Cartan subalgebras in classifiable C*-algebras

Xin Li

University of Glasgow

lacktriangle Every classifiable C*-algebra has a Cartan subalgebra

- ▶ Every classifiable C*-algebra has a Cartan subalgebra
- ▶ The spectra of our Cartan subalgebras

- ▶ Every classifiable C*-algebra has a Cartan subalgebra
- ▶ The spectra of our Cartan subalgebras
- ► Non-uniqueness results

- ▶ Every classifiable C*-algebra has a Cartan subalgebra
- ▶ The spectra of our Cartan subalgebras
- ► Non-uniqueness results
- Questions

Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra.

Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra.

• "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"

- "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"
- ► Cartan subalgebras produce groupoid models (Kumjian-Renault).

Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra.

- "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"
- Cartan subalgebras produce groupoid models (Kumjian-Renault).
- In the purely infinite case, this follows from work of Szymański, Spielberg, Katsura, Exel-Pardo ...

- "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"
- Cartan subalgebras produce groupoid models (Kumjian-Renault).
- In the purely infinite case, this follows from work of Szymański, Spielberg, Katsura, Exel-Pardo ...
- ► In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.

- "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"
- Cartan subalgebras produce groupoid models (Kumjian-Renault).
- In the purely infinite case, this follows from work of Szymański, Spielberg, Katsura, Exel-Pardo ...
- ► In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.
- ▶ Our construction is based on joint work with Barlak. It produces C*-diagonals in all classifiable stably finite C*-algebras.

- "classifiable" = "separable simple nuclear \mathcal{Z} -stable UCT"
- Cartan subalgebras produce groupoid models (Kumjian-Renault).
- In the purely infinite case, this follows from work of Szymański, Spielberg, Katsura, Exel-Pardo ...
- ► In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.
- Our construction is based on joint work with Barlak. It produces C*-diagonals in all classifiable stably finite C*-algebras.
 It also produces C*-diagonals in certain non-simple AX-algebras and in Villadsen algebras (j.w. Raad).

Motivating question

Does our construction yield a unique Cartan subalgebra of \mathcal{Z} ?

Motivating question

Does our construction yield a unique Cartan subalgebra of \mathbb{Z} ?

 \triangleright Quick answer: Not in general. If B is a Cartan subalgebra of \mathcal{Z} ,

Motivating question

Does our construction yield a unique Cartan subalgebra of Z?

▶ Quick answer: Not in general. If B is a Cartan subalgebra of \mathcal{Z} , then $B \otimes B$ is another Cartan subalgebra of $\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$.

Motivating question

Does our construction yield a unique Cartan subalgebra of Z?

- ▶ Quick answer: Not in general. If B is a Cartan subalgebra of \mathcal{Z} , then $B \otimes B$ is another Cartan subalgebra of $\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$.
- ▶ What if we fix the homeomorphism type of X = Spec(B)?

Motivating question

Does our construction yield a unique Cartan subalgebra of Z?

- ▶ Quick answer: Not in general. If B is a Cartan subalgebra of \mathcal{Z} , then $B \otimes B$ is another Cartan subalgebra of $\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$.
- ▶ What if we fix the homeomorphism type of X = Spec(B)?
- ▶ What can we say about X = Spec(B)?

Our construction produces C^* -diagonals whose spectra are metrizable and Hausdorff.

Our construction produces C^* -diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact.

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general,

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general, $\dim \leq 2$ if \mathcal{K}_1 is torsion-free,

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general, $\dim \leq 2$ if K_1 is torsion-free, $\dim \leq 1$ if both K_0 and K_1 are torsion-free.

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general, $\dim \leq 2$ if K_1 is torsion-free, $\dim \leq 1$ if both K_0 and K_1 are torsion-free.

A careful analysis of our construction leads to the following:

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general, $\dim \leq 2$ if K_1 is torsion-free, $\dim \leq 1$ if both K_0 and K_1 are torsion-free.

A careful analysis of our construction leads to the following:

Theorem (L): Every classifiable unital stably finite C*-algebra has a C*-diagonal with connected spectrum.

Our construction produces C*-diagonals whose spectra are metrizable and Hausdorff. In the unital stably finite case, the spectra will be compact. The spaces will have $\dim \leq 3$ in general, $\dim \leq 2$ if K_1 is torsion-free, $\dim \leq 1$ if both K_0 and K_1 are torsion-free.

A careful analysis of our construction leads to the following:

Theorem (L): Every classifiable unital stably finite C*-algebra has a C*-diagonal with connected spectrum.

Theorem (L): Every classifiable stably finite unital C^* -algebra with torsion-free K_0 and trivial K_1 has a C^* -diagonal whose spectrum is homeomorphic to the Menger curve.

▶ The Menger curve is the universal 1-dimensional space: Every separable metrizable space of dimension ≤ 1 embeds into it.

- ▶ The Menger curve is the universal 1-dimensional space: Every separable metrizable space of dimension ≤ 1 embeds into it.
- ► The Menger curve is the unique one-dimensional Peano continuum with no local cut points and no non-empty planar open subsets (Anderson)

The uniqueness question

Theorem (L): Every classifiable stably finite unital C*-algebra with torsion-free K_0 and trivial K_1 has 2^{\aleph_0} many pairwise non-conjugate C*-diagonals whose spectra are all homeomorphic to the Menger curve.

The uniqueness question

Theorem (L): Every classifiable stably finite unital C*-algebra with torsion-free K_0 and trivial K_1 has 2^{\aleph_0} many pairwise non-conjugate C*-diagonals whose spectra are all homeomorphic to the Menger curve.

▶ A similar result also holds in the stably projectionless setting.

The uniqueness question

Theorem (L): Every classifiable stably finite unital C*-algebra with torsion-free K_0 and trivial K_1 has 2^{\aleph_0} many pairwise non-conjugate C*-diagonals whose spectra are all homeomorphic to the Menger curve.

▶ A similar result also holds in the stably projectionless setting. The Menger curve M has to be replaced by a locally compact but non-compact analogue of the form $M \setminus C$,

The uniqueness question

Theorem (L): Every classifiable stably finite unital C*-algebra with torsion-free K_0 and trivial K_1 has 2^{\aleph_0} many pairwise non-conjugate C*-diagonals whose spectra are all homeomorphic to the Menger curve.

A similar result also holds in the stably projectionless setting. The Menger curve M has to be replaced by a locally compact but non-compact analogue of the form $M \setminus C$, where C is a non-locally-separating copy of the Cantor space in M.

Some questions

Some questions

 $\mathsf{Q}1\:$ Does every classifiable C*-algebra come from a principal groupoid?

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case?

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case? In our construction, twists appear as soon as K_0 has torsion.

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case? In our construction, twists appear as soon as K_0 has torsion.
- Q2 Which spaces arise as spectra of Cartan subalgebras of \mathbb{Z} ?

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case? In our construction, twists appear as soon as K_0 has torsion.
 - Q2 Which spaces arise as spectra of Cartan subalgebras of \mathbb{Z} ?
 - Our construction might be interesting in topological dynamics.

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case? In our construction, twists appear as soon as K_0 has torsion.
 - Q2 Which spaces arise as spectra of Cartan subalgebras of \mathbb{Z} ?
 - Our construction might be interesting in topological dynamics.
 - ▶ We constructed many minimal groupoids on the Menger curve.

Some questions

- Q1 Does every classifiable C*-algebra come from a principal groupoid?
- Q1a Is every Kirchberg algebra the C*-algebra of a principal groupoid?
- Q1b Do we need twists in the stably finite case? In our construction, twists appear as soon as K_0 has torsion.
 - Q2 Which spaces arise as spectra of Cartan subalgebras of \mathbb{Z} ?
 - Our construction might be interesting in topological dynamics.
 - ▶ We constructed many minimal groupoids on the Menger curve.

Open question

Does there exist a minimal homeomorphism on the Menger curve?

Thank you very much!

•