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Given data from the system P, design K such that the resulting
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Loewner Data-Driven Control (L-DDC)

Considered problem

Given data from the system P, design K such that the resulting
closed-loop is as close as possible to the reference model M

Reference model M

—ﬂ)_—{ K }—{{P(iw»}fi#;}* % -M

performant Loewner interpolation under internal
AND reachable Vi, K(iw;) = K*(iw;) stability constraint
(Instability estimation) . M(iw;)
K i) = spaaian
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Application to infinite dimensional systems

© Application to infinite dimensional systems
@ Motivations
@ Case study: the continuous crystallizer
@ Data-driven control approach using the L-DDC framework
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L Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969

2 Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
3 From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus,
Olivi, Poussot-Vassal, Demourant, IEEE Control Systems Letters, 2019.
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Case study: the continuous crystallizer

@ Goal: stabilize the plant around cs = 4.09mol /L

'q,h,.n,c

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in
the Applied Sciences, 2016.

2. Hoo-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H oo -control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and
Nonlinear Control, 2018.
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Case study: the continuous crystallizer

A Goal: stabilize the plant around ¢ = 4.09mol /L

Unstable system and sustained oscillations

Linearization of the PDEs around css
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'q,h,.n,c

 Ad(s) pia(s)
PO= Re(® = po(s) + auls)e # 1 m(s)e

— Frequency-domain data easily accessible

N = 500 frequencies, logspaced between 1073 and 1 rad.s™*

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in
the Applied Sciences, 2016.

2. Hoo-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H oo -control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and
Nonlinear Control, 2018.

7/13



Introduction Application Conclusion
000 000®0000 o

L-DDC Step 1: Building a reference model

(P(l'{u;))—>( Build M ]—>[ Approximate K* )—>[ Reduction of K ]

{ y;P(z1) =0 N { vz M(z) =0
yp;P(pj) = o0 M(pj)ye; = Ve

Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad, International
Journal of Control, 2001.
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(P(i{u;))—>( Build M ]—>[ Approximate K* )—>[ Reduction of K ]

{ yiP@)=0 { v TM(z) = 0
ypP(pj) = o0 M(p;)yp; = Ye;

@ Determine the system’s nature: stable/unstable, NMP or not

Plant
I -Stable projection
-Antistable projection)

Magnitude (d8)

102 10"
Frequency (Hz)

Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard,
Baratchart, IEEE Transactions on Microwave Theory and Techniques, 2018.
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(P(i{u;))—>( Build M ]—>[ Approximate K* )—>[ Reduction of K ]

{ yiP@)=0 { v TM(z) = 0
ypP(pj) = o0 M(p;)yp; = Ye;

@ Determine the system’s nature: stable/unstable, NMP or not
@ If any, estimate the instabilities of the system
Use P.s for Principal Hankel
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= Ho 52 H>
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Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave
Symposium, 2018.
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L-DDC Step 1: Building a reference model

(P(l'(u;))—>( Build M ]—>[ Approximate K* )—>[ Reduction of K ]

{ yIP(z:)=0 N { v M(z)=0
YPJP(PJ) =00 M(pj)YPj = Yp;

@ Determine the system’s nature: stable/unstable, NMP or not
@ If any, estimate the instabilities of the system

Estimated RHP poles 1.07 x 1077 £ 0.852 x 1072
RHP poles (direct search) | 0.99 x 10~* +0.89 x 10~2
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yp;P(pj) = o0 M(pj)ye; = Ve
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@ Determine the system’s nature: stable/unstable, NMP or not
@ If any, estimate the instabilities of the system
© Build an achievable reference model

1

Minit(s) = 117577~
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LDDC Step 2: Controller identification and reduction

{Plw)l—>{  BuldM _ } { approximate k*  }——>{( Reductionof K ]
Objective: obtain a rational model K = (E, A, B, C, D) such that:
M(ywi) _
P(gwi)(1 = M(jwi))

Vi=1...N, K(’Lw,‘) = K*(zw,-) =

A tutorial introduction to the Loewner framework for model reduction, Antoulas, Lefteriu, lonita, Benner, Cohen,
Model Reduction and Approximation: Theory and Algorithms, 2017. 9/13
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A tutorial introduction to the Loewner framework for model reduction, Antoulas, Lefteriu, lonita, Benner, Cohen,
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LDDC Step 3: Closed-loop stability analysis

(P(l'{u;))—>( Build M ]—>[ Approximate K* )—>[ Reduction of K ]

Controller modelling error A

Resulting closed-loop

'
0
'
T
'
\

System T

Reference model M

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable A = K — K*
such that [|All < A if and only if [[(1 = M)P|loc < §

— Limiting the controller modelling error allows to ensure closed-loop internal
stability!

Data-driven controller validation, Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009.

10/13



Introd
000

uction Application Conclusion
00000®00 ©

LDDC Step 3: Closed-loop stability analysis
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Alternative closed-loop stability analysis
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1. Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard,
Baratchart, IEEE Transactions on Microwave Theory and Techniques, 2018
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2. Interpolation-based infinite dimensional model control design and stability analysis, Poussot-Vassal, Kergus,

Vuillemin, chapter to appear.
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1. Advanced PID Control, Astrém, Higglund, 2006
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