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Association schemes

¢ Association schemes were defined by Bose and Shimamoto in 1952 as a theory underly-
ing experimental design.
® They provide a unified approach to many topics, such as
- combinatorial designs,
- coding theory,
- generalizing groups, and
- strongly regular and distance-regular graphs.
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Examples

¢ Hamming schemes: X = Z
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* Johnson schemes: X = {SC Z, | |S|=d} (2d <n), xRy < |xNy|=d—i

P!

.

o

o0 0o

Definition

-O0—0—0—0— 00 —9
T e

e Let X be a set of vertices and R = {Ry = idx, Ry,...,Rp} a set of symmetric relations

partitioning X?.

* (X,R)issaid tobe a D-class association scheme if there exist numbers pf-;» (0<h,i,j < D)
such that, for any x,y € X,

XR;;V;‘\{ZGX!XRiZRij:P?j

¢ We call the numbers p?j (0 < h,i,j < D) intersection numbers.



Main problem

* Does an association scheme with given parameters exist?
- If so, is it unique?
- Can we determine all such schemes?
* Lists of feasible parameter sets have been compiled for strongly regular and distance-
regular graphs.
* Recently, lists have also been compiled for some Q-polynomial association schemes.
¢ Computer software allows us to efficiently compute parameters and check for existence
conditions, and also to obtain new information which would be helpful in the construc-
tion of new examples.

Bose-Mesner algebra

* Let A; be the binary matrix corresponding to the relation R; (0 < i < D).
¢ The vector space M over R spanned by A; (0 < i < D) is called the Bose-Mesner algebra.

e M has a second basis {Eg Ei,...,Ep} consisting of projectors to the common
eigenspaces of A; (0 <i < D).

¢ There exist the eigenmatrix P and the dual eigenmatrix Q such that
D
Aj = ;)PijEi' Ej = ]X\ ZQU
1=
¢ There are nonnegative constants q ijr called Krein parameters, such that

EiOE]'— |X| ZC] Eh,

where o is the entrywise matrix product.
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Parameter computation: general association schemes

%display latex
import drg

p = [[[1, O, O, 0], [0, 6, O, O], [0, O, 3, 0], [0, O, O, 611,
tco, t, o, o1, 1, 2, 1, 21, [0, 1, O, 21, [0, 2, 2, 2]1],
cfo, o, 1, o1, [0, 2, o, 41, [1, o0, 2, 0], [0, 4, O, 211,
to, o, o, 11, [o, 2, 2, 21, [0, 2, O, 1], [1, 2, 1, 2]]1]

scheme = drg.ASParameters(p)
scheme .kreinParameters ()
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Metric and cometric schemes

o If pf-’]» # 0 (resp. L]Z # 0) implies |i — j| < h < i+ j, then the association scheme is said to
be metric (resp. cometric).

¢ The parameters of a metric (or P-polynomial) association scheme can be determined from
the intersection array

) i i
{bo,b1,...,bp_1;c1,¢2,...,cp}  (bi = pliy1,Ci = Pri1)-

¢ The parameters of a cometric (or Q-polynomial) association scheme can be determined
from the Krein array

* 1k * Lk ok * x *
{bg,b1,...,bp_1;¢1,65,...,cpt  (b; = q1,i+1/C; —511,i—1)~

* Metric association schemes correspond to distance-regular graphs.



Parameter computation: metric and cometric schemes

[3]: from drg import DRGParameters
syl = DRGParameters([5, 4, 2], [1, 1, 4]1)
syl

8l Parameters of a distance-regular graph with intersection array {5,4,2;1,1,4}

[4]: syl.order()

[4]: 36

[5]: from drg import QPolyParameters
225 = QPolyParameters([24, 20, 36/11], [1, 30/11, 24])
q225

51 Parameters of a Q-polynomial association scheme with Krein array {24, 20, % 31, %, 24}

[6]:q225.0rder()

[6]: 205
[7]: syl.pTable()
0. |05 0 0
’ 0 0 20 O
0 0 0 10
0100
1040
) 0 4 8 8
0 0 8 2
00 10
, |01 202
' 1 2 11 6
02 6 2
00 01
5. |00 41
) 0 4 12 4
1 1 4 4



syl.kreinParameters ()
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syl.distancePartition()
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Distance partition of {5, 4, 2: 1, 1, 4}

®)




[11]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[14]:

syl.distancePartition(3)

3-distange partition of {5, 4, 2: 1, 1, 4}

Parameter computation: parameters with variables

Let us define a one-parametric family of intersection arrays.

var("r“)

DRGParameters ([2xr~ 2% (2xr+1), (2*%xr-1)*(2xr-2+r+1), 2*xr-2], [1, 2*%r~2,,
or*x(4xr~2-1)1)

f.order(factor=True)

r
f

(2r+1)°*r

f1 = f.subs(r == 1)
f1

Parameters of a distance-regular graph with intersection array {6,4,2;1,2,3}

The parameters of £1 are known to uniquely determine the Hamming scheme H (3, 3).

f2 = f.subs(r == 2)
f2

Parameters of a distance-regular graph with intersection array {40, 33,8;1,8,30}



Feasibility checking

A parameter set is called feasible if it passes all known existence conditions.

Let us verify that H(3, 3) is feasible.

[15]: f1.check_feasible()

No error has occured, since all existence conditions are met.

Let us now check whether the second member of the family is feasible.

[16]: f2.check_feasible()

InfeasibleError: nonexistence by JuriSiéVidalil2

In this case, nonexistence has been shown by matching the parameters against a list of nonex-
istent families.

Triple intersection numbers

¢ In some cases, triple intersection numbers can be computed.

ifl= |y Y 3| = Hw e X wRirAw Ry Aw Ry 2

e If x Ry y, x Ry zand y Ry z, then we have

D D D
Y.[jh =pl—[0jn, Y lithl=py—[i0n, Y [ijll=p] —[ijo],
/=1 /=1 /=1

where

[0 1] = 6iwdny, [i 0 h] = d;wdnu, [ij 0] = divoju-

* Additionally, g/, = 0 if and only if

D
Y QhiQsiQu {f ‘z ﬂ =0

7,5,t=0

forall x,y,z € X.
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Example: parameters for a bipartite DRG of diameter 5

We will show that a  distance-regular graph with intersection array
{55,54,50,35,10;1,5,20,45,55} does not exist. The existence of such a graph would give a
counterexample to a conjecture by MacLean and Terwilliger, see Bipartite distance-regular
graphs: The Q-polynomial property and pseudo primitive idempotents by M. Lang.

p = drg.DRGParameters([55, 54, 50, 35, 10], [1, 5, 20, 45, 55])
p-check_feasible(skip=["sporadic"])
p.order ()

3500

p.kreinParameters ()

1 0 0 0 00
0132 0 0 00
0. | 0 01617 0 00
o o 0 1617 0 0
0 0 0 0 132 0
0o 0 0 0 01
0 1 0 0 00
1 %0 % 0 00
343 2450
() O R v . S
3. 7?
0 0 o0 3B X1
3 3
0 0 0 0 10
0 0 1 0 00
0 2 2 5 0 0
1w 2 g0 56 0
2: 10 56 700 20
0 0 5 % B o
0 0 0 1 00
00 0 1 00
0 0 56 % 33—80
2380 200
5. | 0 56 700 2R 1
1 % 223& 700 56 0
0o £ 2 5 00
0 0 1 0 00
0 0 0 0 10
0 0 0 % 21
2450 343
S I S B
1 go 3343 0 0 0
3 3
0 1 0 0 00
0o 0 0 0 01
0 0 0 0 132 0
s. |0 0 01617 00
"o o0 117 0 00
0 132 0 0 00
1 0 0 0 00

We now compute the triple intersection numbers with respect to three vertices x, i, z at mutual
distances 2. Note that we have p2, = 243, so such triples must exist. The parameter a will
denote the number of vertices adjacent to all of x, y, z.


http://dx.doi.org/10.1016/j.disc.2014.04.025
http://dx.doi.org/10.1016/j.disc.2014.04.025

[19]: p.distancePartition(2)

[19]:

2—distan?a.gartition of {55, 50, 35,10: 1, 5, 45 55}
C\ 50 350 175
J \_/ 7 A

[20]: S222 = p.tripleEquations(2, 2, 2, params={"alpha": (1, 1, 1)})

show(S222[1, 1, 11)
show(S222[5, 5, 5])

—12a + 20

Let us consider the set A of common neighbours of x and y, and the set B of vertices at distance
2 from both x and y. By the above, each vertex in B has at most one neighbour in A, so there
are at most 243 edges between A and B. However, each vertex in A is adjacent to both x
and y, and the other 53 neighbours are in B, amounting to a total of 5-53 = 265 edges. We
have arrived to a contradiction, and we must conclude that a graph with intersection array
{55,54,50,35,10;1,5,20,45,55} does not exist.

Double counting

* Letx,y € Xwithx R, y.
® Letwy, oy, ..., and ky, k2, . . . K, be numbers such that there are precisely x, vertices z € X
with x Rs z Ry y such that

x y oz|
{h i ]}—oc,f (1<t<u).

® Let B1,B2,... B0 and Ay, Ay, ... A, be numbers such that there are precisely A, vertices
w € X with x R, w R; y such that

[z]v . ﬂ—ﬁ( (1<t<o).

10
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* Double-counting pairs (w, z) with w R; z gives
u v
Y Ko=) Ay
(=1 (=1

® Special case: u = 1,a1 = O impliesv = 1, f; = 0.

Example: parameters for a 3-class Q-polynomial scheme

Nonexistence of some Q-polynomial association schemes has been proven by obtaining a con-
tradiction in double counting with triple intersection numbers.

q225

Parameters of a Q-polynomial association scheme with Krein array {24, 20, %; 1, %, 24}

q225. check_quadruples ()

InfeasibleError: found forbidden quadruple wxyz with d(w, x) = 2, d(w, y) = 2,
~d(w, z) =2, d(x, y) =3, d(x, z) = 3, d(y, z) =3

Integer linear programming has been used to find solutions to multiple systems of linear Dio-
phantine equations, eliminating inconsistent solutions.

More results

There is no distance-regular graph with intersection array

e {83,54,21;1,6,63} (1080 vertices)
{135,128,16;1,16,120} (1360 vertices)
{104,70,25;1,7,80} (1470 vertices)
{234,165,12;1,30,198} (1600 vertices)
{195,160, 28;1,20, 168} (2016 vertices)
{125, 108,24;1,9, 75} (2106 vertices)
{126,90,10;1,6,105} (2197 vertices)
{203,160,34;1,16,170} (2640 vertices)

e {53,40,28,16;1,4,10,28} (2916 vertices)

Nonexistence of Q-polynomial association schemes [GVW21] with parameters listed as feasi-
ble by Williford has been shown for

® 29 cases of 3-class primitive Q-polynomial association schemes
— double counting has been used in two cases

® 92 cases of 4-class Q-bipartite Q-polynomial association schemes

® 11 cases of 5-class Q-bipartite Q-polynomial association schemes

11
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Nonexistence of infinite families

Association schemes with the following parameters do not exist.

e distance-regular graphs with intersection arrays {(2r + 1)(4r + 1)(4t — 1), 8r(4rt — r +
2t), (r+t)(4r+1);1, (r+t)(4r+1),4r(2r+1)(4t — 1)} (r,t > 1)

e primitive Q-polynomial association schemes with Krein arrays {2r? —1,2r> — 2,7> +
1;1,2,72 — 1} (r > 3 odd)

¢ Q-bipartite Q-polynomial = association = schemes  with  Krein  arrays

{m,m -1, m(r:[”,m —r24+1;1, ;ﬂz,rz — 1,m} (m,r > 3 odd)
* (Q-bipartite Q-polynomial association schemes with Krein arrays
241 21 (P41 (=141 241, 1 (r=1)(+1) +)(2+1) (r=1)(?+1) 7’27"‘1} r > 5
2 72 7 2r(r+1)” 4r 7 2r 77 2r(r1) 7 4r / 2r 72 = ’
r =3 (mod 4))

Q-antipodal ~ Q-polynomial  association = schemes  with  Krein  arrays
{492 11,2292 4} (r>55>4)
- Corollary: a tight 4-design in H((9a%> + 1) /5,6) does not exist [GSV20].

Using Schonberg’s theorem

e Schonberg’s theorem: A polynomial f : [—1,1] — R of degree D is positive definite on
sm=1iffitisa nonnegative linear combination of Gegenbauer polynomials Q' (0 < v <
D).

* Theorem (Kodalen, Martin): If (X, R ) is an association scheme, then

m; 1 * 1 D *
& ) = 1x1 Lt
]:

for some nonnegative constants 6; (0 < j < D), where m; = rank(E;) and L = (q?]) ,ZD, o

[23]: 9594 = drg.QPolyParameters([9, 8, 81/11, 63/8], [1, 18/11, 9/8, 9])
9594 .order ()

[23]: 594

[24]: g594.check_schoenberg()

InfeasibleError: Gegenbauer polynomial 4 on L*[1] not nonnegative: nonexistence
—by Kodalen19, Corollary 3.8.
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The Terwilliger polynomial

¢ Terwilliger has observed that for a Q-polynomial distance-regular graph I', there exists a
polynomial T of degree 4 whose coefficients can be expressed in terms of the intersection
numbers of I such that T(6) > 0 for each non-principal eigenvalue 6 of the local graph
atavertexof I'.

* sage-drg can be used to compute this polynomial.

[25]: p750 = drg.DRGParameters([49, 40, 22], [1, 5, 28])
p750.0order ()

[25]: 750

[26]: T750 = p750.terwilligerPolynomial ()
T750

[26] :

—18 x* + 42 x3 + 366 x2 — 506 x — 1452

[27]: sorted(s.rhs() for s in solve(T750 == 0, x))
1B 4 33,1 VI + ]

[28]: plot(T750, (x, -4, 5))

[28]:

We may now use [BCN, Thm. 4.4.4] to further restrict the possible non-principal eigenvalues
of the local graphs.

[29]: 1, u = -1 - p750.b[1] / (p750.thetal1] + 1), -1 - p750.b[1] / (p750.thetal3],
o+ 1)

13



1, u

[29]:
(—%3)

[30]: plot(T750, (x, -4, 5)) + line([(1, 0), (u, 0)], color="red", thickness=3)

[30]:

500 A

Since graph eigenvalues are algebraic integers and all non-integral eigenvalues of the local
graph lie on a subinterval of (—4, —1), it can be shown that the only permissible non-principal
eigenvalues are —3, -2, 3.

We may now set up a system of equations to determine the multiplicities.

[31]: var("ml m2 m3")
solve([1 + ml + m2 + m3 == p750.k[1],
1 * p750.af1] + m1 * 3 + m2 * (-2) + m3 * (-3) == 0,
1 % p750.al1]1"2 + m1 * 372 + m2 * (-2)"2 + m3 * (-3)72 == p750.k[1] *
~p750.a[11],
(m1, m2, m3))

[31]: [ = (%), ma = (*¥),m; =8]]

Since all multiplicities are not nonnegative integers, we conclude that there is no distance-
regular graph with intersection array

e {49,40,22;1,5,28} (750 vertices)
e {109,80,22;1,10,88} (1200 vertices)
e {164,121,33;1,11,132} (2420 vertices)

14



Distance-regular graphs with classical parameters

We use a similar technique to prove nonexistence of certain distance-regular graphs with clas-
sical parameters (D, b, a, B):

* (3,2,2,9) (430 vertices)

(3,2,5,21) (1100 vertices)

* (6,2,2, 107) (87725820468 vertices)
(b, ) ,1) and

II/—\

4 B € {8,10,12}

5, B € {16,17,19,20,21,28}

6, B € {32,33,34,35,36,38,40, 46,49, 54,60}
7, B

8,

€ {64,65,66,67,69,70,71,72,73,74,77,79,81,84,85,92,99, 124}

B € {128,129,130,131,133,134, 135, 136,137,139, 140, 141, 151,152, 155, 158,
160,165,168,174, 175,183, 184,190,202, 238,252}

- D>3,pec{2P-1,2P 4}

|
DUDUD‘
I

Local graphs with at most four eigenvalues
¢ Lemma (Van Dam): A connected graph on 7 vertices with spectrum
90% 9161 9252 93&

is walk-regular with precisely

13 .
wy =) L (6:)
i=0

closed r-walks (r > 3) through each vertex.
- If ris odd, w, must be even.
A distance-regular graph I with classical parameters (D, 2,1, f) has local graphs with
— precisely three distinct eigenvalues if § = 2P — 1, and then T is a bilinear forms
graph (Gavrilyuk, Koolen)
— precisely four distinct eigenvaluesif (8 +1) | (2P —2)(2P — 1), and then g = 2P —2
(or ws is nonintegral)
e There is no distance-regular graph with classical parameters (D, 2,1, f) such that
- (D,B) € {(3,5),(4,9),(4,13),(5,29), (6,41), (6,61),(7,125),(8,169), (8,253) }
- D23andﬁ:2D—3
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