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Association schemes

• Association schemes were defined by Bose and Shimamoto in 1952 as a theory underly-
ing experimental design.

• They provide a unified approach to many topics, such as
– combinatorial designs,
– coding theory,
– generalizing groups, and
– strongly regular and distance-regular graphs.
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Examples

• Hamming schemes: X = Zd
n, x Ri y⇔ weight(x− y) = i

• Johnson schemes: X = {S ⊆ Zn | |S| = d} (2d ≤ n), x Ri y⇔ |x ∩ y| = d− i

Definition

• Let X be a set of vertices and R = {R0 = idX, R1, . . . , RD} a set of symmetric relations
partitioning X2.

• (X,R) is said to be a D-class association scheme if there exist numbers ph
ij (0 ≤ h, i, j ≤ D)

such that, for any x, y ∈ X,

x Rh y⇒ |{z ∈ X | x Ri z Rj y}| = ph
ij

• We call the numbers ph
ij (0 ≤ h, i, j ≤ D) intersection numbers.
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Main problem

• Does an association scheme with given parameters exist?
– If so, is it unique?
– Can we determine all such schemes?

• Lists of feasible parameter sets have been compiled for strongly regular and distance-
regular graphs.

• Recently, lists have also been compiled for some Q-polynomial association schemes.
• Computer software allows us to efficiently compute parameters and check for existence

conditions, and also to obtain new information which would be helpful in the construc-
tion of new examples.

Bose-Mesner algebra

• Let Ai be the binary matrix corresponding to the relation Ri (0 ≤ i ≤ D).

• The vector spaceM over R spanned by Ai (0 ≤ i ≤ D) is called the Bose-Mesner algebra.

• M has a second basis {E0, E1, . . . , ED} consisting of projectors to the common
eigenspaces of Ai (0 ≤ i ≤ D).

• There exist the eigenmatrix P and the dual eigenmatrix Q such that

Aj =
D

∑
i=0

PijEi, Ej =
1
|X|

D

∑
i=0

Qij Ai.

• There are nonnegative constants qh
ij, called Krein parameters, such that

Ei ◦ Ej =
1
|X|

D

∑
h=0

qh
ijEh,

where ◦ is the entrywise matrix product.
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Parameter computation: general association schemes

[2]: %display latex
import drg
p = [[[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 3, 0], [0, 0, 0, 6]],

[[0, 1, 0, 0], [1, 2, 1, 2], [0, 1, 0, 2], [0, 2, 2, 2]],
[[0, 0, 1, 0], [0, 2, 0, 4], [1, 0, 2, 0], [0, 4, 0, 2]],
[[0, 0, 0, 1], [0, 2, 2, 2], [0, 2, 0, 1], [1, 2, 1, 2]]]

scheme = drg.ASParameters(p)
scheme.kreinParameters()

[2]:

0 :


1 0 0 0
0 6 0 0
0 0 3 0
0 0 0 6



1 :


0 1 0 0
1 2 1 2
0 1 0 2
0 2 2 2



2 :


0 0 1 0
0 2 0 4
1 0 2 0
0 4 0 2



3 :


0 0 0 1
0 2 2 2
0 2 0 1
1 2 1 2


Metric and cometric schemes

• If ph
ij 6= 0 (resp. qh

ij 6= 0) implies |i− j| ≤ h ≤ i + j, then the association scheme is said to
be metric (resp. cometric).

• The parameters of a metric (or P-polynomial) association scheme can be determined from
the intersection array

{b0, b1, . . . , bD−1; c1, c2, . . . , cD} (bi = pi
1,i+1, ci = pi

1,i−1).

• The parameters of a cometric (or Q-polynomial) association scheme can be determined
from the Krein array

{b∗0 , b∗1 , . . . , b∗D−1; c∗1 , c∗2 , . . . , c∗D} (b∗i = qi
1,i+1, c∗i = qi

1,i−1).

• Metric association schemes correspond to distance-regular graphs.
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Parameter computation: metric and cometric schemes

[3]: from drg import DRGParameters
syl = DRGParameters([5, 4, 2], [1, 1, 4])
syl

[3]:
Parameters of a distance-regular graph with intersection array {5, 4, 2; 1, 1, 4}

[4]: syl.order()

[4]:
36

[5]: from drg import QPolyParameters
q225 = QPolyParameters([24, 20, 36/11], [1, 30/11, 24])
q225

[5]:
Parameters of a Q-polynomial association scheme with Krein array

{
24, 20, 36

11 ; 1, 30
11 , 24

}
[6]: q225.order()

[6]:
225

[7]: syl.pTable()

[7]:

0 :


1 0 0 0
0 5 0 0
0 0 20 0
0 0 0 10



1 :


0 1 0 0
1 0 4 0
0 4 8 8
0 0 8 2



2 :


0 0 1 0
0 1 2 2
1 2 11 6
0 2 6 2



3 :


0 0 0 1
0 0 4 1
0 4 12 4
1 1 4 4
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[8]: syl.kreinParameters()

[8]:

0 :


1 0 0 0
0 16 0 0
0 0 10 0
0 0 0 9



1 :


0 1 0 0
1 44

5
22
5

9
5

0 22
5 2 18

5
0 9

5
18
5

18
5



2 :


0 0 1 0
0 176

25
16
5

144
25

1 16
5 4 9

5
0 144

25
9
5

36
25



3 :


0 0 0 1
0 16

5
32
5

32
5

0 32
5 2 8

5
1 32

5
8
5 0


[9]: syl.distancePartition()

[9]:
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[11]: syl.distancePartition(3)

[11]:

Parameter computation: parameters with variables

Let us define a one-parametric family of intersection arrays.

[12]: r = var("r")
f = DRGParameters([2*r^2*(2*r+1), (2*r-1)*(2*r^2+r+1), 2*r^2], [1, 2*r^2,␣

↪→r*(4*r^2-1)])
f.order(factor=True)

[12]:
(2 r + 1)3r

[13]: f1 = f.subs(r == 1)
f1

[13]:
Parameters of a distance-regular graph with intersection array {6, 4, 2; 1, 2, 3}

The parameters of f1 are known to uniquely determine the Hamming scheme H(3, 3).

[14]: f2 = f.subs(r == 2)
f2

[14]:
Parameters of a distance-regular graph with intersection array {40, 33, 8; 1, 8, 30}
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Feasibility checking

A parameter set is called feasible if it passes all known existence conditions.

Let us verify that H(3, 3) is feasible.

[15]: f1.check_feasible()

No error has occured, since all existence conditions are met.

Let us now check whether the second member of the family is feasible.

[16]: f2.check_feasible()

...
InfeasibleError: nonexistence by JurišićVidali12

In this case, nonexistence has been shown by matching the parameters against a list of nonex-
istent families.

Triple intersection numbers

• In some cases, triple intersection numbers can be computed.

[h i j] =
[

x y z
h i j

]
= |{w ∈ X | w Ri x ∧ w Rj y ∧ w Rh z}|

• If x RW y, x RV z and y RU z, then we have

D

∑
`=1

[` j h] = pU
jh − [0 j h],

D

∑
`=1

[i ` h] = pV
ih − [i 0 h],

D

∑
`=1

[i j `] = pW
ij − [i j 0],

where
[0 j h] = δjWδhV , [i 0 h] = δiWδhU , [i j 0] = δiVδjU .

• Additionally, qh
ij = 0 if and only if

D

∑
r,s,t=0

QriQsjQth

[
x y z
r s t

]
= 0

for all x, y, z ∈ X.
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Example: parameters for a bipartite DRG of diameter 5

We will show that a distance-regular graph with intersection array
{55, 54, 50, 35, 10; 1, 5, 20, 45, 55} does not exist. The existence of such a graph would give a
counterexample to a conjecture by MacLean and Terwilliger, see Bipartite distance-regular
graphs: The Q-polynomial property and pseudo primitive idempotents by M. Lang.

[17]: p = drg.DRGParameters([55, 54, 50, 35, 10], [1, 5, 20, 45, 55])
p.check_feasible(skip=["sporadic"])
p.order()

[17]:
3500

[18]: p.kreinParameters()

[18]:

0 :


1 0 0 0 0 0
0 132 0 0 0 0
0 0 1617 0 0 0
0 0 0 1617 0 0
0 0 0 0 132 0
0 0 0 0 0 1



1 :



0 1 0 0 0 0
1 50

3
343

3 0 0 0
0 343

3
2450

3 686 0 0
0 0 686 2450

3
343
3 0

0 0 0 343
3

50
3 1

0 0 0 0 1 0



2 :



0 0 1 0 0 0
0 28

3
200

3 56 0 0
1 200

3
2380

3 700 56 0
0 56 700 2380

3
200
3 1

0 0 56 200
3

28
3 0

0 0 0 1 0 0



3 :



0 0 0 1 0 0
0 0 56 200

3
28
3 0

0 56 700 2380
3

200
3 1

1 200
3

2380
3 700 56 0

0 28
3

200
3 56 0 0

0 0 1 0 0 0



4 :



0 0 0 0 1 0
0 0 0 343

3
50
3 1

0 0 686 2450
3

343
3 0

0 343
3

2450
3 686 0 0

1 50
3

343
3 0 0 0

0 1 0 0 0 0



5 :


0 0 0 0 0 1
0 0 0 0 132 0
0 0 0 1617 0 0
0 0 1617 0 0 0
0 132 0 0 0 0
1 0 0 0 0 0


We now compute the triple intersection numbers with respect to three vertices x, y, z at mutual
distances 2. Note that we have p2

22 = 243, so such triples must exist. The parameter α will
denote the number of vertices adjacent to all of x, y, z.
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[19]: p.distancePartition(2)

[19]:

[20]: S222 = p.tripleEquations(2, 2, 2, params={"alpha": (1, 1, 1)})
show(S222[1, 1, 1])
show(S222[5, 5, 5])

α

−12 α + 20

Let us consider the set A of common neighbours of x and y, and the set B of vertices at distance
2 from both x and y. By the above, each vertex in B has at most one neighbour in A, so there
are at most 243 edges between A and B. However, each vertex in A is adjacent to both x
and y, and the other 53 neighbours are in B, amounting to a total of 5 · 53 = 265 edges. We
have arrived to a contradiction, and we must conclude that a graph with intersection array
{55, 54, 50, 35, 10; 1, 5, 20, 45, 55} does not exist.

Double counting

• Let x, y ∈ X with x Rr y.
• Let α1, α2, . . . αu and κ1, κ2, . . . κu be numbers such that there are precisely κ` vertices z ∈ X

with x Rs z Rt y such that [
x y z
h i j

]
= α` (1 ≤ ` ≤ u).

• Let β1, β2, . . . βv and λ1, λ2, . . . λv be numbers such that there are precisely λ` vertices
w ∈ X with x Rh w Ri y such that[

w x y
j s t

]
= β` (1 ≤ ` ≤ v).
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• Double-counting pairs (w, z) with w Rj z gives

u

∑
`=1

κ`α` =
v

∑
`=1

λ`β`

• Special case: u = 1, α1 = 0 implies v = 1, β1 = 0.

Example: parameters for a 3-class Q-polynomial scheme

Nonexistence of some Q-polynomial association schemes has been proven by obtaining a con-
tradiction in double counting with triple intersection numbers.

[21]: q225

[21]:
Parameters of a Q-polynomial association scheme with Krein array

{
24, 20, 36

11 ; 1, 30
11 , 24

}
[22]: q225.check_quadruples()

...
InfeasibleError: found forbidden quadruple wxyz with d(w, x) = 2, d(w, y) = 2,␣

↪→d(w, z) = 2, d(x, y) = 3, d(x, z) = 3, d(y, z) = 3

Integer linear programming has been used to find solutions to multiple systems of linear Dio-
phantine equations, eliminating inconsistent solutions.

More results

There is no distance-regular graph with intersection array

• {83, 54, 21; 1, 6, 63} (1080 vertices)
• {135, 128, 16; 1, 16, 120} (1360 vertices)
• {104, 70, 25; 1, 7, 80} (1470 vertices)
• {234, 165, 12; 1, 30, 198} (1600 vertices)
• {195, 160, 28; 1, 20, 168} (2016 vertices)
• {125, 108, 24; 1, 9, 75} (2106 vertices)
• {126, 90, 10; 1, 6, 105} (2197 vertices)
• {203, 160, 34; 1, 16, 170} (2640 vertices)
• {53, 40, 28, 16; 1, 4, 10, 28} (2916 vertices)

Nonexistence of Q-polynomial association schemes [GVW21] with parameters listed as feasi-
ble by Williford has been shown for

• 29 cases of 3-class primitive Q-polynomial association schemes
– double counting has been used in two cases

• 92 cases of 4-class Q-bipartite Q-polynomial association schemes
• 11 cases of 5-class Q-bipartite Q-polynomial association schemes
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Nonexistence of infinite families

Association schemes with the following parameters do not exist.

• distance-regular graphs with intersection arrays {(2r + 1)(4r + 1)(4t − 1), 8r(4rt − r +
2t), (r + t)(4r + 1); 1, (r + t)(4r + 1), 4r(2r + 1)(4t− 1)} (r, t ≥ 1)

• primitive Q-polynomial association schemes with Krein arrays {2r2 − 1, 2r2 − 2, r2 +
1; 1, 2, r2 − 1} (r ≥ 3 odd)

• Q-bipartite Q-polynomial association schemes with Krein arrays{
m, m− 1, m(r2−1)

r2 , m− r2 + 1; 1, m
r2 , r2 − 1, m

}
(m, r ≥ 3 odd)

• Q-bipartite Q-polynomial association schemes with Krein arrays{
r2+1

2 , r2−1
2 , (r2+1)2

2r(r+1) , (r−1)(r2+1)
4r , r2+1

2r ; 1, (r−1)(r2+1)
2r(r+1) , (r+1)(r2+1)

4r , (r−1)(r2+1)
2r , r2+1

2

}
(r ≥ 5,

r ≡ 3 (mod 4))
• Q-antipodal Q-polynomial association schemes with Krein arrays{

r2 − 4, r2 − 9, 12(s−1)
s , 1; 1, 12

s , r2 − 9, r2 − 4
}

(r ≥ 5, s ≥ 4)

– Corollary: a tight 4-design in H((9a2 + 1)/5, 6) does not exist [GSV20].

Using Schönberg’s theorem

• Schönberg’s theorem: A polynomial f : [−1, 1] → R of degree D is positive definite on
Sm−1 iff it is a nonnegative linear combination of Gegenbauer polynomials Qm

` (0 ≤ ` ≤
D).

• Theorem (Kodalen, Martin): If (X,R) is an association scheme, then

Qmi
`

(
1

mi
L∗i

)
=

1
|X|

D

∑
j=0

θ`jL∗j

for some nonnegative constants θ`j (0 ≤ j ≤ D), where mi = rank(Ei) and L∗i = (qh
ij)

D
h,j=0.

[23]: q594 = drg.QPolyParameters([9, 8, 81/11, 63/8], [1, 18/11, 9/8, 9])
q594.order()

[23]:
594

[24]: q594.check_schoenberg()

...
InfeasibleError: Gegenbauer polynomial 4 on L*[1] not nonnegative: nonexistence␣

↪→by Kodalen19, Corollary 3.8.
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The Terwilliger polynomial

• Terwilliger has observed that for a Q-polynomial distance-regular graph Γ, there exists a
polynomial T of degree 4 whose coefficients can be expressed in terms of the intersection
numbers of Γ such that T(θ) ≥ 0 for each non-principal eigenvalue θ of the local graph
at a vertex of Γ.

• sage-drg can be used to compute this polynomial.

[25]: p750 = drg.DRGParameters([49, 40, 22], [1, 5, 28])
p750.order()

[25]:
750

[26]: T750 = p750.terwilligerPolynomial()
T750

[26]: −18 x4 + 42 x3 + 366 x2 − 506 x− 1452

[27]: sorted(s.rhs() for s in solve(T750 == 0, x))

[27]: [− 11
3 ,− 1

6

√
345 + 3

2 , 3, 1
6

√
345 + 3

2

]
[28]: plot(T750, (x, -4, 5))

[28]:

We may now use [BCN, Thm. 4.4.4] to further restrict the possible non-principal eigenvalues
of the local graphs.

[29]: l, u = -1 - p750.b[1] / (p750.theta[1] + 1), -1 - p750.b[1] / (p750.theta[3]␣
↪→+ 1)
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l, u

[29]: (− 11
3 , 3

)
[30]: plot(T750, (x, -4, 5)) + line([(l, 0), (u, 0)], color="red", thickness=3)

[30]:

Since graph eigenvalues are algebraic integers and all non-integral eigenvalues of the local
graph lie on a subinterval of (−4,−1), it can be shown that the only permissible non-principal
eigenvalues are −3,−2, 3.

We may now set up a system of equations to determine the multiplicities.

[31]: var("m1 m2 m3")
solve([1 + m1 + m2 + m3 == p750.k[1],

1 * p750.a[1] + m1 * 3 + m2 * (-2) + m3 * (-3) == 0,
1 * p750.a[1]^2 + m1 * 3^2 + m2 * (-2)^2 + m3 * (-3)^2 == p750.k[1] *␣

↪→p750.a[1]],
(m1, m2, m3))

[31]: [[m1 =
( 96

5

)
, m2 =

( 104
5

)
, m3 = 8

]]
Since all multiplicities are not nonnegative integers, we conclude that there is no distance-
regular graph with intersection array

• {49, 40, 22; 1, 5, 28} (750 vertices)
• {109, 80, 22; 1, 10, 88} (1200 vertices)
• {164, 121, 33; 1, 11, 132} (2420 vertices)
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Distance-regular graphs with classical parameters

We use a similar technique to prove nonexistence of certain distance-regular graphs with clas-
sical parameters (D, b, α, β):

• (3, 2, 2, 9) (430 vertices)
• (3, 2, 5, 21) (1100 vertices)
• (6, 2, 2, 107) (87 725 820 468 vertices)
• (b, α) = (2, 1) and

– D = 4, β ∈ {8, 10, 12}
– D = 5, β ∈ {16, 17, 19, 20, 21, 28}
– D = 6, β ∈ {32, 33, 34, 35, 36, 38, 40, 46, 49, 54, 60}
– D = 7, β ∈ {64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 79, 81, 84, 85, 92, 99, 124}
– D = 8, β ∈ {128, 129, 130, 131, 133, 134, 135, 136, 137, 139, 140, 141, 151, 152, 155, 158,

160, 165, 168, 174, 175, 183, 184, 190, 202, 238, 252}
– D ≥ 3, β ∈ {2D−1, 2D − 4}

Local graphs with at most four eigenvalues

• Lemma (Van Dam): A connected graph on n vertices with spectrum

θ0
`0 θ1

`1 θ2
`2 θ3

`3

is walk-regular with precisely

wr =
1
n

3

∑
i=0

`i · (θi)
r

closed r-walks (r ≥ 3) through each vertex.
– If r is odd, wr must be even.

• A distance-regular graph Γ with classical parameters (D, 2, 1, β) has local graphs with
– precisely three distinct eigenvalues if β = 2D − 1, and then Γ is a bilinear forms

graph (Gavrilyuk, Koolen)
– precisely four distinct eigenvalues if (β+ 1) | (2D− 2)(2D− 1), and then β = 2D− 2

(or w3 is nonintegral)
• There is no distance-regular graph with classical parameters (D, 2, 1, β) such that

– (D, β) ∈ {(3, 5), (4, 9), (4, 13), (5, 29), (6, 41), (6, 61), (7, 125), (8, 169), (8, 253)}
– D ≥ 3 and β = 2D − 3
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