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Three representations for rational approximation on a domain 𝛀

Quotient of polynomials

Partial fractions

Barycentric
(= quotient of partial fractions)

𝑟 𝑧 = σ
𝑎𝑘

𝑧−𝑧𝑘
/ σ 𝑏𝑘

𝑧−𝑧𝑘

𝑟 𝑧 = 𝑝(𝑧)/𝑞(𝑧)

𝑟 𝑧 =෍
𝑎𝑘

𝑧 − 𝑧𝑘

Advantage:  mathematically simple
Disadvantage:  numerical failure when poles are clustered

Advantages:  computationally simple
easy to work with the real part (harmonic)
easy to exclude poles from Ω

Disadvantage:  where do we put the poles?

Advantages:  outstanding numerics if {𝑧𝑘} are well chosen
decoupling of support pts 𝑧𝑘 and coeffs 𝑎𝑘 , 𝑏𝑘

Disadvantage:  no way to exclude poles from Ω

→ AAA rational approximation (2018)

→ lightning PDE solvers (2019)
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1.  Free poles and AAA approximation
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Z = rand(2000,1) + 1i*rand(2000,1);
plot(Z,'.k','markersize',4), axis([-1 2 -1.5 1.5]), 
axis square
F = sqrt(Z.*(1-Z));
tic, [r,pol] = aaa(F,Z); toc
hold on, plot(pol,'.r','markersize',10)

norm(F-r(Z),inf)

phaseplot(r)
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AAA (Chebfun, running in MATLAB)



AAA algorithm    (= “adaptive Antoulas-Anderson”) 

SISC 2018

• Fix 𝑎𝑘 = 𝑓𝑘𝑏𝑘, so that we are in “interpolatory mode”:  𝑟 𝑧𝑘 = 𝑓𝑘.

• Taking 𝑚 = 1,2, … , choose support points 𝑧𝑚 one after another.

• Next support point: sample point 𝜁𝑖 where error |𝑓𝑖 − 𝑟(𝜁𝑖)| is largest.

• Barycentric weights 𝑏𝑘 at each step:
chosen to minimize linearized least-squares error | 𝑓𝑑 − 𝑛 |.

𝑟 𝑧 =
𝑛(𝑧)

𝑑 𝑧
= ൙෍

𝑘=1

𝑚
𝑎𝑘

𝑧 − 𝑧𝑘
෍

𝑘=1

𝑚
𝑏𝑘

𝑧 − 𝑧𝑘

AAA is remarkably effective, quickly producing approximations within factor ~10 of optimal.
The support points cluster near singularities, giving stability even in extreme cases.

No such fast, flexible methods have existed before. 
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Root-exponential convergence at branch point singularities

Donald Newman 1964:
𝑂(exp −𝐶 𝑛 ) convergence for degree 𝑛 rational best approximation of |𝑥| on −1,1
made possible by exponential clustering of poles and zeros near the singularity.

Same result holds for general branch point singularities on boundaries of domains.
Proof: Hermite contour integral formula… potential theory.

(Gopal & T., SINUM 2019)

(Walsh, Gonchar, Rakhmanov, Stahl,
Saff, Totik, Aptekarev, Suetin,…)

These data are for best approximations.
AAA would be similar but noisier.



2.  Fixed poles and lightning PDE solvers
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Inspired by Newman, we’d like to use AAA to solve Laplace and related PDE problems.
But we don’t know how to do AAA for harmonic as opposed to analytic functions.

Kirill Serkh (U. of Toronto) made a suggestion in Sepember 2018.  
We know poles should cluster near singularities.  
Why not fix the poles that way, giving an easy linear approximation problem?

Much of my last three years have been spent developing this idea.
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Given: Laplace problem Δ𝑢 = 0 on a 2D domain with corners.
Corner singularities are inevitable.

Approximate 𝑢 ≈ Re(𝑟) by matching boundary data by linear least-squares,
where  𝑟 has fixed poles exponentially clustered at the corners.

"Newman + Runge“,
a partial fractions representation

plus a polynomial term

Gopal & T., SINUM 2019 and PNAS 2019
Software:  people.maths.ox.ac.uk/trefethen/Lightning Laplace solver

(Wasow 1957, Lehman 1959)
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laplace([.2 .8 .6+1.2i])

An error bound comes from the maximum principle.
The harmonic conjugate also comes for free: Hilbert transform or

Dirichlet-to-Neumann map.

This is a variant of the Method of Fundamental Solutions, but with exponential 
clustering and complex poles instead of logarithmic point charges.  

(Kupradze, Bogomolny, Katsurada, Karageoghis, Fairweather, Barnett & Betcke, …)

𝑟(𝑧) =෍

𝑗=1

𝑛1
𝑎𝑗

𝑧 − 𝑧𝑗
+ 𝑝𝑛2(𝑧)



Lightning Stokes solver

Lightning Helmholtz solver

(Brubeck & T., SISC , submitted)

Biharmonic eq.  Δ2𝑢 = 0.  

Reduce to Laplace problems via Goursat
representation 𝑢 = Re( 𝑧𝑓 + 𝑔).

Root-exponential convergence to 10 digits.

(Gopal & T., PNAS, 2019)

Helmholtz eq.  Δ𝑢 + 𝑘2𝑢 = 0.

Instead of sums of simple poles 𝑧 − 𝑧𝑗
−1

,  use sums of

complex Hankel functions 𝐻1 𝑘 𝑧 − 𝑧𝑗 exp(±𝑖 arg(𝑧 − 𝑧𝑗)).

Root-exponential convergence to 10 digits.
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Lightning Stokes solver — triangular lid-driven cavity
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laplace('L');
laplace('L', 'tol', 1e-10);
laplace('iso');
laplace(12);

helm(20)
helm(-40)

stokes
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3.  New algorithm: AAA-LS
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= Adaptive Antoulas-Anderson—Least-Squares 
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(1) Run AAA to get rational approx 𝑟 ≈ ℎ with poles both in and outside Ω.

(2) Discard poles in Ω.

(3) Solve 𝐴𝑥 ≈ 𝑏 to construct a new fit involving just the poles outside Ω.

(1’) Use separate AAA fits near different corners or other singularities.

AAA-LS LAPLACE SOLVER

FASTER “LOCAL AAA-LS” VARIANT

barycentric

↓

partial fractions

d = min(abs(Z-pol),[],1);                 % for column normalization
P = Z.^(0:n); Q = d./(Z-pol);             % polynomial & rational columns
A = [real(P) real(Q) –imag(P) –imag(Q)];  % fitting matrix
c = reshape(A\H),[],2)*[1;1i];          % least-squares solve

AAA-LS finds a complex rational function 𝑟 s.t. 𝑓 − 𝑟 < 𝜀 on 𝜕Ω, discards poles in Ω,
then computes a least-squares fit to u ≈ ℎ by real parts of the remaining poles.

Laplace problem: given Ω and real bndry data ℎ, find 𝑢 s.t. Δ𝑢 = 0 in Ω and 𝑢 = ℎ on 𝜕Ω.  

Core code, given column vectors Z, H of sample pts and data, row vector pol of poles.
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AAA-LS example: smooth domain

global variant

46 poles inside, discarded.
30 poles outside, retained.
9-digit accuracy in 0.7 secs.

From a Laplace solver it’s an
easy step to conformal mapping.
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AAA-LS example: L-shaped domain

global variant

12 secs. (global AAA, 294 poles)

local variant

0.7 secs. (6 local AAA fits)

NA Digest test value
𝑢 .99 + .99𝑖 ≈ 1.0267919261
accurate to 10 digits.
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AAA-LS example: domain with curved sides

local variant

102 poles outside.
6-digit accuracy in 0.5 secs.

No new issues arise with this problem.  
These methods converge root-exponentially so long as the boundary is piecewise analytic.
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AAA-LS example: doubly connected domain

local variant

397 poles outside.
8-digit accuracy in 1.7 secs.

Black: outer boundary
Green: inner boundary

To treat the hole, we include polynomials in both 𝑧 − 𝑧𝑐
−1 and 𝑧.       (Runge 1865)

We also include a term log|𝑧 − 𝑧𝑐|.       (Walsh 1929.  See Axler in MAA Monthly 1986,

“Harmonic functions from a complex analysis viewpoint”.)
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AAA-LS example: exterior domain, triply connected

local variant

624 poles outside.
10-digit accuracy at 𝑧 = 1 in 2 secs.

Now there are polynomials in three reciprocals 𝑧 − 𝑧𝑗
−1

, but no polynomial in 𝑧. 

Also three log terms log|𝑧 − 𝑧𝑗|.
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AAA-LS example: real zigzag function

local variant

466 finite poles.
962 total degrees of freedom.
2 poles in [−1,1] are discarded.
7-digit accuracy in 0.7 secs.



AAA-LS for computing the Hilbert transform on the real line 
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Hilbert transform ≈ principal value integral ≈ harmonic conjugate ≈ Dirichlet-to-Neumann map. 

Comes for free from any rational approximation of a real function 𝑢.

Prototype code

function [v,f] = ht(u)
X = logspace(-10,10,300)'; X = [X; -X];  
[~,pol] = aaa(u(X),X,'cleanup',0);     
pol(imag(pol)>=0) = []; pol = pol.'; 
d = min(abs(X-pol),[],1);     
A = d./(X-pol); A = [real(A) -imag(A)];      
c = reshape(A\u(X),[],2)*[1;1i];  
f = @(x) reshape((d./(x(:)-pol))*c,size(x));
v = @(x) imag(f(x)); 

Hilbert transform of 𝑢 𝑥 = exp(− 𝑥 )

This plot was produced in 2 secs.



AAA-LS theory
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Theorem.  If Ω is a disk or half-plane, this method gives accuracy < 2𝜀. 

AAA-LS (the global variant) finds a complex rational function 𝑟 s.t. 𝑓 − 𝑟 < 𝜀 on 𝜕Ω,

discards poles in Ω, and computes a least-squares fit to ℎ by real parts of the remaining poles.

Laplace problem: given Ω and real bndry data ℎ, find 𝑢 s.t. Δ𝑢 = 0 in Ω and 𝑢 = ℎ on 𝜕Ω.  

For a precise statement and proof, see the paper.

If Ω is not a disk or half-plane, examples show that the method can fail,
but it appears such examples are nongeneric.  Further investigation needed.  



Note the branch cut, which the computation captures by a string of poles.
The yellow stripes come from the polynomial “Runge” term (cf. Jentzsch’s thm).
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AAA/Lightning methods compute a discrete charge distribution
outside the boundary, nonunique (redundant bases).

This is done by linear least-squares with no special quadrature.
The solution is evaluated by an explicit formula.

Integral equations vs. rational functions for solving PDEs

Integral equation methods compute a continuous charge distribution
on the boundary, uniquely determined.

The integrals are singular, treated by clever quadrature.
The solution is evaluated by further integrals. 

(Barnett, Betcke, Bremer, Bruno, Bystricky, Chandler-Wilde, Gillman,
Greengard, Helsing, Hewitt, Hiptmair, Hoskins, Klöckner, Martinsson,
Ojala, O’Neil, Rachh, Rokhlin, Serkh, Tornberg, Ying, Zorin,…)

These rational approximations are prototypes of “thinking beyond
the boundary.”  I believe we’ll see more of that in the years ahead.
With luck, maybe even in 3D.



“18th century view”: singularities nowhere

Default assumption: analytic.
Use polynomials and aim for exponential convergence.

“20th century view”: singularities everywhere

Default assumption: continuous.
Real analysis is built on this, with regularity as the central concern.
Likewise much of numerical analysis (finite elements, Sobolev spaces,…).
Use piecewise polynomials.  Convergence rates will be limited by regularity.

“Applied mathematics view”: singularities here and there

Default assumption: analytic except for isolated singularities.
Sometimes, we can “nail the singularities” and get exponential convergence.
More generally, use rational functions and aim for root-exponential convergence.
Not mentioned in this talk: “log-lightning” approximations with near-exponential convergence.

(Nakatsukasa & T., SINUM, submitted; Baddoo & T., in preparation)
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In closing:  what is a function?


