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Motivations

Model Order Reduction is
essential

and it can also be used
for data-driven control.

1Robust control of infinite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969

2Control of systems governed by partial differential equations, Morris, Levine, The control theory handbook, 2010.
3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus,
Olivi, Poussot-Vassal, Demourant, IEEE Control Systems Letters, 2019.
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Case study: the continuous crystallizer

Goal: stabilize the plant around css = 4.09mol/L

Unstable system and sustained oscillations

Linearization of the PDEs around css

P(s) =
∆c(s)

∆cf (s)
=

p12(s)

p13(s) + q12(s)e−skf + r12(s)e−skp

→ Frequency-domain data easily accessible
N = 500 frequencies, logspaced between 10−3 and 1 rad.s−1

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in
the Applied Sciences, 2016.

2. H∞-Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H∞-control of infinite dimensional systems, Apkarian, Noll, International Journal of Robust and
Nonlinear Control, 2018.
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L-DDC Step 1: Building a reference model

{
yT
zi P(zi ) = 0

ypj P(pj) =∞ ⇒
{

yzi
TM(zi ) = 0

M(pj)ypj = ypj

1 Determine the system’s nature: stable/unstable, NMP or not

2 If any, estimate the instabilities of the system

3 Build an achievable reference model

Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad, International
Journal of Control, 2001.

Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave
Symposium, 2018.
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1

1 + τs
, τ = 1s
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LDDC Step 2: Controller identification and reduction

Objective: obtain a rational model K = (E ,A,B,C ,D) such that:

∀i = 1 . . .N,K(ıωi ) = K?(ıωi ) =
M(ωi )

P(ωi )(1−M(ωi ))
.
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A tutorial introduction to the Loewner framework for model reduction, Antoulas, Lefteriu, Ionita, Benner, Cohen,
Model Reduction and Approximation: Theory and Algorithms, 2017. 9 / 13
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LDDC Step 3: Closed-loop stability analysis

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable ∆ = K − K?

such that ‖∆‖∞ ≤ β if and only if ‖(1−M)P‖∞ < 1
β

→ Limiting the controller modelling error allows to ensure closed-loop internal
stability!
Data-driven controller validation, Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009.
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Alternative closed-loop stability analysis

H(ωi ) =
P(ωi )Kr (ωi )

1 + P(ωi )Kr (ωi )

1st option

10-2 10-1 100
-150

-100

-50

0

1 Loewner interpolation:
Ĥ(ωi ) = H(ωi )

2 Stable projection on RH∞:
Ĥs = arg min

H∈S+
n,ni ,no

‖H − Ĥ‖∞

3 Stability index S = ‖Ĥs − Ĥ‖∞

S = 4.3511 · 10−6

1. Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard,
Baratchart, IEEE Transactions on Microwave Theory and Techniques, 2018

2. Interpolation-based infinite dimensional model control design and stability analysis, Poussot-Vassal, Kergus,
Vuillemin, chapter to appear.
3. On the closest stable descriptor system in the respective spaces RH2 and RH∞, Köhler, Linear Algebra and
its Applications, 2014.
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Results
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Closed-loop transfer functions.
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⇒ Impact of the complexity-accuracy trade-off

• Comparison with a robust PID1

• Use the closed-loop obtained with the PID as new reference model

⇒ Impact of the choice of the specifications

1. Advanced PID Control, Åström, Hägglund, 2006
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Conclusion

The Loewner framework can be used as a
central tool for the control of infinite
dimensional transfer functions.

Extension to other types of systems?

Model-based design L-DDC
Method more steps direct

Controller structure fixed order/poles linear
Specifications flexible not flexible

(robust) (only stability)
Stability guarantees for Pr conservative

or not embedded
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