

How sixth graders' represent mathematics concepts with drawings

Alenka Lipovec

Faculty of natural sciences and mathematics, Faculty of Education, University of Maribor

8ECM, June 2021, Portorož, Slovenia

University of Maribor

External are the interesting ones!

Enactive/iconic/symbolic (Bruner, 1966)

and it was delicious!

Relevance for education

Very important (Bishop, 1973; Clements, 1981; Arcavi, 2003; Duval, 2014, ... Presmeg, 2020)

Positive effect on achievement, teachers should use them more often (Güler & Çiltaş, 2011; David & Tomaz, 2012; Ryve et al., 2013; ...).. No influence on achievements (Sowel, 1989). Can have negative impact on achievements (De Bock et.al., 2007; Presmeg, 2014). ICT environments (Archer et al., 2014; Engelbrecht et al., 2020) Effect depends on students ablities (Gersten et al., 2009), Content (Leikin et al., 2014), age (English, 1993 vs. Beitzel et al., 2011), gender (Lowrie & Diezman, 2011)

Strongly researched field, but mostly: a) picture as a medium for teaching and b) drawing as a problem-solving tool.

Can children's' *self-designed drawing* serve as a research tool for insight into child's *mathematical understanding*?

Draw a picture representing

2

Research problem

'For a math teacher, there is no real difference between a visual representation of a concept and the visualisation process of making sense of that concept. For students, however, there is a gap that some are unable to bridge. Students simply do not see what the teacher sees.' (Duval, 2014, p. 160).

$$17 - 9 \quad 3 \cdot (4 + 5)$$

$$\frac{3}{5}$$
 of 15

Future teachers, elementary	Slovenia Slovakia Spain	N = 288
16-17 years, gymnasium	Slovenia	N = 147
11-13 years	Slovenia	N =1595
5-7 years	Slovenia	N = 192

Theme	categories	codes				
12-13 years		subtraction	paranthesis	fractions	power	
Procedural	Result-symbol	8	27	9	8	
	Result-picture	8 objects	27 objects	9 objects	8 objects	
	interplay	monopolitical - 11 (11) (11 = billing	000 - (0000 + 0000)			
conceptual			7777 *********************************	ර් රේ රේ රේ රේ රේ රේ රේ රේ රේ රේ රේ	X X	
		3333333	3(4-5) DAA AAAAA A DAA AAAAA A DAA AAAAA			
		S S S S S S S S S S S S S S S S S S S				
Not known	ilustration				hammel and the second	

Procedural /conceptual

Instrumental /relational understanding (Skemp, 1976)

→ Procedural /conceptual type of knowledge (Rittle-Johnson & Siegler); critique (Ainley et al., t, & Hansen, 2006)

Mommy, why did you draw a piggy?

alenka.lipovec@um.si