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Inverse Problems and Ill-posedness

Consider operator equation

with compact operator K acting between Banach spaces

This problem is ill-posed:

- Potential non-existence or non-uniqueness of solutions

- Instability, i.e. discontinuous dependence on data f
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Model: Forward vs. Inverse

Example image reconstruction

Forward operator maps image u to indirect data f

u K f

Image reconstruction is the solution of the of the operator equation

(application of the inverse operator)
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Regularization

The problem needs to be approximated by well-posed one(s)

Topologists answer: restrict domain of u to a compact set
[Tikhonov 1943]

Hilbert space theory: approximate least-squares

by

[Tikhonov 43/63,Phillips 62,Ridge 70] [Tikhonov, Glasko 64, Morozov 66]
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The 70s and 80s

Basic analysis of linear regularization methods in Hilbert spaces, 

convergence as noise level and regularization parameter tend to zero

First error estimates in dependence of noise level and regularization

parameter

[Nashed-Votruba 73/74, Nashed-Wahba 74, Groetsch 80, Groetsch 84, Natterer

80/83]

Application to integral equations of the first kind and Radon inversion (CT)

Projection methods [Natterer 1977]

Iterative regularization methods [Vasilev 83,Groetsch 85,Vainniko 86]

Truncated singular value decomposition [Elden 77, Hansen 86]
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The 90s: Nonlinearity

General convergence analysis based singular value decomposition

Quantification of ill-posedness based on decay of singular values

Complete theory of linear regularization finished in the 90s 
[Engl-Hanke-Neubauer 96]

Regularization methods for nonlinear inverse problems

- Tikhonov regularization [Tikhonov-Arsenin 77,Seidman-Vogel 87, Engl-Kunisch-

Neubauer 89]

- Iterative regularization methods [Hanke-Neubauer-Scherzer 95, Scherzer 95]

[Hanke 96, Kaltenbacher-Neubauer-Scherzer 97,Hohage 97] [Hanke, Groetsch 96]

Analysis based on variational techniques, local linearizations of the operator
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Modern regularization methods

Paradigms of the 21st century:

- Investigate detailed structure of regularized solutions, non-asymptotic

- Make structured use of available prior information

Methods based on:

- Sparsity and similar priors

- Bayesian prior distributions

- Machine learning and available large data sets

Mostly related to variational methods
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Variational Models

Combine fitting term measuring distance between predicted data and

(measured noisy data) with regularization functional J

Optimality condition, convex J

Source condition (range condition): any solution of the variational method

satisfies
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Variational Models

Relation to Bayesian estimation

Maximum a-posteriori probability estimate satisfies

Compare
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Fidelity term

Data fidelity term F comes from statistical model of the forward process: 

negative log-likelihood

Example: additive Gaussian noise leads to quadratic fidelity term

Example: Poisson noise (frequent in imaging with photon counts) leads to

Kulback-Leibler divergence
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Choice of regularization

How to choose a suitable regularization functional ? 

Simple choice: Gaussian prior = quadratic regularization functional

Example: Sobolev seminorms to enforce smoothness

Problem: oversmoothing
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Oversmoothing of simple regularizations

Typically forward operator smoothing, i.e. defined on smaller space

Example:

Source condition

Elliptic regularity implies at least

Hence, no discontinuity, i.e. no edges
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Choice of regularization

Alternative: p-Laplacian energy

Similar smoothing properties as long as p > 1, hence consider total variation

Optimality condition
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Choice of regularization

Source condition

Note that g corresponds to (generalized) normal vector field on level sets

(discontinuity sets) of u, its divergence equals mean curvature

Consequence: solutions of TV 

regularization can be discontinuous, 

but have nice discontinuity sets

(smooth curvature)
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Total Variation Regularization

Example: PET reconstruction (inversion of Radon transform with Poisson

noise) [Müller et al 2013]

20min data Simple Recon

(low noise) (EM)

5s data Simple Recon TV

(high noise)
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Variants of total variation

TV regularization suffers from staircasing: piecewise smooth parts often

reconstructed by stair-type structure

Example: denoising

K = embedding operator

to L2

[Rudin-Osher-Fatemi 1992] 

[PhD Brinkmann 2019]
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Variants of total variation

TV regularization suffers from staircasing: piecewise smooth parts often

reconstructed by stair-type structure

Improved versions by infimal convolution [Chambolle-Lions 1997]

or total general variation [Bredies-Kunisch-Pock 2010]

Various other generalizations to higher-dimensional (spectral) and time-

dependent images
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Sparsity

Basic idea in compressed sensing: choose simple solution (minimal 

combinations)   [Donoho 2006, Candes-Tao 2006]

Analysis formulation: for some frame system choose

Synthesis formulation:
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Sparsity

Analysis in synthesis formulation

Redefine forward operator

Rewritten variational problem

Optimality condition

Implies sparsity, since only few signs +1 / -1 are possible
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One-homogeneous Functionals

Several other successfull one-homogeneous functionals:

Examples: 

- continuum sparsity (total variation of a 

measure) 

[Bredies-Pikkarainien 2013, Duval-Peyre et al 2013-2019]

[mb-Heins-Koulouri 2020]

- Group Sparsity [Eldar-Mishali 2009] [PhD Heins 2014, PhD Kinzel 2021]

- Local Sparsity [mb-Heins-Möller 2014]

- Low rank (nuclear norm of matrix or tensor) [Candes 2010], [Phd Kinzel 2021]
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Learned Regularizations

Machine learning became attractive in the last years

First idea: learn reconstruction directly

Problems:

- complexity of the inverse problem

- bad generalization (network must have huge Lipschitz constant)

- missing data, hardly pairs of input-output

Alternative: stay close to variational methods and learn regularization only. 

In image reconstruction this mainly requires favourable (maybe also 

unfavourable images)
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Learned Regularizations

Still solve

But J (and maybe a) obtained from deep learning, given a database of

images

Example: adversarial learning [Lunz-Öktem-Schönlieb 18]

Given favourable images and unfavourable ones

minimize (with respect to parameters)
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Learned Regularizations

Learned regularization method is itself a random variable in terms of

training data

As n and m tend to infinity and under assumption of i.i.d. sampling from

appropriate distributions expect convergence to minimizer of

Detailed properties of regularizer and subsequent solutions of inverse 

problem remain unclear
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Learned Regularizations

So far, functionals learned based on data sets, but independent of inverse 

problem (forward operator K)

Attractive for computations, but difficult to analyze. Unclear if training data

could even be solution of inverse problem

Alternative with guaranteed range condition: minimize

Possibly augmented with other terms, [mb-Mukherjee-Schönlieb, in prep.]
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Error estimation

Quantitative estimates in ill-posed problems available only under

additional assumptions (conditional stability)

Basic principle: take two elements satisfying source condition

Hölder stability estimate
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Error estimation

Quantity to be estimated is (symmetric) Bregman distance

Implies directly estimates for both one-sided Bregman distances

Those are limits of scaled Jensen distances for s=0 and s=1
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Error estimation

Estimates between solution of regularized problem

and „exact solution“

Theorem [mb-Osher 2004]

Assumptions as above, J convex. Then
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Error estimation

Corollary 1: a-posteriori estimate

Note: single estimate for subgradient appearing in optimality condition

Corollary 2: a-priori estimate

Note: possibly multivalued estimate for any subgradient satisfying source

condition !
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Error estimation

How to make this precise:

- Better characterization of source conditions (too abstract)

- Derive more interpretable quantities from Bregman distances

Example: TV denoising of 2D images, K=embedding operator to L2

clean noisy TV result
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Source condition

Key issue is the understanding of subgradients

For TV divergence of a generalized normal vector fields

Assume u* is piecewise constant with smooth discontinuity set S (C1 and

square integrable curvature)

Then we can explicitly construct subgradients respectively g:

Choose G with

and

Then the source condition is satisfied by
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Source condition

We can compute

Lemma 

There exists a constant C such that for e sufficiently small
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Bregman distance

For one-homogeneous functionals we have

Hence Bregman distance becomes

Theorem

Fore sufficiently small

Conclusion: small variation of solution away from S 
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Error estimation

Various generalizations

- Estimates for other schemes (iterative, inverse scales space, gradient

flows, discretizations …)   [mb-Resmerita-He 2007, Schuster-Kaltenbacher-

Hofmann 2012, Grasmair et al, Hofmann et al, mb et al 2008-2021]

- Improved estimates under stronger source conditions [Resmerita 2006, 

Sprung-Hohage 2019]

- Approximate source conditions / unbounded noise [Hein 2008, Hofmann et 

all 2008-2021], [mb-Helin-Kekkonen 2018]

- Different exponents in fidelity and regularization are rescaling
[mb-Bungert 2019]

- Sharpness of estimates by singular vector examples [Benning-mb 2012]
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Properties of Variational Regularizations

Possible solutions characterized by range / source conditions

Closer characterization of properties: nonlinear singular vectors
Benning-mb 2012/2018

In the case

we can define a generalized singular system
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Singular vectors

For simplicity consider here J one-homogeneous and

Singular vectors satisfy nonlinear eigenvalue problem

Look at data generated from singular vector
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Singular vectors

Systems of nonlinear singular vectors (eigenfunctions) can be of interest

for themselves

1D: connection TV regularization – Haar wavelets

Haar wavelet system = singular vectors of TV with zero Dirichlet values, 

K=embedding operator to L2
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Bias

In total variation regularization bias = loss of contrast

[Meyer 2002] 

[PhD Brinkmann 2019]
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Bias correction

Unfortunately local loss of contrast = missing structures

clean noisy u f-u
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Bias correction

Simple debiasing method in l1 synthesis approach:

Can be written as

Generalization
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Bregman iteration

Approximation with penalty

Can be done in multiple steps: Bregman iteration [Bregman 1967] [Hestenes

1969, Powell 1969] [Osher-mb-Goldfarb-Xu-Yin 2005]

Optimality condition = dual update
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Bregman iteration, Inverse Scale Space

Bregman Iteration

Can also be interpreted as implicit Euler discretization with time step t

Limit is rather degenerate evolution equation, inverse scale space flow

[mb-Gilboa-Osher-Xu 2006, mb-Frick-Osher-Scherzer 2007, Brune-Sawatzky-mb 2011,mb-

Möller-Benning-Osher 2012]

Recent development: stochastic linearized

Bregman methods for training sparse deep

neural networks [Bungert-Roith-Tenbrinck-mb 2021]



43

PET Reconstruction

Increasing Bregman iterations
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Cardiac PET Reconstruction

20 min data, simple                   5s data Bregman TGV
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Multiscale Decomposition
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Multiscale Decomposition

Inverse scale space method

Take (scaled) time derivatives of u
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Filtering: Juvenation
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Filtering: Ageing
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Personalized Avatar
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Advanced: Automated Image Fusion
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Note: Spatially varying filters
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Local fusion
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Nonstandard: Image / Sculptures
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Paint it like Monet

Brush stroke patterns from Poppy field (1881), locally extracted from higher frequencies


