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Data-Driven Reduced-Order Modeling

Unknown

System

Task: Based on input/output measurements, construct a low-dimensional
surrogate model

Surrogate .
t
Model )

u(t) —>

such that ||y — 7|| is small for all admissible inputs u.
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Considered Class of Structures for the Surrogate Model

@ we consider SISO, LTI systems with transfer functions of the form

K -1
H(s)=c' (th(s)Ak) b
k=1

@ examples:
» first-order systems

H(s)=c" (sA1+A) 'b
» second-order systems
H(s) = c" (s°A1 + sA> + A3)_1 b

» fractional-order systems

K -1
H(s)=c" <Z sakAk> b
k=1
» systems with time delay
H(s)=c' (sAL+ A +e A;s) ' b
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Road Map for this Talk

{ Measured Time-Discrete Input/Output Data ]

Y

{ Estimated Frequency Measurements of H(s) }

A 4

[ Structured Surrogate Model }
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Realization by the Loewner Framework

Realization based on Frequency-Domain Data
o LTI first-order systems [Mayo, Antoulas '07], [Lefteriu, Antoulas '10], [Beattie,
Gugercin '12]
parameter-dependent systems [lonita, Antoulas '14]
time-delay systems [Pontes Duff, Poussot-Vassal, Seren '15], [S., Unger '16]
bilinear systems [Antoulas, Gosea, lonita '16]
quadratic-bilinear systems [Gosea, Antoulas '18]
structured LTI systems [S., Unger, Beattie, Gugercin '18]

switched systems [Gosea, Petreczky, Antoulas '18]
@ LPV systems [Gosea, Petreczky, Antoulas '21]
Realization based on Time-Domain Data

@ LTI first-order systems [Lefteriu, lonita, Antoulas '10], [Peherstorfer, Gugercin,
Willcox '17]

@ bilinear systems [Karachalios, Gosea, Antoulas '20]
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Transfer Function Estimation based on Given 1/O Data (I)

@ assume we are given time-discrete input/output data

J
ui = u(jor), yj=y(oe) = Zh,—uj_,- forj=0,...,N-1
i=0

from a causal, BIBO stable, LTI system with zero initial value
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Transfer Function Estimation based on Given |/O Data (I)

@ assume we are given time-discrete input/output data

J
ui = u(jor), yj=y(oe) = Z hiuj—; forj=0,...,N—

from a causal, BIBO stable, LTI system with zero initial value
@ using the discrete Fourier series

1 . i1 N 2mik
uj = Nzukqé:NZukqé with gy ::exp< N )
k=0 k€T
and H;(z) 1= Y% _o hkz ™ we find
Zhuj ,:—ZukH (qk) q,{ forj=0,....,.N—1
kel
P. Schulze (TU Berlin)
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Transfer Function Estimation based on Given 1/O Data (II)

1 R ; . 2mik
yj = Ng;ukHj(qk)q,{ with g, = exp < N )

Theorem

Suppose the data uj, yj, j = 0,...,N —1 stem from a causal, BIBO stable
LTI system. Then, there holds

lim H;j(z) = Hz(z) forallzeS:={zeC||z| =1}.

_}—)OO

@ proposed method (cf. [1]): estimate Hz(qk) for k € Z by solving

arg min Z

(Hk)keI J=Jmin

2

Ukaqk
kEI

[1] Peherstorfer, Gugercin, Willcox. Data-driven reduced model construction with time-domain Loewner models, SIAM J. Sci.
Comput., 39(5): A2152-A2178, 2017.
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Choice of the Input Signal

@ using the input signal

)=+ e (27“ ’-‘) with ;= u(joe) = " af

kel kEI
yields the output

Jot Jt
yj =y(de) = /h(jét —o)u(o)do = /h(a)u(j5t —o0)do

0 0

i k k

2wiko >1 1 j 27
quk/ U)exp< NG, >da ~ NquH<_N6t)

kel keZ

o discrete input signal has the property iy =1 if k € Z and &, = 0 else
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Algorithm for the Transfer Function Estimation

Input: frequencies of interest 5\1, 5\7 € iR; jmin; 6¢; N; B
Output: derived frequencies A1, ..., A, and corresponding transfer
function estimates

1: Solve
A= arg min ‘s—j\j forj=1,...,F
se{0,3% .., 2”’},’;’;1) }
2: Remove redundant frequencies to obtain Ay, ..., A\, with r < F.
3: Construct input signal as on last slide and obtain uj, y;, j =0,..., N—1.
4. Compute Fourier coefficients of the input signal via an FFT.
5: Solve the least squares problem

2

1 JP
yj—NZUkaQé
keT

N—1
arg min E

(Hi)kez  j=jmin
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The Structured Realization Problem [2]

@ assume we are given transfer function evaluations
H(\j) =0, forj=1,...,Kn
and functions b1, ..., hk defining the structure
@ task: find Ay,...,Ax € C"" and b, ¢ € C" such that

-1

K
H(s):=c' Z hi(s)Ak b
k=1

satisfies H(\;) = H(\;) for j =1,...,Kn
@ special case K =2, hi(s) :=s, ha(s) := —1 is solved in [3]

[2] S., Unger, Beattie, Gugercin. Data-driven structured realization, Linear Algebra Appl., 537: 250-286, 2018.

[3] Mayo, Antoulas. A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425: 634—662,

2007.
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Main ldea of the Realization Procedure from [2] (I)

o divide the given transfer function data into two sets

(Aey Or=HOW)E . (00, G =H(o)E] with g+ qe = K

K -1
e H(o)) can be written as H(o,) = ¢ <Z BHr( )Ak> b
k=1

:?;r;j
o H(o)) = (; is satisfied iff there exists P € Cc™l st
K
= CTpr;j and Z bk(7))Akp,; = b
k=1

[2] S., Unger, Beattie, Gugercin. Data-driven structured realization, Linear Algebra Appl., 537: 250-286, 2018.
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Main Idea of the Realization Procedure from [2] (I1)
@ all interpolation conditions are met iff there exist P., Py s.t.
K
1'7=c"P, > APb(r)=b1"
k=1
K
©1=P/b, D (NP Ac=1cT
k=1

@ by fixing P, and P, this becomes a linear system for Ay,..., Ak, b, c

o for further details (e.g. MIMO case, real-valued realizations), see [2]

[2] S., Unger, Beattie, Gugercin. Data-driven structured realization, Linear Algebra Appl., 537: 250-286, 2018.
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Estimation of Realization Parameters from Data

@ system structure may depend on a parameter, e.g., for delay systems
H(s,7) = ¢ (sA1+ A+ e ™ A3) b

o for each fixed 7 value we may construct a realization H(s, 7)

@ idea: based on additional transfer function measurements

(s mj = H(, 7)){y

we estimate 7 by solving the nonlinear least squares problem
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Numerical Example with a Time Delay

@ considered delay system has state dimension 12 and transfer function

H(s)=c" (sA1+ A +e ™A;) 'b with7 =1

101 IR IR IR IR IR T T T

= original

100

101

[H(iw)]

102

-3 Lol Lol Lol Lol Lol Ll Ll

107% 1073 1072 1071 100 10! 102 103
w
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Comparison in the Time Domain

0.1
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Comparison of the Transfer Function Poles

original model

500

500 |- \ ’ realization with estimated 7
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Conclusion

Summary

@ proposed method to obtain structured LTI systems from time-domain
data [4]

o first numerical results for a time-delay test case look promising
Outlook

@ enforcement of stability

@ application to other structures and noisy data

[4] Fosong, S., Unger. From time-domain data to low-dimensional structured
models. ArXiv preprint 1902.05112, 2019.
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