The L_p dual Minkowski problem and polytopal approximation

Károly J. Böröczky joint with Ferenc Fodor

8ECM, June 21, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Minkowski problem I - Gauss curvature

- K is a convex body in \mathbb{R}^n with ∂K is C^2_+
- $\nu_{\mathcal{K}}(x)$ is exterior unit normal at $x \in \partial \mathcal{K}$
- ► $f_{\mathcal{K}}(\nu_{\mathcal{K}}(x)) = 1/\kappa_{\mathcal{K}}(x) > 0$ is curvature function where $\kappa_{\mathcal{K}}(x)$ is the Gauss curvature at $x \in \partial \mathcal{K}$

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot f_{\mathcal{K}}(u) \, du = o. \tag{1}$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $f: S^{n-1} \to \mathbb{R}_+$ satisfying (1), find K with ∂K is C^2_+ such that $f(\nu_K(x)) = 1/\kappa(x)$ for $x \in X$. Monge-Ampere type differential equation on S^{n-1} :

$$\det(\nabla^2 h + h I) = f$$

where $h(u) = h_{\mathcal{K}}(u) = \max\{\langle u, x \rangle : x \in \mathcal{K}\}$ support function.

Minkowski problem II - Surface area measure

 $\partial' K$ - smooth boundary points $\nu_K(x)$ - unique exterior normal at $x \in \partial' K$ S_K - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^n

$$\mathcal{S}_{\mathcal{K}}(\omega) = \mathcal{H}^{n-1}\left\{x \in \partial' \mathcal{K}: \
u_{\mathcal{K}}(x) \in \omega
ight\}$$

for Borel $\omega \subset S^{n-1}$ where $\mathcal{H}^{n-1}(\cdot)$ (n-1)-Hausdorff measure ∂K is $C^2_{\perp} \Longrightarrow dS_{\kappa} = f_{\kappa} d\mathcal{H}^{n-1}$

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$S_{\mathcal{K}}(\{u_i\})=\mathcal{H}^{n-1}(F_i).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Minkowski problem Find K with $\mu = S_K$ if $\int_{S^{n-1}} u \, d\mu(u) = o$

- Minimize $\int_{S^{n-1}} h_C d\mu$ under the condition V(C) = 1
- Uniqueness up to translation

 L_0 surface area/Cone volume measure

 $dV_K = h_K dS_K$ - cone volume measure or L_0 surface area measure on S^{n-1} if $o \in K$ (Firey (1974), Gromov, Milman (1986))

K polytope, F₁,..., F_k facets, u_i exterior unit normal at F_i
V_K({u_i}) = h_K(u_i)Hⁿ⁻¹(F_i) = n · V(conv{o, F_i}).
∂K is C²₊ ⇒ dV_K = h_Kf_K dHⁿ⁻¹
V_K(Sⁿ⁻¹) = nV(K).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Naor, Werner, Paouris, Stancu... used it say for L_p balls

Logarithmic Minkowski problem

Monge-Ampere type differential equation on S^{n-1} for $h = h_K$ if μ has a density function f:

$$h \det(\nabla^2 h + h I) = f$$

Theorem (Chen, Li, Zhu 2017) $\mu = V_{K} \text{ for some convex body } o \in K \text{ if}$ $\mu(L \cap S^{n-1}) < \frac{\dim L}{n} \cdot V(K) \text{ for any linear subspace } L \neq \{o\}, \mathbb{R}^{n}$

Remark The condition does not charactherize V_K , there are some other conditions - CHARACTERIZATION FULL OPEN, not even a conjecture is known

L_p surface area measures

 L_p surface area measures (Lutwak 1990) $p \in \mathbb{R}$

$$dS_{K,p} = h_K^{1-p} \, dS_K = h_K^{-p} \, dV_K$$

Examples

- $\blacktriangleright S_{K,1} = S_K$
- $\blacktriangleright S_{K,0} = V_K$

► $S_{K,-n}$ - SL(n) invariant curvature function $f_K h_K^{n+1}$

Theorem (Chou&Wang, Chen&Li&Zhu)

If p > 0, $p \neq 1$, n, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$. **Remark** Possibly $o \in \partial K$ with ∂K is $C^{1,\alpha}$ if 0 Ideas

• Minimize $\int_{S^{n-1}} h_C^p d\mu$ under the condition V(C) = 1

Weak approximation by "nice" measures

Figure: Integral Curvature Measure

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Alexandrov's problem

 $o \in \operatorname{int} K$, $u \in S^{n-1} \Longrightarrow r_{K}(u) = \varrho_{K}(u) \cdot u \in \partial K$ $\varrho_{K}(u)$ =radial function

Alexandrov's Integral Gauss curvature, 1940 $\omega \subset S^{n-1}$ Borel $\Longrightarrow C_{\mathcal{K}}(\omega) = \mathcal{H}^{n-1}(\nu_{\mathcal{K}} \circ r_{\mathcal{K}}(\omega))$

Theorem (Alexandrov)

For Borel measure μ on S^{n-1} with $\mu(S^{n-1}) = \mathcal{H}^{n-1}(S^{n-1})$ $\mu = C_K$ if and only if for any $\omega \subset S^{n-1}$, $\omega \neq S^{n-1}$, we have

$$\mu(\omega) < \mathcal{H}^{n-1}(\{x \in S^{n-1} : \exists y \in \omega, \langle x, y \rangle > 0\}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dual curvature measures for $q \in \mathbb{R}$

Huang, Lutwak, Yang, Zhang

$$\widetilde{C}_{K,q}(
u_K\circ r_K(\omega))=\int_\omega arrho_K^q(u)\,du\quad ext{ for }\omega\subset S^{n-1}$$

 $\widetilde{V}_q(K) = \frac{1}{n} \int_{S^{n-1}} \varrho_K^q(u) \, du$ dual intrinsic volume ($\widetilde{V}_n(K) = V(K)$) Examples

$$\widetilde{C}_{K,0} = \alpha C_{K^*}$$
$$\widetilde{C}_{K,0} = V_K$$

 L_p dual curvature measures for $q \in \mathbb{R}$

$$d\,\widetilde{C}_{K,p,q} = h_K^{-p}\,d\,\widetilde{C}_{K,q}$$

Examples

$$\widetilde{C}_{K,0,q} = \widetilde{C}_{K,q}$$
$$\widetilde{C}_{K,p,n} = S_{K,p}$$

L_p dual Minkowski problem

 $\begin{array}{l} L_p \mbox{ dual Minkowski problem: find } K \mbox{ with } \widetilde{C}_{K,p,q} = \mu \\ \hline p > 1 \mbox{ and } q > 0 \mbox{ (B. & Ferenc Fodor)} \\ \hline p \ge 0 \mbox{ and } q < 0 \mbox{ (Huang&Zhao, Chen&Wang&Li)} \\ \hline p > q \mbox{ and } \mu \mbox{ has } C^{\alpha} \mbox{ density (Huang&Zhao)} \end{array}$

Idea Minimize $\int_{S^{n-1}} h_C^p d\mu$ assuming $\widetilde{V}_q(C) = 1$

Remark Possible $o \in \partial K$ needs to be allowed even if μ has positive C^{α} density (say when $1) - <math>L_p$ dual Minkowski problem is more carefully stated in that case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discrete L_p dual Minkowski problem - polytopes

p>1 and q>0Polytopes with given exterior normals $u_1,\ldots,u_k\in S^{n-1}$ $\forall v\in S^{n-1}\;\exists u_i\;\langle v,u_i\rangle>0$ For $h_1,\ldots,h_k>0$

$$Q(h_1,\ldots,h_k) = \{\langle x, u_i \rangle \leq h_i, i = 1,\ldots,k\}$$

 $\mathcal{P} = \left\{Q(h_1,\ldots,h_k) : \widetilde{V}_q(Q(h_1,\ldots,h_k)) = 1\right\}$

Given measure μ on $\{u_1, \ldots, u_k\}$, $\mu(u_i) > 0$, find

$$\min\left\{\sum_{i=1}^k h_i^p \mu(u_i) : Q(h_1,\ldots,h_k) \in \mathcal{P}\right\}$$

A D N A 目 N A E N A E N A B N A C N

 $\exists \text{ optimal } Q_0 \in \mathcal{P}, \text{ } o \in \operatorname{int} Q_0 \Longrightarrow \exists \lambda > 0, \mu = \widetilde{\mathcal{C}}_{\lambda Q_0, p, q}$

Remark $o \in int Q_0$ follows from μ discrete

General μ - approximation by polytopes

 μ finite Borel measure on S^{n-1} satisfying

$$\forall v \in S^{n-1} \ \mu\left(\{u \in S^{n-1} : \langle v, u \rangle > 0\}\right) > 0 \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 μ weakly approximated by discrete $\mu_{\textit{m}} \Longrightarrow \mu_{\textit{m}} = \widetilde{C}_{\textit{Q}_{\textit{m}},\textit{p},\textit{q}}$

(2)
$$\Longrightarrow$$
 { Q_m } bounded $\Longrightarrow \exists Q_{m'} \to K, \mu = \widetilde{C}_{K,p,q}$

Uniqueness of the solution of dual L_p -Minkowski problem

- ▶ p > q Unique solution (Dongmeng Xi and Zhen Zhang)
- ▶ p < 0 and q > 1 Non-uniqueness, even if K is assumed to be rotationally symmetric, o-symmetric with C[∞]₊ boundary (Qi-rui Li, Jiankun Liu, Jian Lu)