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Genus polynomial

By the genus distribution of a graph G, we mean the
sequence

γ0(G), γ1(G), γ2(G), · · · ,

where γi(G) is the number of distinct embeddings of G
with genus i for i ≥ 0.

The genus polynomial of G is ΓG(x) =
∑∞

k=0 γk(G)xk.
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Probability genus polynomial

For any graph G, let XG be a random variable with
distribution

pi = P(XG = i) =
γi(G)

ΓG(1)
, i = 0, 1, · · · . (1)

The probability genus polynomial of G is defined as

PXG(z) =
∑
i≥0

pizi.

The probability genus distribution of G is the sequence
p0, p1, . . . , .
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Crosscap-number distribution and
Euler-genus distribution

The crosscap-number distribution :
γ̃1(G), γ̃2(G), · · ·
The crosscap-number polynomial:
Γ̃G(x) =

∑∞
j=1 γ̃j(G)xj.

The Euler-genus distribution:
ε0(G), ε1(G), ε2(G), · · ·
The Euler-genus polynomial:
εG(x) =

∑∞
i=0 εi(G)xi.

Similarly, we have the probability Euler-genus
(crosscap-number) polynomial of G
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For any graph G, it holds that

εG(x) = ΓG(x2) + Γ̃G(x). (2)

When we say embedding distribution of a graph
G, we mean its genus distribution,
crosscap-number distribution or Euler-genus
distribution.
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Global feature for embedding
distribution

Log-concavity, conjectured by Gross, Robbins,
and Tucker (1989), Chen, and Gross (2018)

Partial results obtained by Gross and his
coauthors, Stahl (1997) et. al..
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Mean of embedding distribution or Average
genus, average crosscap-number and average
Euler-genus.

Archdeacon(1989), J. Chen, Gross, and
Rieper(1992,1996), Y. Chen and Y. Liu(2006),
Stahl(1992,1996), White(1996) Y. Chen (2018++),
Zhang, peng and Chen(2019), et. al..
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Variance. Stahl (1996).
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Limit for probability embedding
distribution Xn.

Problem: when n is big enough, whether the
distribution Xn will converge to some
well-known distribution in probability.

If the answer is yes, then it demonstrates the
outline of embedding distribution for graph Gn
when n is big enough.
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Asymptotically normal distribution

Suppose {Gn}
∞
n=1 is a sequence of graphs. For

n ≥ 1, let en and vn be the mean and variance of
embedding distribution of Gn, respectively. We
say the embedding distribution of Gn is
asymptotically normal distribution when n
tends to infinity if for any x ∈ R, we have

lim
n→∞ P(

XGn − en√
vn

≤ x) =
∫ x

−∞
1√
2π

e−
1
2 u2

du.
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Normal distribution

Two interesting properties of normal
distributions:

(1) Symmetry, normal distributions are symmetric
around their mean.

(2) Approximately 95% of the area of a normal
distribution is within two standard deviations of the
mean.
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Asymptotically normal distribution

If the embedding distribution of Gn is
asymptotically normal distribution, then the
number of embeddings of Gn are mainly
concentrated on the interval
(en − 2

√
vn, en + 2

√
vn) when n is big enough.
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Numeric Simulations for ladder
graph Ln = K22Pn

The genus distribution of ladders was obtained
by Furst, Gross and Stateman (1987).
Let c > 0 be a constant. We divide the interval
(−c, c] into m intervals

Ii = (ui−1, ui] :=
(
− c+ 2(i−1)c/m,−c+ 2ic/m

]
, i = 1, · · · , m.
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Numeric Simulations for ladder
graphs

m = 7, n = 13199, and m = 7, n = 14199
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Graph sequences with bounded
maximum genus

A sequence {Gn}
∞
n=1 of graphs is called strictly

monotone sequence if no pair of graphs in the
sequence are homeomorphic and each Gi is
homeomorphic to a subgraph of Gi+1 for all
i > 1.

We say a strictly monotone graph sequence
{Gn}

∞
n=1 bounded if there exists a positive

constant C such that γmax(Gi) ≤ C for i ≥ 1.
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A central limit theorem for {Gn}
∞
n=1

Theorem (B)
Let {Gn}

∞
n=1 be a strictly monotone sequence of connected

graphs. If {Gn}
∞
n=1 is bounded, then the Euler-genus

distribution of Gn is asymptotically normal distribution.
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Sketch of proof

Sketch of proof. Since the strictly monotone
sequence of connected graphs G1, G2, G3, · · · , is
bounded, then the values of the maximum
genus of the graphs approach a finite limit
point, and there exists an index N such that all
but a finite number of graphs in the sequence
can be obtained by attaching ears serially or by
bar-amalgamation of a cactus to GN. The
resulting graph is denoted Gr,s,t. Finally we
prove that the Euler-genus distribution of Gr,s,t is
asymptotically normal distribution.
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Bar-amalgamation

A bar-amalgamation G⊕e H of two disjoint
graphs H and G is obtained by adding a new
edge e = uv between a vertex u of G and a
vertex v of H.

e

Figure: K4 ⊕e (K5 − 2K2)
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Tree-like graphs families

Let {Hn}
∞
n=1 be a sequence of connected graphs.

A sequence of tree-like graphs {Gn}
∞
n=1 are

obtained in the following ways:
(A) For n = 1, G1 = H1.
(B) If we have obtained the graph Gn−1, the graph Gn is

obtained by adding an edge between a vertex of
Gn−1 and a vertex of Hn. I.e, Gn = Gn−1 ⊕e Hn.
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A Proposition

Proposition 1 Let {ξk}
∞
k=1 be a sequence of

independent random variables with finite
second moments. Let
σ2

k = Eξ2
k − (Eξk)2 > 0, Bn =

√∑n
k=1 σ2

k . Assume
that for a sequence of positive constants {Cn}

∞
n=1,

we have sup1≤k≤n |ξk| ≤ Cn, and limn→∞ Cn
Bn

= 0.
Then, it holds that

sup
x∈R

∣∣∣∣P(

∑n
k=1(ξk − Eξk)

Bn
≤ x)−

∫ x

−∞
1√
2π

e−
t2
2 dt
∣∣∣∣ = 0.

when n tends to infinity.
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Theorem (A)
Let {Gn}

∞
n=1 be a sequence of tree-like graphs. Assume the followings

holds.
For each n, Hn is a finite connected graph.

Except a finite number of n ∈ N, γmax(Hn) > γmin(Hn).
Then, the genus distribution of Gn is asymptotically normal
distribution with mean en and variance vn.
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Sketch of proof

Sketch of proof. Step 1. In this step, we prove
that: for two positive constants c, C, it holds that

0 < c ≤ inf
n∈N

Γvar(Hn) ≤ sup
n∈N

Γvar(Hn) ≤ C (3)

and

0 < c ≤ inf
n∈N

Γavg(Hn) ≤ sup
n∈N

Γavg(Hn) ≤ C. (4)
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Step 2. For each n ∈ N, the distribution of random
variable ξ1 + · · ·+ ξn is given by

P(ξ1 + · · ·+ ξn = j) =
γj(Gn)

ΓGn(1)
, j = 0, 1, · · · . (5)

Step 3. In this step, we give a proof of our theorem using
Proposition 1.
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Thank you!
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