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Introduction

Thermodynamically open systems
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Example: any system with external forcing (Rayleigh-Bénard convection, Taylor—Couette flow)
Expected behaviour: conditional asymptotic stability of the non-equilibrium steady state until some critical forcing is reached
(Rayleigh number, Taylor number)
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Concept of stability

We have two solutions s1 and s, starting from (slightly) different initial

conditions:

@ Is it true that s; — s, stay close to each other?

@ Is it true that s — s, —» 0 as t — +0o0?

perturbation
]

steady state ¥ \

t
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Key question

Is it possible to use some thermodynamical concepts — especially for open
systems?
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Lyapunov-type functional, ISOLATED SYSTEMS:

Vineq =def — \5,_, +A1 (Etot - E;) +X2 | (ps — ps) dv

Q
entropy SN——

constant energy constant mass

+ A3 (np — np) dv
Q
constant number of polymers

Identification of Lagrange multiplier (homogeneous steady state): A; = %

dVmeq  d

=S s (B - Eo) b [ avins [ () dv b =-T
dt dt ~~ Q Q dt
entropy S—

constant energy constant mass constant number of polymers

:—/ﬂfdvgo

Pierre Duhem. Traité d'Energetique ou Thermodynamique Générale. Paris, 1911

Bernard D. Coleman and James M. Greenberg. Thermodynamics and the stability of fluid motion. Arch. Ration. Mech. Anal.,
25(5):321-341, 1967

Bernard D. Coleman. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal., 36(1):1-32, 1970
Morton E. Gurtin. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal., 52:93-103, 1973
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Issues

Spatially inhomogeneous steady state

Isolated system (Lyapunov-type functional):

1 —_—
Vmeq —def — | S += (Etot - Etot) + -

entropy ——
constant energy

Spatially inhomogenous steady state:

~

0 = 0(x)

We do not have a natural Lyapunov-type functional as well. Everything is
lost. Really?
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Issues

Lyapunov-type functional — heuristics

Vea(Feall Tea)

oA x s
! Tneqit Tneq = Teq T Teq

Vneq()?neqH S(\neq) —def Veq()?neq + ;neq) - Veq()?neq) -

J. L. Ericksen. A thermo-kinetic view of elastic stability theory. Int. J. Solids Struct., 2(4):573-580, 1966

, Tneq z
-

g Tneq

Teq

Affine correction.

dVeq
dx

Xneq

X=Xneq

M. Bulitek, J. Mélek, and V. Priga. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy,

21(7), 2019
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Lyapunov-type functional
Lyapunov-type functional for thermodynamically OPEN SYSTEMS:
Vica (W] W) =ace ~ {SW[| W) (|| W)}

This is not the second variation, 625! The functional is not “quadratic” in
state variables. Other “Lagrange multipliers” should be added if necessary.

s§(i7v” W) =get S5 (W + ITV) ~S; (W) - DWSGA(W)‘ W]

w=w {
E(W| W) =get Evor (W + W) = Evor (W) — DwEior (W)ly_g [W]
S5 (W) =aer [ pln(w)av

1
Etot (W) =qer /Q So v+ pe(w) v
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Fluxes through the boundary

Time derivative: 4 ,
<
dtVneq (WH > =0
In our Lyapunov-type functional:
d
= (ol (W) — pe (W)

Fluxes through the boundary (Dirichlet data for temperature):

0 divj, — divj, = O div <§’e 5) — divj,
:div<A" >—d|v_[e—V9.A _
0+6 0+0
5 o
_dIV _I Je _ve./\fe~
S
boundary term, §|BQ: volumetric term
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Vessel with walls kept at non-uniform temperature

Isolated vessel

no mechanical energy exchange
V]go =0

no heat exchange
Jgem|y, =0

spatially homogeneous
steady temperature field 6

zero velocity field
v=0
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Thermal bath

no mechanical energy exchange
V]go =0

n

spatially homogeneous
temperature boundary
condition 6|y, = Bhar

spatially homogeneous
steady temperature field 6

zero velocity field
v=0
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Vessel with walls kept at non-uniform temperature

Spatially non-uniform wall temperature

no mechanical energy exchange
V]po =0

n

spatially inhomogeneous
temperature boundary
condition 6),, = Opar

spatially inhomogeneous _
steady temperature field 6

Q

zero velocity field
v=0
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Incompressible Navier—Stokes—Fourier fluid

Mechanical quantities:

divv =0
pd—‘; —divT
Cauchy stress tensor:
T=—pl+2vD
Temperature:
d0 2vD : D +div (kV8)
— = vD : iv(k
'Ocvdt A

Cmech, dissipative heating

Boundary conditions:

V‘BQ =0 9’8{2 = der
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Incompressible Oldroyd-B fluid

Mechanical quantities:

divv =0
p% =divT

\

V1Br,y + 1 (B“pw B I) =0

Cauchy stress tensor:

T=—-pl+2vD+ M(B,gp(t))

é
Temperature:
dé u2 . .
,ocva =2vD: D+ 20n (Tr Bﬁp(t) + Tr (Bﬁp(t)) — 6) +div (kV0)
Cmech, dissipative heating
Boundary conditions:
V|8Q =0 9‘39 = Opar
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Vessel with walls kept at non-uniform temperature

Expected result

Notation:

Steady state:

v=0
f = solution to steady heat equation

Steady state temperature 9 solves:

0 = div (Wé)

5‘ .y
50 bdr

Arbitrary perturbation v, 9 should decay! No “close to equilibrium”,

“we can neglect” excuses, only “classical solution exists”.
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Vessel with walls kept at non-uniform temperature

Decay of kinetic energy

Evolution equation for the velocity:

d

P = = div(—pl +2vD)

Evolution equation for the net kinetic energy:

; |
— 2vD : Dd
2 pu /Q v

James Serrin. On the stability of viscous fluid motions. Arch. Ration. Mech. Anal., 3:1-13, 1959
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Vessel with walls kept at non-uniform temperature

Main issues
Temperature:
df 2vD: D +div (kV6)
— = vD:
PCth ol
Cmech, dissipative heating
Problem:

@ We do not know when and where is the kinetic energy dissipated.
@ We do not know what are the fluxes through the boundary.

o If v is small, it is not necessarily true that D is small.
Dissipative heating:

+o0 +o00
/ (/ Cmochdv>dt=/ </21/D:de>dt<+oo
t=0 Q t=0 Q

Do not touch the dissipative heating. Use only its positivity!
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Vessel with walls kept at non-uniform temperature

Main issues

How to measure the distance form the steady state?

pCV,ref% /Q % dv = — /Q Kref VO ® VO dv +/Q 2uD : D 0 dv

Cmech dissipative heating

+ /Qpcvyref (V ° V@) 0 dv
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Vessel with walls kept at non-uniform temperature

Key tool — decay of integrable functions

We know:
—+o0

y(r)dr < G
7=0
We want:
lim y(t)=0

t—+00

We need:

L <fy)+h

dt

Songmu Zheng. Nonlinear evolution equations, volume 133 of Chapman & Hall/CRC Monographs and Surveys in Pure and
Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2004

P. Krej&i and J. Sprekels. Weak stabilization of solutions to PDEs with hysteresis in thermovisco-elastoplasticity. In R. P.
Agarwal, F. Neuman, and J. Vosmansky, editors, Proceedings of Equadiff 9, pages 81-96, Brno, 1998. Masaryk University
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Candidate for Lyapunov functional

Convenient measure for the size of perturbation:

o (W] ) = [yt |7 10 (147}

Time derivative:
P _ ]
&Vmeq<WH W) = —/erefHVIn <1 + ) eVin <1 + §> dv

2vD: D ~ ]
_/ e dv—l—/pcv,ref(VHov) In{1+4+ =] dv
Ja 1+% Q 0

We are “almost done”, x € (—1, xcrit):

1
dv—i—/p]v|2 dv
Q2

Y D

—In(1+x))P < —[x—In(1+x)]
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Vessel with walls kept at non-uniform temperature

12 Classical thermodynamics

family of isotherms may be plotted out, as shown schematically in
fig. 1. Now let us label each isotherm with a number, 6, chosen at wil,
which we call the empirical temperature corresponding to the given
isotherm. Then provided there is some system, however arbitrary, in
the labelling of the isotherms, there will exist a relationship (not
necessarily analytic) between P, V and 6 which may be written in the
same form as (2°7), 4P, V)=0.

Once this labelling of isotherms has been carried out for one par.
ticular mass of fluid, however, there exists no latitude of choice so far
as other fluids are concerned, if consistency is to be achieved. For the
isotherm of a second fluid in equilibrium with the first must be labelled
with the same 6. If, and only if, this is done can we say that all fuids
having the same value of 8 are in equilibrium with one another. This
brings us to the same result as was derived before; the two arguments
are equivalent.

Tt s because of the element of choice in the labelling of the isotherms

y) quantity A. B. Pippard. Elements of classical thermodynamics for
is referred to as the empirical temperature. 1t is usual to choose as the advanced students of physics. Cambridge University Press,
thermometric body a fluid whose properties make a rational choice of Cambridge, 1964
6 particularly simple. For example, in a mercury-in-glass thermo- '
meter there is effectively only one variable, the volume of the mercury,
and 6 is taken to be a linear function of the volume. The particular
:;l‘lﬁsht li"le leecﬁed dePef;ds on th: choice of !c&le:fw\x;rdinswﬁ R. L. Fosdick and K. R. Rajagopal. On the existence of

sius scale, 0 is put equal to 0 at the temperature of meltingice, B :

100 at the femperature of water boilingp'“ prein “:mphm a manifold for temperature. Arch. Ration. Mech. Anal.,
pressure. Two fixed points are sufficient to determine the linear rels 81(4):317-332, 1983
tion. Consider now the perfect gas scale of temperature. This is

capable of simple definition because of the analytical simplicity of the

isotherms, which for perfect gases follow Boyle’s law, PV =constant.

Thus the equation of state of a perfect gas on any empirical scale must

take the form PV=§0),

and the nature of the empirical scale determines the form of the
function f(6). It happens that if the empirical scale is fixed by
mercury-in-glass thermometer, f(6) is very nearly a linear function
over a wide range of temperature. This experimental result makes it
convenient to establish an empirical scale in terms of a perfect gas
by adopting as a definition of # the equation

PV=R6.

The constant R is chosen for any particular mass of gas in such s way
that the value of 8 shall change by 100 between the melting-point of
ice and the boiling-point of water.
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Vessel with walls kept at non-uniform temperature

Choose a different temperature scale

Alternative temperature scale:

O (0N
ﬁref et Href

Corresponding candidate for Lyapunov functional:

Vribg (WH W) =def /Q,OCV,refé\ [g % ((1 + g)’" — 1)] dv

1
+/2p|v|2 dv
Q
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Vessel with walls kept at non-uniform temperature

Choose a different temperature scale — formal argument

Pointwise evolution equation, f is a given function:

d~ R ndiff - ndiff
pd—: |:Cv’ref0f <e°V7r6f>] = div l:ﬁ:refv <0f (gv,m))]

=R ndiff ndiff ndift
— /{I‘efef” eV, ref vecv,ref ° VGCV,ref

+ f/ (e!l\/‘%i:cff> Cmcch (/V‘\/ + VNV)

ndiff naig \  maig ]
+ pCV,ref f | eVref — f, eViyref | gViyref | v @ Ve

]
Ndiff =def CVref In [ 1+ A
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Vessel with walls kept at non-uniform temperature

Result — unconditional stability

Steady state 9, perturbation 6, m, n € 0,1), n>m> Z:

—\ n m
7|t 0 1 0 -

/PCv,ref9 1+ 2} —2(142) 4+ 227 gy 252

@ n 0 m 0 mn

Corollary:

p

~ ] o
Vp € [1,400): / PV reff |In | 14 ? dv 2% o
Q

Not based on a Lyapunov-type technique! Neat thermodynamics based
trick: We are exploiting ambiguity in the choice of temperature scale.

M. Dostalik, V. Priiga, and J. Stein. Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically isolated
vessel with spatially non-uniform wall temperature. Math. Comput. Simulat., 2020. In press

M. Dostalik, V. Pri%a, and K. R. Rajagopal. Unconditional finite amplitude stability of a fluid in a mechanically isolated vessel
with spatially non-uniform wall temperature. Contin. Mech. Thermodyn., 33:515-543, 2021
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Flows of viscoelastic fluids

Elastic turbulence

Figure 3 Two snapshots of the flow at Wi = 13, Re = 0.7. The flow under the black
upper plate is visualized by seeding the fluid with light reflecting flakes (1% of the
Kalliroscope liquid). The fluid is illuminated by ambient light. Although the pattern is quite
irregular, structures that appear tend to have spiral-like forms. The dark spotin the middle
corresponds to the centre of a big persistent thoroidal vortex that has dimensions of the
whole set-up.

A. Groisman and V. Steinberg. Elastic turbulence in a polymer solution flow. Nature, 405(6782):53-55, 2000
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Stability of flows of Giesekus fluid

Mechanical variables:

divv =0
p% =divT
4 1 5
By = i [aB2 -+ (1= 20)By,, — (1 - a)I]

Cauchy stress tensor T:

2 _
T=ml+=Ds+ :(B,%(t))(S

Upper convected derivative, L = Vv:

. dA A oA
A—ger 2 _LA—ALT LA A
def 7 g et 8t+(V’V)
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Flows of viscoelastic fluids

Specific Helmholtz free energy and entropy production

Specific Helmholtz free energy ):

0
b =qus —cy <In (Gref) - 1) +35 <Tr B, — 3 — Indet B,fp(t))

Entropy production £ = %:

¢ =qet 2vD: D
2V1 " [aB2 +(1-30)By,, + (1 - a)B.L, +(3a—2)l
Vol

g
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Flows of viscoelastic fluids

Giesekus fluid — Lyapunov functional

Pair [V, Bﬁp(t)} is a steady solution to the governing equations, we want to
show that perturbation vanishes [V, Bﬁp(t)].
vV=Vv-+v
By = Bryw 1 Bryg)

Lyapunov functional (energetic part only):

v(w|w) :def;/ﬂpmz dv

- =1 —— =1 ——
+2 /Q [—indet (14+B. iy Boy, ) +Tr(Bryy Boy, )] av

M. Dostalik, V. Pri%a, and K. Tama. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type
fluid. Entropy, 21(12), 2019
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Flows of viscoelastic fluids

Giesekus fluid — time derivative of Lyapunov functional

Time derivative of Lyapunov functional:

/ “D:Ddv— B :Ddv
Fp(t) -

—/QDVonV
/QiTr (B BrBrw  (FeV)Bo ] dv
+/Q§E§;)_ (T8 + Bl ) v
)(NA_l)T]

_/Q 2(1 - a)Wi Kk [(B ) Bre Bt

= (W] w)

/\ 1/\/2} dv

/ W Fip(t)
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Flows of viscoelastic fluids

Distance

V(Xeq +X)

Bures—Wasserstein distance, symmetric positive definite matrices:

1
1 2
distp(a), Bw (A, B) =def {TrA L TrB—2Tr [(A%BA%) 2] }

Another distance, symmetric positive definite matrices:

distp(a). 5, (A B) =der ’In (A—%BA—%)

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures—Wasserstein distance between positive definite matrices. Expo.

Math., 37(2):165-191, 2019

Rajendra Bhatia. Positive definite matrices. Princeton University Press, Princeton, 2015
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Flows of viscoelastic fluids

Taylor—Couette flow — problem setting

—

Governing equations have a steady solution [p, v, B,ip(t),
has an analytical formula for the solution.

5]. One (almost)
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Taylor—Couette flow — stability bounds for Giesekus fluid

0.3
0.25
0.2
Wi Wi 0.15
0.1
e 0.05
0
Re

C1<0,C2<0 . C1<0,C2<0

C1<0,0220 ° C1<0,C220

C120,C2<0 a C120,C2<0

C120,0220 . C120,C220 .
(a) Shear modulus = = 0.1. (b) Shear modulus = =

Figure: Stability bounds for Taylor—Couette flow.

M. Dostalik, V. Pri%a, and K. Tama. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type
fluid. Entropy, 21(12), 2019
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Conclusion

Conclusion

@ Thermodynamic framework for stability analysis of open systems.
@ Description of proximity of two different solutions.

@ Tested for complex fluid models such as incompressible viscoelastic
rate-type fluids.

Collaborators: Miroslav Buli¢ek, Mark Dostalik, K. R. Rajagopal, Josef
Mdlek, Judith Stein
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Conclusion
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