KULEUVEN

Periodic random tilings and non-Hermitian orthogonality

Arno Kuijlaars (KU Leuven, Belgium) 8th European Congress of Mathematics
Portoroz, Slovenia, 22 June 2021

References

The talk is based on

- M. Duits and A.B.J. Kuijlaars, The two periodic Aztec diamond and matrix valued orthogonal polynomials, J. Eur. Math. Soc. (2021)
- C. Charlier, M. Duits, A.B.J. Kuijlaars, and J. Lenells, A periodic hexagon tiling model and non-Hermitian orthogonal polynomials, Comm. Math. Phys. (2020)
- Alan Groot and Arno B.J. Kuijlaars, Matrix valued orthogonal polynomials related to hexagon tilings, preprint arXiv:2104.14822

1. Tiling problems:

Hexagon and Aztec diamond

three types of lozenges

4 Periodic random tilings and non-Hermitian orthogonality

1 Domino tiling of Aztec diamond

- Tiling with 2×1 and 1×2 rectangles (dominos)
- Four types of dominos

Deterministic pattern near corners Solid region or frozen region

Disorder in the middle

Liquid region

Boundary curve Arctic circle

1 Some History

Number of domino tilings of Aztec diamond is $2^{N(N+1) / 2}$ Elkies, Kuperberg, Larsen, Propp (1992)

Arctic circle phenomenon Jockush, Propp, Shor (1995)
Fluctuations around Arctic circle and connection to random matrix theory (Tracy-Widom distribution) Johansson (2002)

Arctic circle for hexagon tilings
Baik, Kriecherbauer, McLaughlin, Miller (2007) Petrov (2014)

- Johansson uses Krawtchouk polynomials
- Baik et al. use Hahn polynomials

2. Non-intersecting paths

2 Non-intersecting paths on a graph
Paths fit on a graph and give rise to multi level particle system

2 Determinantal point process

The multi-level particle system is determinantal on discrete state space $\quad \mathcal{X}=\{0,1, \ldots, L\} \times \mathbb{Z}$

- There is correlation kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad$ with property that for finite $\mathcal{A} \subset \mathcal{X}$

$$
\operatorname{det}[K(\vec{x}, \vec{y})]_{\vec{x}, \vec{y} \in \mathcal{A}}=\operatorname{Prob}\left[\begin{array}{l}
\text { There is a particle } \\
\text { at each } \vec{x}=(m, x) \in \mathcal{A}
\end{array}\right]
$$

- Eynard Mehta (1998) give sum formula for the kernel in terms of transition matrices

$$
T_{m^{\prime}, m}(x, y)=\left\{\begin{array}{l}
\# \text { paths on the lattice } \\
\text { from }\left(m^{\prime}, x\right) \text { to }(m, y)
\end{array}\right.
$$

- The formula also works in a weighted setting.

2 Kernel for hexagon of size $N \times M \times(L-M)$

Theorem (Duits K (2021) - very special case)

Correlation kernel has double contour integral formula

$$
\begin{aligned}
& -\frac{\chi_{m^{\prime}>m}}{2 \pi i} \oint_{\gamma}(z+1)^{m^{\prime}-m} z^{y-x} \frac{d z}{z} \\
& \quad+\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma}(w+1)^{L-m^{\prime}} R_{N}(w, z)(z+1)^{m} \frac{w^{y}}{z^{x} w^{M+N}} \frac{d z d w}{z}
\end{aligned}
$$

where $\quad R_{N}(w, z)=\sum_{k=0}^{N-1} \frac{p_{k}(w) p_{k}(z)}{h_{k}} \quad$ is the reproducing kernel
for orthogonal polynomials on a contour γ going around 0

$$
\frac{1}{2 \pi i} \oint_{\gamma} p_{k}(z) p_{j}(z) \frac{(z+1)^{L}}{z^{M+N}} d z=h_{k} \delta_{k, j}
$$

$$
\frac{1}{2 \pi i} \oint_{\gamma} p_{k}(z) p_{j}(z) \frac{(z+1)^{L}}{z^{M+N}} d z=h_{k} \delta_{k, j}
$$

- Non Hermitian orthogonality on a contour in the complex plane.
- The orthogonal polynomials are Jacobi polynomials

$$
p_{k}(z) \propto P_{k}^{(-M-N, L)}(2 z+1)
$$

with one negative parameter (!)

$$
\frac{1}{2 \pi i} \oint_{\gamma} p_{k}(z) p_{j}(z) \frac{(z+1)^{L}}{z^{M+N}} d z=h_{k} \delta_{k, j}
$$

- Non Hermitian orthogonality on a contour in the complex plane.
- The orthogonal polynomials are Jacobi polynomials

$$
p_{k}(z) \propto P_{k}^{(-M-N, L)}(2 z+1)
$$

with one negative parameter (!)

- Similar formula applies to the Aztec diamond, but with Jacobi polynomials

$$
p_{k}(z) \propto P_{k}^{(-N, N)}(z)
$$

3. Weighted tilings

3 Weighted tilings

A weighting on tiles produces a weight on tilings \mathcal{T}

$$
W(\mathcal{T})=\prod_{T \in \mathcal{T}} w(T)
$$

Probability of a tiling is

$$
\operatorname{Prob}(\mathcal{T})=\frac{W(\mathcal{T})}{Z}, \quad Z=\sum_{\mathcal{T}^{\prime}} W\left(\mathcal{T}^{\prime}\right)
$$

3 Constant weights per column (example)

Weights depend on column

$$
\begin{aligned}
& w_{\square}(x, y)=\alpha_{x} \\
& w_{\square}(x, y)=1 \\
& w_{\square}(x, y)=1
\end{aligned}
$$

Transition matrix

$$
T_{m}(x, y)= \begin{cases}\alpha_{m} & \text { if } y=x \\ 1 & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

3 Constant weights per column (example)

Weights depend on column

$$
\begin{aligned}
& w_{\square}(x, y)=\alpha_{x} \\
& w_{\square}(x, y)=1 \\
& w_{\square}(x, y)=1
\end{aligned}
$$

Transition matrix

$$
T_{m}(x, y)= \begin{cases}\alpha_{m} & \text { if } y=x \\ 1 & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

It is Toeplitz matrix with symbol $\varphi_{m}(z)=z+\alpha_{m}$

3 Correlation kernel (double contour part only)

Theorem

Correlation kernel at the m th level

$$
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma}\left(\prod_{j=m+1}^{L} \varphi_{j}(w)\right) R_{N}(w, z)\left(\prod_{j=1}^{m} \varphi_{j}(z)\right) \frac{w^{y}}{z^{x} w^{M+N}} \frac{d z d w}{z}
$$

where $\quad R_{N}(w, z)=\sum_{k=0}^{N-1} \frac{p_{k}(w) p_{k}(z)}{h_{k}} \quad$ is the reproducing kernel for orthogonal polynomials on a contour γ going around 0

$$
\frac{1}{2 \pi i} \oint_{\gamma} p_{k}(z) p_{j}(z) \frac{\prod_{j=1}^{L} \varphi_{j}(z)}{z^{M+N}} d z=h_{k} \delta_{k, j}
$$

3 Two periodic parameters

Suppose $\quad \alpha_{m}= \begin{cases}1 & \text { if } m \text { is even } \\ \alpha & \text { if } m \text { is odd }\end{cases}$

- Orthogonality weight is (for $N=M=L-M$)

$$
\frac{(z+1)^{N}(z+\alpha)^{N}}{z^{2 N}}
$$

- This model has a phase transition in large N limit Charlier, Duits, K, Lenells (2020)

19 Periodic random tilings and non-Hermitian orthogonality
 Phase transition at $\alpha=1 / 9$

- Asymptotic analysis of the OP with Riemann-Hilbert problem and steepest descent analysis of double integral

4. Weightings that are periodic in vertical direction

4 Periodicity in vertical direction (example)

$$
\begin{aligned}
& w_{\square}(x, y)= \begin{cases}\alpha_{x}, & \text { if } y \text { is even } \\
\beta_{x}, & \text { if } y \text { is odd }\end{cases} \\
& w_{\nearrow}(x, y)=1, \quad w_{\square}(x, y)=1
\end{aligned}
$$

Transition matrix is block Toeplitz

$$
T_{m}(x, y)= \begin{cases}\alpha_{m} & \text { if } y=x \text { even } \\ \beta_{m} & \text { if } y=x \text { odd } \\ 1 & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

4 Periodicity in vertical direction (example)

$$
\begin{aligned}
& w_{\square}(x, y)= \begin{cases}\alpha_{x}, & \text { if } y \text { is even } \\
\beta_{x}, & \text { if } y \text { is odd }\end{cases} \\
& w_{\varnothing}(x, y)=1, \quad w_{\square}(x, y)=1
\end{aligned}
$$

Transition matrix is block Toeplitz

$T_{m}(x, y)= \begin{cases}\alpha_{m} & \text { if } y=x \text { even } \\ \beta_{m} & \text { if } y=x \text { odd } \\ 1 & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}$
Block symbol $\quad \Phi_{m}(z)=\left(\begin{array}{cc}\alpha_{m} & 1 \\ z & \beta_{m}\end{array}\right)$

4 Correlation kernel (double contour part only)

Theorem

Correlation kernel at the m th level (for $2 N \times 2 M \times L-2 M$ hexagon) are entries of

$$
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma}\left(\prod_{j=m+1}^{L} \Phi_{j}(w)\right) R_{N}(w, z)\left(\prod_{j=1}^{m} \Phi_{j}(z)\right) \frac{w^{y}}{z^{x} w^{M+N}} \frac{d z d w}{z}
$$

where $\quad R_{N}(w, z)=\sum_{k=0}^{N-1} P_{k}^{T}(w) H_{k}^{-1} P_{k}(z) \quad$ is the reproducing kernel for matrix valued orthogonal polynomials on a contour γ going around 0

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{k}(z) \frac{\prod_{j=1}^{L} \Phi_{j}(z)}{z^{M+N}} P_{j}(z)^{T} d z=H_{k} \delta_{k, j}
$$

4 Comment

- The theorem extends to transition matrices with block Toeplitz structure of any periodicity.

5. Matrix valued orthogonal polynomials (MVOP)

5 Matrix valued orthogonal polynomials (MVOP)

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{k}(z) W(z) P_{j}^{T}(z) d x=H_{j} \delta_{j, k}, \quad \operatorname{det} H_{j} \neq 0
$$

- $W(z)$ is $p \times p$ matrix for every z
- P_{k} is matrix valued polynomial

$$
P_{k}(x)=C_{0} x^{k}+C_{1} x^{k-1}+\cdots, \quad C_{i} \text { is } p \times p \text { matrix. }
$$

- Integral is taken entry-wise.

5 Matrix valued orthogonal polynomials (MVOP)

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{k}(z) W(z) P_{j}^{T}(z) d x=H_{j} \delta_{j, k}, \quad \operatorname{det} H_{j} \neq 0
$$

- $W(z)$ is $p \times p$ matrix for every z
- P_{k} is matrix valued polynomial

$$
P_{k}(x)=C_{0} x^{k}+C_{1} x^{k-1}+\cdots, \quad C_{i} \text { is } p \times p \text { matrix. }
$$

- Integral is taken entry-wise.

Questions on existence and uniqueness, recurrence relations, generating functions, differential equations, ...

- Examples and Applications: do MVOP appear in "real life" problems?

6. Two periodic Aztec diamond

Random tiling with uniform measure

Deterministic
 pattern near
 corners
 Solid region or frozen region

Disorder in the middle Liquid region

Boundary curve Arctic circle

A new phase within the liquid region:
gas region (smooth region)

Chhita, Johansson (2016) Beffara, Chhita, Johansson (2018)

Line segments on
West, East and South dominos

North

West

South

- Rotate the Aztec diamond
- Extend the tiling to a double Aztec diamond
- Put particles on the paths
- Particles are a determinantal point process

6 Non-intersecting paths on a weighted graph

- Apply affine transformation

Two weighting

- Bernoulli step with weight α or $\beta=\alpha^{-1}$
- Steps down plus horizontal step have weight 1

6 Symbols and weight

Block symbols are $\left(\begin{array}{cc}\alpha & \alpha \\ \beta z & \beta\end{array}\right)$ and $\frac{1}{z-1}\left(\begin{array}{cc}z & 1 \\ z & z\end{array}\right)$

6 Symbols and weight

Block symbols are $\left(\begin{array}{cc}\alpha & \alpha \\ \beta z & \beta\end{array}\right)$ and $\frac{1}{z-1}\left(\begin{array}{cc}z & 1 \\ z & z\end{array}\right)$
Weight matrix is W^{N} for Aztec diamond of size $2 N$, where

$$
\begin{aligned}
W(z) & =\frac{1}{z(z-1)^{2}}\left(\begin{array}{cc}
\alpha & \alpha \\
\beta z & \beta
\end{array}\right)\left(\begin{array}{cc}
z & 1 \\
z & z
\end{array}\right)\left(\begin{array}{cc}
\alpha & \alpha \\
\beta z & \beta
\end{array}\right)\left(\begin{array}{cc}
z & 1 \\
z & z
\end{array}\right) \\
& =\frac{1}{(z-1)^{2}}\left(\begin{array}{cc}
(z+1)^{2}+4 \alpha^{2} z & 2 \alpha(\alpha+\beta)(z+1) \\
2 \beta(\alpha+\beta) z(z+1) & (z+1)^{2}+4 \beta^{2} z
\end{array}\right)
\end{aligned}
$$

6 MVOP

MVOP of degree N is explicit if N is even

$$
P_{N}(z)=(z-1)^{N} W(\infty)^{N / 2} W^{-N / 2}(z)
$$

- The double contour integral for the correlation kernel simplifies considerably
- Different approach is due to Berggren-Duits (2019)

MVOP of degree N is explicit if N is even

$$
P_{N}(z)=(z-1)^{N} W(\infty)^{N / 2} W^{-N / 2}(z)
$$

- The double contour integral for the correlation kernel simplifies considerably
- Different approach is due to Berggren-Duits (2019)
- What remains is saddle point analysis of the double contour integral.
- There are four saddle points (depending on position in the Aztec diamond) that "live" on two-sheeted spectral curve

$$
y^{2}=z\left(z+\alpha^{2}\right)\left(z+\beta^{2}\right)
$$

6 Solid phase

- At least two saddles are in $\left[-\alpha^{2},-\beta^{2}\right]$
- Other saddles s_{1} and s_{2} are in $[0, \infty) \Longrightarrow$ solid phase

6 Liquid phase

- Saddles s_{1} and s_{2} are not real \Longrightarrow liquid phase

6 Gas phase

- All saddles are in $\left[-\alpha^{2},-\beta^{2}\right] \Longrightarrow$ Gas phase

