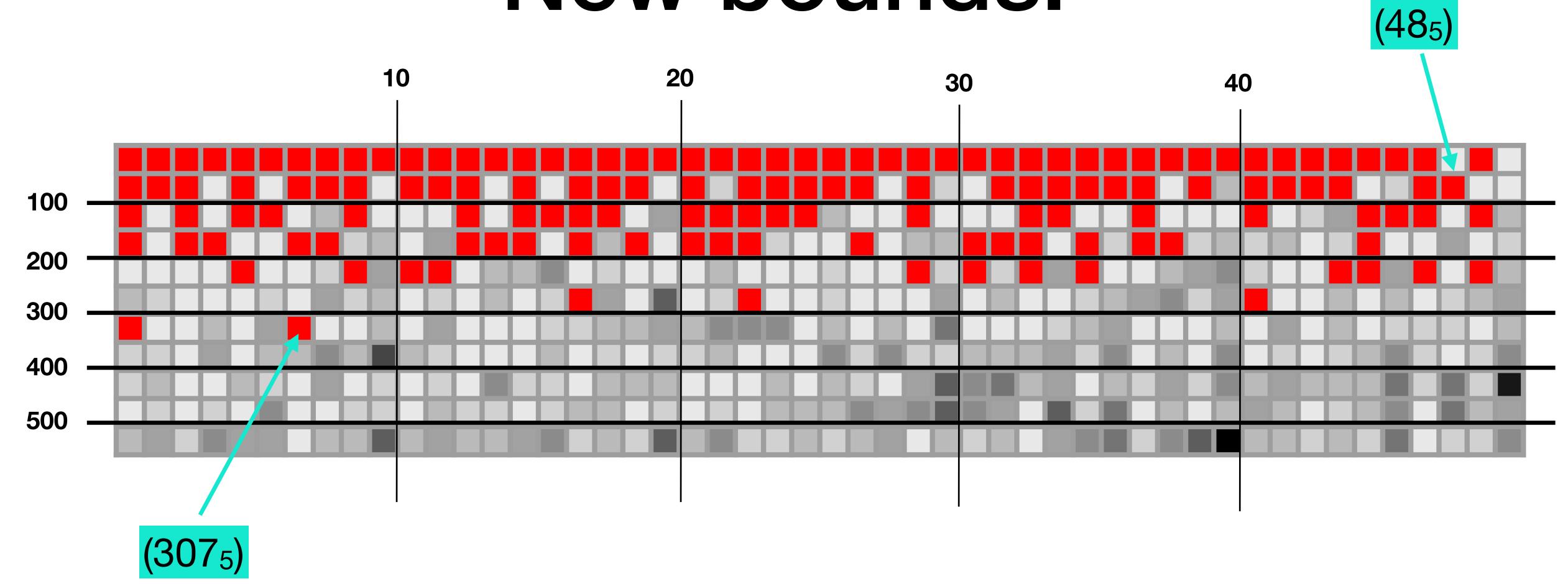


"Nesting" celestial 4-configurations

New bounds!

- Systematic and ad hoc 5-configurations
- Affine Replication of 4-configurations
- Then apply: Parallel Switch, DU(t), DDU, Affine Switch, Parallel Switch, DU(t)...
- Then **look for pairs** to apply DU(C, D) where D is flexible (from Parallel Switch)

New bounds!



Theorem: $N_5 \leq 307$.

What about N₆?

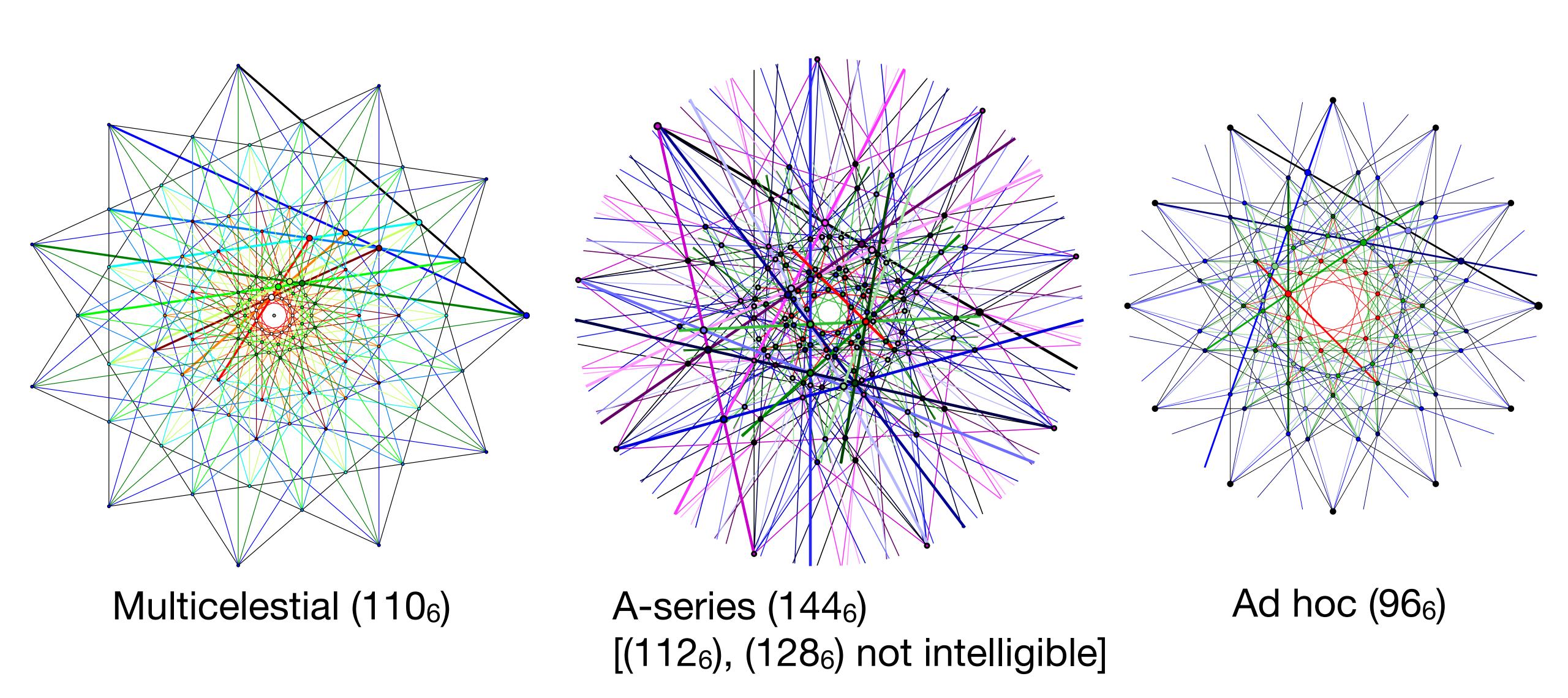
$$\hat{N}_6 = 35 \min \left\{ \frac{6!}{4!} \max\{9,35\}, \frac{6!}{5!} \max\{24,35\}, \frac{6!}{6!} \max\{308,35\} \right\} = 35(35 \cdot 6) = 7350$$
210
308

No immediate reduction in bounds...

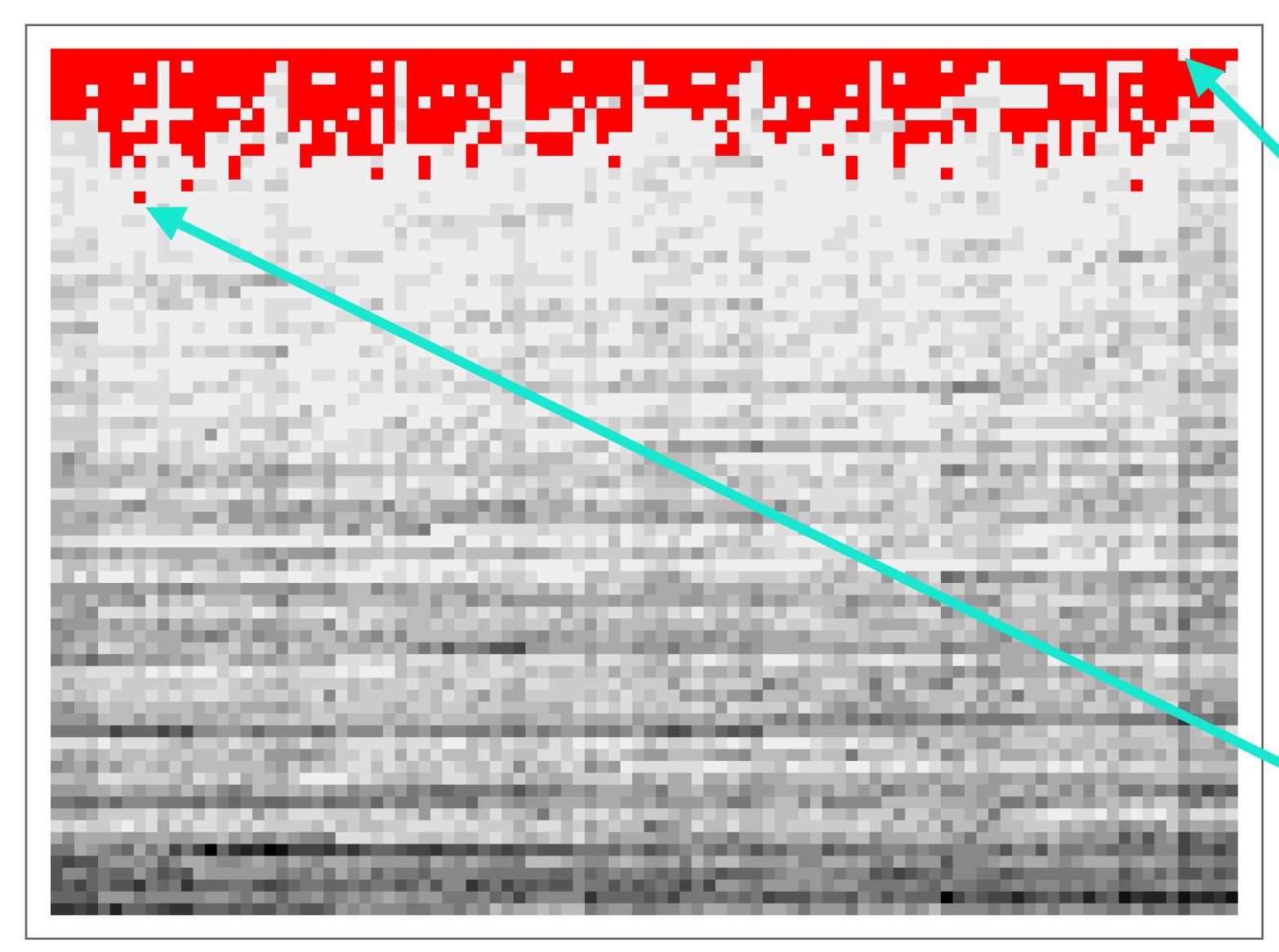
- Smallest is (96₆)
- Multicelestial (10*m*₆), *m*≥11
- A(m; 3,3; 1,2,4,5): (16m₆), m \geq 7

- DU(t), DU(C,D)
- Parallel Switch (flexible!)
- Affine Replication, Switch...

What about N₆?



What about N₆?



(96₆)

Theorem: $N_6 \leq 1208$

(Previous bound was 7350)

1208

Further directions...?

Thank you!