Computing distance-regular graph and association scheme parameters in SageMath with sage-drg

Janoš Vidali, University of Ljubljana
Based on joint work with Alexander Gavrilyuk, Aleksandar Jurišić, Sho Suda and Jason Williford
Live slides on Binder
https://github.com/jaanos/sage-drg
June 22, 2021

Association schemes

- Association schemes were defined by Bose and Shimamoto in 1952 as a theory underlying experimental design.
- They provide a unified approach to many topics, such as
- combinatorial designs,
- coding theory,
- generalizing groups, and
- strongly regular and distance-regular graphs.

Examples

- Hamming schemes: $X=\mathbb{Z}_{n}^{d}, x R_{i} y \Leftrightarrow \operatorname{weight}(x-y)=i$
- Johnson schemes: $X=\left\{S \subseteq \mathbb{Z}_{n}| | S \mid=d\right\}(2 d \leq n), x R_{i} y \Leftrightarrow|x \cap y|=d-i$

Definition

- Let X be a set of vertices and $\mathcal{R}=\left\{R_{0}=\operatorname{id}_{X}, R_{1}, \ldots, R_{D}\right\}$ a set of symmetric relations partitioning X^{2}.
- (X, \mathcal{R}) is said to be a D-class association scheme if there exist numbers $p_{i j}^{h}(0 \leq h, i, j \leq D)$ such that, for any $x, y \in X$,

$$
x R_{h} y \Rightarrow\left|\left\{z \in X \mid x R_{i} z R_{j} y\right\}\right|=p_{i j}^{h}
$$

- We call the numbers $p_{i j}^{h}(0 \leq h, i, j \leq D)$ intersection numbers.

Main problem

- Does an association scheme with given parameters exist?
- If so, is it unique?
- Can we determine all such schemes?
- Lists of feasible parameter sets have been compiled for strongly regular and distanceregular graphs.
- Recently, lists have also been compiled for some Q-polynomial association schemes.
- Computer software allows us to efficiently compute parameters and check for existence conditions, and also to obtain new information which would be helpful in the construction of new examples.

Bose-Mesner algebra

- Let A_{i} be the binary matrix corresponding to the relation $R_{i}(0 \leq i \leq D)$.
- The vector space \mathcal{M} over \mathbb{R} spanned by $A_{i}(0 \leq i \leq D)$ is called the Bose-Mesner algebra.
- \mathcal{M} has a second basis $\left\{E_{0}, E_{1}, \ldots, E_{D}\right\}$ consisting of projectors to the common eigenspaces of $A_{i}(0 \leq i \leq D)$.
- There exist the eigenmatrix P and the dual eigenmatrix Q such that

$$
A_{j}=\sum_{i=0}^{D} P_{i j} E_{i}, \quad E_{j}=\frac{1}{|X|} \sum_{i=0}^{D} Q_{i j} A_{i} .
$$

- There are nonnegative constants $q_{i j}^{h}$, called Krein parameters, such that

$$
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{h=0}^{D} q_{i j}^{h} E_{h}
$$

where \circ is the entrywise matrix product.

Parameter computation: general association schemes

[2]:

```
%display latex
import drg
p = [[[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 3, 0], [0, 0, 0, 6]],
    [[0, 1, 0, 0], [1, 2, 1, 2], [0, 1, 0, 2], [0, 2, 2, 2]],
    [[0, 0, 1, 0], [0, 2, 0, 4], [1, 0, 2, 0], [0, 4, 0, 2]],
    [[0, 0, 0, 1], [0, 2, 2, 2], [0, 2, 0, 1], [1, 2, 1, 2]]]
scheme = drg.ASParameters(p)
scheme.kreinParameters()
```

[2]:
$0:\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 6\end{array}\right)$
$1:\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 2 & 2\end{array}\right)$
$2:\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 4 \\ 1 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2\end{array}\right)$
$3:\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 0 & 1 \\ 1 & 2 & 1 & 2\end{array}\right)$

Metric and cometric schemes

- If $p_{i j}^{h} \neq 0$ (resp. $q_{i j}^{h} \neq 0$) implies $|i-j| \leq h \leq i+j$, then the association scheme is said to be metric (resp. cometric).
- The parameters of a metric (or P-polynomial) association scheme can be determined from the intersection array

$$
\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\} \quad\left(b_{i}=p_{1, i+1}^{i}, c_{i}=p_{1, i-1}^{i}\right)
$$

- The parameters of a cometric (or Q-polynomial) association scheme can be determined from the Krein array

$$
\left\{b_{0}^{*}, b_{1}^{*}, \ldots, b_{D-1}^{*} ; c_{1}^{*}, c_{2}^{*}, \ldots, c_{D}^{*}\right\} \quad\left(b_{i}^{*}=q_{1, i+1}^{i}, c_{i}^{*}=q_{1, i-1}^{i}\right) .
$$

- Metric association schemes correspond to distance-regular graphs.

Parameter computation: metric and cometric schemes

[3] :

```
from drg import DRGParameters
syl = DRGParameters([5, 4, 2], [1, 1, 4])
syl
```

[3] : Parameters of a distance-regular graph with intersection array $\{5,4,2 ; 1,1,4\}$
[4]: syl.order()
[4]:
36
[5]:
from drg import QPolyParameters
q225 = QPolyParameters([24, 20, 36/11], [1, 30/11, 24])
q225
[5] : Parameters of a Q-polynomial association scheme with Krein array $\left\{24,20, \frac{36}{11} ; 1, \frac{30}{11}, 24\right\}$
[6]:
q225. order()
[6]
225
[7]:
syl.pTable()
[7]:
$0:\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & 10\end{array}\right)$
$1:\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 4 & 0 \\ 0 & 4 & 8 & 8 \\ 0 & 0 & 8 & 2\end{array}\right)$
$2:\left(\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 1 & 2 & 11 & 6 \\ 0 & 2 & 6 & 2\end{array}\right)$
$3:\left(\begin{array}{rrrr}0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 4 & 12 & 4 \\ 1 & 1 & 4 & 4\end{array}\right)$
[8]: syl.kreinParameters()
[8] :

$$
\begin{aligned}
& 0:\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 16 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 9
\end{array}\right) \\
& 1:\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & \frac{44}{5} & \frac{22}{5} & \frac{9}{5} \\
0 & \frac{22}{5} & 2 & \frac{18}{5} \\
0 & \frac{9}{5} & \frac{18}{5} & \frac{18}{5}
\end{array}\right) \\
& 2:\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & \frac{176}{25} & \frac{16}{5} & \frac{144}{25} \\
1 & \frac{16}{5} & 4 & \frac{9}{5} \\
0 & \frac{144}{25} & \frac{9}{5} & \frac{36}{25}
\end{array}\right) \\
& 3:\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & \frac{16}{5} & \frac{32}{5} & \frac{32}{5} \\
0 & \frac{32}{5} & 2 & \frac{8}{5} \\
1 & \frac{32}{5} & \frac{8}{5} & 0
\end{array}\right)
\end{aligned}
$$

[9](syl.distancePartition())
Distance partition of $\{5,4,2 ; 1,1,4\}$

[11](!%5B%5D(./images/458e14845a0f3452755a8701c15136c2_355_1329_678_1384.jpg)):

```
syl.distancePartition(3)
```


Parameter computation: parameters with variables

Let us define a one-parametric family of intersection arrays.
[12]: r = var("r")
$\mathrm{f}=\operatorname{DRGParameters}\left(\left[2 * r^{\wedge} 2 *(2 * r+1),(2 * r-1) *\left(2 * r^{\wedge} 2+r+1\right), 2 * r^{\wedge} 2\right],\left[1,2 * r^{\wedge} 2, \sqcup\right.\right.$ $\left.\left.\rightarrow \mathbf{r} *\left(4 * r^{\wedge} 2-1\right)\right]\right)$
f. order (factor=True)
[12]: $(2 r+1)^{3} r$
[13]:
$\mathrm{f} 1=\mathrm{f} \cdot \operatorname{subs}(\mathrm{r}==1)$
f1
[13]:
Parameters of a distance-regular graph with intersection array $\{6,4,2 ; 1,2,3\}$
The parameters of $f 1$ are known to uniquely determine the Hamming scheme $H(3,3)$.
[14]:
$\mathrm{f} 2=\mathrm{f} . \operatorname{subs}(\mathrm{r}==2)$
f2
[14]:
Parameters of a distance-regular graph with intersection array $\{40,33,8 ; 1,8,30\}$

Feasibility checking

A parameter set is called feasible if it passes all known existence conditions.
Let us verify that $H(3,3)$ is feasible.
[15]:

```
f1.check_feasible()
```

No error has occured, since all existence conditions are met.
Let us now check whether the second member of the family is feasible.
[16]:

```
f2.check_feasible()
```

InfeasibleError: nonexistence by JurišićVidali12

In this case, nonexistence has been shown by matching the parameters against a list of nonexistent families.

Triple intersection numbers

- In some cases, triple intersection numbers can be computed.

$$
[h i j]=\left[\begin{array}{ccc}
x & y & z \\
h & i & j
\end{array}\right]=\left|\left\{w \in X \mid w R_{i} x \wedge w R_{j} y \wedge w R_{h} z\right\}\right|
$$

- If $x R_{W} y, x R_{V} z$ and $y R_{U} z$, then we have

$$
\sum_{\ell=1}^{D}[\ell j h]=p_{j h}^{U}-[0 j h], \quad \sum_{\ell=1}^{D}[i \ell h]=p_{i h}^{V}-[i 0 h], \quad \sum_{\ell=1}^{D}[i j \ell]=p_{i j}^{W}-[i j 0]
$$

where

$$
[0 j h]=\delta_{j W} \delta_{h V}, \quad[i 0 h]=\delta_{i W} \delta_{h U}, \quad[i j 0]=\delta_{i V} \delta_{j u}
$$

- Additionally, $q_{i j}^{h}=0$ if and only if

$$
\sum_{r, s, t=0}^{D} Q_{r i} Q_{s j} Q_{t h}\left[\begin{array}{lll}
x & y & z \\
r & s & t
\end{array}\right]=0
$$

for all $x, y, z \in X$.

Example: parameters for a bipartite DRG of diameter 5

We will show that a distance-regular graph with intersection array $\{55,54,50,35,10 ; 1,5,20,45,55\}$ does not exist. The existence of such a graph would give a counterexample to a conjecture by MacLean and Terwilliger, see Bipartite distance-regular graphs: The Q-polynomial property and pseudo primitive idempotents by M. Lang.
[17](3500):

```
p = drg.DRGParameters([55, 54, 50, 35, 10], [1, 5, 20, 45, 55])
p.check_feasible(skip=["sporadic"])
p.order()
```

[18]:

```
p.kreinParameters()
```

[18]:
$0:\left(\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 132 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1617 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1617 & 0 & 0 \\ 0 & 0 & 0 & 0 & 132 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$1:\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & \frac{50}{3} & \frac{343}{3} & 0 & 0 & 0 \\ 0 & \frac{343}{3} & \frac{240}{3} & 686 & 0 & 0 \\ 0 & 0 & 686 & \frac{2450}{3} & \frac{343}{3} & 0 \\ 0 & 0 & 0 & \frac{343}{3} & \frac{50}{3} & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
$2:\left(\begin{array}{rrrrrr}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & \frac{28}{3} & \frac{200}{3} & 56 & 0 & 0 \\ 1 & \frac{200}{3} & \frac{2380}{3} & 700 & 56 & 0 \\ 0 & 56 & 700 & \frac{2380}{3} & \frac{200}{3} & 1 \\ 0 & 0 & 56 & \frac{200}{3} & \frac{28}{3} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
$3:\left(\begin{array}{rrrrrr}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 56 & \frac{200}{3} & \frac{28}{3} & 0 \\ 0 & 56 & 700 & \frac{2380}{3} & \frac{200}{3} & 1 \\ 1 & \frac{200}{3} & \frac{2380}{3} & 700 & 56 & 0 \\ 0 & \frac{28}{3} & \frac{200}{3} & 56 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
$4:\left(\begin{array}{rrrrrr}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{343}{3} & \frac{50}{3} & 1 \\ 0 & 0 & 686 & \frac{2450}{3} & \frac{343}{3} & 0 \\ 0 & \frac{343}{3} & \frac{2450}{3} & 686 & 0 & 0 \\ 1 & \frac{50}{3} & \frac{343}{3} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
$5:\left(\begin{array}{rrrrrr}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 132 & 0 \\ 0 & 0 & 0 & 1617 & 0 & 0 \\ 0 & 0 & 1617 & 0 & 0 & 0 \\ 0 & 132 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
We now compute the triple intersection numbers with respect to three vertices x, y, z at mutual distances 2. Note that we have $p_{22}^{2}=243$, so such triples must exist. The parameter α will denote the number of vertices adjacent to all of x, y, z.
[19](!%5B%5D(./images/f284e7ca6a145704ab892287b29e0ae4_361_1136_322_1734.jpg)):

```
p.distancePartition(2)
```

[20]:

```
S222 = p.tripleEquations(2, 2, 2, params={"alpha": (1, 1, 1)})
show(S222[1, 1, 1])
show(S222[5, 5, 5])
```

α
$-12 \alpha+20$
Let us consider the set A of common neighbours of x and y, and the set B of vertices at distance 2 from both x and y. By the above, each vertex in B has at most one neighbour in A, so there are at most 243 edges between A and B. However, each vertex in A is adjacent to both x and y, and the other 53 neighbours are in B, amounting to a total of $5 \cdot 53=265$ edges. We have arrived to a contradiction, and we must conclude that a graph with intersection array $\{55,54,50,35,10 ; 1,5,20,45,55\}$ does not exist.

Double counting

- Let $x, y \in X$ with $x R_{r} y$.
- Let $\alpha_{1}, \alpha_{2}, \ldots \alpha_{u}$ and $\kappa_{1}, \kappa_{2}, \ldots \kappa_{u}$ be numbers such that there are precisely κ_{ℓ} vertices $z \in X$ with $x R_{s} z R_{t} y$ such that

$$
\left[\begin{array}{ccc}
x & y & z \\
h & i & j
\end{array}\right]=\alpha_{\ell} \quad(1 \leq \ell \leq u)
$$

- Let $\beta_{1}, \beta_{2}, \ldots \beta_{v}$ and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{v}$ be numbers such that there are precisely λ_{ℓ} vertices $w \in X$ with $x R_{h} w R_{i} y$ such that

$$
\left[\begin{array}{ccc}
w & x & y \\
j & s & t
\end{array}\right]=\beta_{\ell} \quad(1 \leq \ell \leq v)
$$

- Double-counting pairs (w, z) with $w R_{j} z$ gives

$$
\sum_{\ell=1}^{u} \kappa_{\ell} \alpha_{\ell}=\sum_{\ell=1}^{v} \lambda_{\ell} \beta_{\ell}
$$

- Special case: $u=1, \alpha_{1}=0$ implies $v=1, \beta_{1}=0$.

Example: parameters for a 3-class Q-polynomial scheme

Nonexistence of some Q-polynomial association schemes has been proven by obtaining a contradiction in double counting with triple intersection numbers.
[21]:
q225
[21]:
Parameters of a Q-polynomial association scheme with Krein array $\left\{24,20, \frac{36}{11} ; 1, \frac{30}{11}, 24\right\}$
[22]:

```
q225.check_quadruples()
```

InfeasibleError: found forbidden quadruple wxyz with $d(w, x)=2, d(w, y)=2, \sqcup$ $\rightarrow d(w, z)=2, d(x, y)=3, d(x, z)=3, d(y, z)=3$

Integer linear programming has been used to find solutions to multiple systems of linear Diophantine equations, eliminating inconsistent solutions.

More results

There is no distance-regular graph with intersection array

- $\{83,54,21 ; 1,6,63\}$ (1080 vertices)
- $\{135,128,16 ; 1,16,120\}$ (1360 vertices)
- $\{104,70,25 ; 1,7,80\}$ (1470 vertices)
- $\{234,165,12 ; 1,30,198\}$ (1600 vertices)
- $\{195,160,28 ; 1,20,168\}$ (2016 vertices)
- $\{125,108,24 ; 1,9,75\}$ (2106 vertices)
- $\{126,90,10 ; 1,6,105\}$ (2197 vertices)
- $\{203,160,34 ; 1,16,170\}$ (2640 vertices)
- $\{53,40,28,16 ; 1,4,10,28\}$ (2916 vertices)

Nonexistence of Q-polynomial association schemes [GVW21] with parameters listed as feasible by Williford has been shown for

- 29 cases of 3-class primitive Q-polynomial association schemes - double counting has been used in two cases
- 92 cases of 4-class Q-bipartite Q-polynomial association schemes
- 11 cases of 5-class Q-bipartite Q-polynomial association schemes

Nonexistence of infinite families

Association schemes with the following parameters do not exist.

- distance-regular graphs with intersection arrays $\{(2 r+1)(4 r+1)(4 t-1), 8 r(4 r t-r+$ $2 t),(r+t)(4 r+1) ; 1,(r+t)(4 r+1), 4 r(2 r+1)(4 t-1)\}(r, t \geq 1)$
- primitive Q-polynomial association schemes with Krein arrays $\left\{2 r^{2}-1,2 r^{2}-2, r^{2}+\right.$ $\left.1 ; 1,2, r^{2}-1\right\}(r \geq 3$ odd $)$
- Q-bipartite Q-polynomial association schemes with Krein arrays $\left\{m, m-1, \frac{m\left(r^{2}-1\right)}{r^{2}}, m-r^{2}+1 ; 1, \frac{m}{r^{2}}, r^{2}-1, m\right\}(m, r \geq 3$ odd $)$
- Q-bipartite Q-polynomial association schemes with Krein arrays $\left\{\frac{r^{2}+1}{2}, \frac{r^{2}-1}{2}, \frac{\left(r^{2}+1\right)^{2}}{2 r(r+1)}, \frac{(r-1)\left(r^{2}+1\right)}{4 r}, \frac{r^{2}+1}{2 r} ; 1, \frac{(r-1)\left(r^{2}+1\right)}{2 r(r+1)}, \frac{(r+1)\left(r^{2}+1\right)}{4 r}, \frac{(r-1)\left(r^{2}+1\right)}{2 r}, \frac{r^{2}+1}{2}\right\} \quad(r \geq 5$, $r \equiv 3(\bmod 4))$
- Q-antipodal Q-polynomial association schemes with Krein arrays $\left\{r^{2}-4, r^{2}-9, \frac{12(s-1)}{s}, 1 ; 1, \frac{12}{s}, r^{2}-9, r^{2}-4\right\}(r \geq 5, s \geq 4)$
- Corollary: a tight 4-design in $H\left(\left(9 a^{2}+1\right) / 5,6\right)$ does not exist [GSV20].

Using Schönberg's theorem

- Schönberg's theorem: A polynomial $f:[-1,1] \rightarrow \mathbb{R}$ of degree D is positive definite on S^{m-1} iff it is a nonnegative linear combination of Gegenbauer polynomials $Q_{\ell}^{m}(0 \leq \ell \leq$ D).
- Theorem (Kodalen, Martin): If (X, \mathcal{R}) is an association scheme, then

$$
Q_{\ell}^{m_{i}}\left(\frac{1}{m_{i}} L_{i}^{*}\right)=\frac{1}{|X|} \sum_{j=0}^{D} \theta_{\ell j} L_{j}^{*}
$$

for some nonnegative constants $\theta_{\ell j}(0 \leq j \leq D)$, where $m_{i}=\operatorname{rank}\left(E_{i}\right)$ and $L_{i}^{*}=\left(q_{i j}^{h}\right)_{h, j=0}^{D}$.
[23]:

```
q594 = drg.QPolyParameters([9, 8, 81/11, 63/8], [1, 18/11, 9/8, 9])
q594.order()
```

[24]:

```
q594.check_schoenberg()
```

InfeasibleError: Gegenbauer polynomial 4 on L*[1] not nonnegative: nonexistence ${ }_{\sqcup}$ \rightarrow by Kodalen19, Corollary 3.8.

The Terwilliger polynomial

- Terwilliger has observed that for a Q-polynomial distance-regular graph Γ, there exists a polynomial T of degree 4 whose coefficients can be expressed in terms of the intersection numbers of Γ such that $T(\theta) \geq 0$ for each non-principal eigenvalue θ of the local graph at a vertex of Γ.
- sage-drg can be used to compute this polynomial.
[25](750):

```
p750 = drg.DRGParameters([49, 40, 22], [1, 5, 28])
p750.order()
```

[26]: T750 = p750.terwilligerPolynomial()
T750
[26] :
$-18 x^{4}+42 x^{3}+366 x^{2}-506 x-1452$
[27]:

```
    sorted(s.rhs() for s in solve(T750 == 0, x))
```

[27]:
$\left[-\frac{11}{3},-\frac{1}{6} \sqrt{345}+\frac{3}{2}, 3, \frac{1}{6} \sqrt{345}+\frac{3}{2}\right]$
[28](!%5B%5D(./images/bf89aa25aef42ce99c3498a52388d197_1326_2249_338_1729.jpg)):

```
    plot(T750, (x, -4, 5))
```

We may now use [BCN, Thm. 4.4.4] to further restrict the possible non-principal eigenvalues of the local graphs.
[29]: l, u = -1 - p750.b[1] / (p750.theta[1] + 1), -1 - p750.b[1] / (p750.theta[3]」 $\rightarrow+1$)
l, u
[29]
$\left(-\frac{11}{3}, 3\right)$
[30](!%5B%5D(./images/5dee5724045698c957731f1c01ad9db3_543_1455_338_1729.jpg)) :

```
plot(T750, (x, -4, 5)) + line([(l, 0), (u, 0)], color="red", thickness=3)
```

Since graph eigenvalues are algebraic integers and all non-integral eigenvalues of the local graph lie on a subinterval of $(-4,-1)$, it can be shown that the only permissible non-principal eigenvalues are $-3,-2,3$.

We may now set up a system of equations to determine the multiplicities.
[31]:

```
var("m1 m2 m3")
solve([1 + m1 + m2 + m3 == p750.k[1],
    1 * p750.a[1] + m1 * 3 + m2 * (-2) + m3 * (-3) == 0,
    1 * p750.a[1]^2 + m1 * 3^2 + m2 * (-2)^2 + m3 * (-3)^2 == p750.k[1] *\sqcup
    p750.a[1]],
    (m1, m2, m3))
```

[31]:
$\left[\left[m_{1}=\left(\frac{96}{5}\right), m_{2}=\left(\frac{104}{5}\right), m_{3}=8\right]\right]$
Since all multiplicities are not nonnegative integers, we conclude that there is no distanceregular graph with intersection array

- $\{49,40,22 ; 1,5,28\}$ (750 vertices)
- $\{109,80,22 ; 1,10,88\}$ (1200 vertices)
- $\{164,121,33 ; 1,11,132\}$ (2420 vertices)

Distance-regular graphs with classical parameters

We use a similar technique to prove nonexistence of certain distance-regular graphs with classical parameters (D, b, α, β) :

- $(3,2,2,9)$ (430 vertices)
- $(3,2,5,21)(1100$ vertices)
- $(6,2,2,107)$ (87725 820468 vertices)
- $(b, \alpha)=(2,1)$ and
$-D=4, \beta \in\{8,10,12\}$
- $D=5, \beta \in\{16,17,19,20,21,28\}$
- $D=6, \beta \in\{32,33,34,35,36,38,40,46,49,54,60\}$
$-D=7, \beta \in\{64,65,66,67,69,70,71,72,73,74,77,79,81,84,85,92,99,124\}$
- $D=8, \beta \in\{128,129,130,131,133,134,135,136,137,139,140,141,151,152,155,158$, $160,165,168,174,175,183,184,190,202,238,252\}$
$-D \geq 3, \beta \in\left\{2^{D-1}, 2^{D}-4\right\}$

Local graphs with at most four eigenvalues

- Lemma (Van Dam): A connected graph on n vertices with spectrum

$$
\theta_{0}{ }^{\ell_{0}} \quad \theta_{1}^{\ell_{1}} \quad \theta_{2}^{\ell_{2}} \quad \theta_{3}^{\ell_{3}}
$$

is walk-regular with precisely

$$
w_{r}=\frac{1}{n} \sum_{i=0}^{3} \ell_{i} \cdot\left(\theta_{i}\right)^{r}
$$

closed r-walks ($r \geq 3$) through each vertex.

- If r is odd, w_{r} must be even.
- A distance-regular graph Γ with classical parameters $(D, 2,1, \beta)$ has local graphs with
- precisely three distinct eigenvalues if $\beta=2^{D}-1$, and then Γ is a bilinear forms graph (Gavrilyuk, Koolen)
- precisely four distinct eigenvalues if $(\beta+1) \mid\left(2^{D}-2\right)\left(2^{D}-1\right)$, and then $\beta=2^{D}-2$ (or w_{3} is nonintegral)
- There is no distance-regular graph with classical parameters $(D, 2,1, \beta)$ such that
$-(D, \beta) \in\{(3,5),(4,9),(4,13),(5,29),(6,41),(6,61),(7,125),(8,169),(8,253)\}$
$-D \geq 3$ and $\beta=2^{D}-3$

