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A big “Thank You” to the Organizers
– for making this possible!

Supported in part by the European Research Council under the Grant Agreement

No. 786461 (CausalStats - ERC-2017-ADG)



Acknowledgments

Dominik Rothenhäusler
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Statistical Learning

Hastie, Tibshirani & Friedman (2000): have built a bridge
between statistics and machine learning

the success of statistics and machine learning during the last
20 years is exceptional!



yet (and nothing in the book)...
... there are big open issues on
I stability, robustness
I generalizability and transferability to new populations
I insight and understanding in terms of “causality”

(a “dangerous” word!)

; want to highlight some aspects in making
statistical (& machine) learning

more “causal”-oriented and more robust
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Statistical Machine Learning

multiple of terabytes of data...
and we want to extract something useful

I we want not just “black boxes”
I we want to understand and get new insight

interpretable Artificial Intelligence – in modern language!
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Statistical Machine Learning

multiple of terabytes of data...
and we want to extract something useful

I we want not just “black boxes”
I we want to understand and get new insight

interpretable Statistical Inference – in modern context!



and as we will argue

better understanding exhibits increased robustness

no surprise in vague “scientifc folklore terms”
; but needs to be mathematized!
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better understanding exhibits increased robustness

no surprise in vague “scientifc folklore terms”
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Setting the scene

data as numbers alone are usually not informative

but: data as numbers in the context of (mathematical) models
can be highly informative

the term “model” can be rather general (and e.g. infinite-dimensional)



Single data generating distribution & statist. inference

Mosteller and Tukey (1968): “One hallmark of the statistically
conscious investigator is his firm belief that however the survey,
experiment or observational program actually turned out, it
could have turned out somewhat differently.”

Mosteller Tukey

data (values) z1, z2, . . . , zn are outcomes of random variables

Z1,Z2, . . . ,Zn i.i.d.︸︷︷︸
independent, identically distributed

or stationary from distribution P0

data-generating P0 is from a possibly infinite-dimensional model
(e.g. nonlinear regression or classification, from PDEs, etc.)



goal:
inference from data about (functional of) P0︸︷︷︸

data-generating distr.

Graunt & Petty (1662): first life table

Arbuthnot (1710), Bayes (1761), Laplace (1774), Gauss (1795, 1801, 1809), Quetelet

(1796-1874),..., Karl Pearson (1857-1936), Fisher (1890-1962), Egon Pearson

(1895-1980), Neyman (1894-1981), ...

; most of this is about generalization to new data from
the same distribution P0 as the observed “training” data

e.g:
new patient w. “same characteristics” as in representative study



Generalization to new data generating distributions

classical framework does not allow to generalize
beyond the data-generating distribution P0

setting:
observed data from distribution P0

want to say something about new P ′ 6= P0

transfer learning (Bozinovskio & Fulgosi, 1976; Pratt, 1993;...)
domain adaptation (Bridle & Cox, 1990; Crammer, Kearns & Wortmann, 2008;... )
transportability (causal) (Pearl & Bareinboim, 2011;...)
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Generalization to new data generating distributions

a more general and often realistic setting:
heterogeneous data from various distributions Pe (e ∈ E)
E = { observed environments, scenarios, sub-populations,...,

..., “sources”}

want to say something about new Pe′ (e′ /∈ E)



Very many examples

multi-center study (e.g. of COVID-19 vaccine) with diverse
subpopulations: want to generalize to

new different (outside study) subpopulations

Dahabreh, Petito, Robertson, Hernan, Steingrimsson (2000):

Instead, for decision-making, the users typically have a
new target population in mind.



trained on designed scenarios from E

new scenario from F !



trained on designed scenarios from E

new scenario e′ /∈ E



if one ignores the generalization problem to new P ′ 6= P0:

in many realistic applications, machine learning algorithms will
have poor performance!
I adversarial attacks in autonomous systems

I personalized medicine for “new but somewhat different”
individuals (when predicting disease outcome, drug efficacy, ...)

I ...

while standard machine learning often performs very well on
new data from the same distribution P0 used for training
I image classification for same type of images

I speech recognition for same/similar person

I ...



Model for entire system and perturbations
I a response/target variable (phenotype) Y of interest
I explanatory variables/features/covariates X
I many non-observed hidden variables H

the unrealistic oracle world: entire system is known

X1

X2

Y

X3

H1 H2
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f3



Model for entire system and perturbations
I a response/target variable (phenotype) Y of interest
I explanatory variables/features/covariates X
I many non-observed hidden variables H

observed: regression association among observed variables
too many relations, no directionality

X1

X2

Y

X3

H1 H2

f1

f2

f3



Model for entire system and perturbations

aim (1): infer true relations (& directionality) between Xj ’s and Y
; very ambitious! (considered as a main task of “causality”)

cannot be solved by regression or “standard machine learning”!

X1

X2

Y

X3

H1 H2

f1

f2

f3



Model for entire system and perturbations

aim (2): robust prediction of Y from Xj ’s under
perturbations/interventions/subpopulations to the system

X1

X2

Y

X3

H1 H2

predict→

predict↗

↙ predict

E
unspecific perturbations



Structural Equation Models (SEMs)

given a structure (DAG = Directed Acyclic Graph)

X1

X2

Y

X3

H1 H2

f1

f2

f3

specify function models for every random variable:
for W = (Y ,X1, . . . ,Xp,H1, . . . ,Hq) we have

Wj ← fj(Wpa(j), εj) , j = 1, . . . ,p + q + 1,
ε1, . . . εp+q+1 jointly independent
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function models for every random variable:
for W = (Y ,X1, . . . ,Xp,H1, . . . ,Hq) we have

Wj ← fj(Wpa(j), εj) , j = 1, . . . ,p + q + 1,
ε1, . . . εp+q+1 jointly independent

the joint distribution P of W satisfies the (local and global)
Markov property w.r.t. graph (structure) of the SEM

; see e.g. Lauritzen (1996)



important remark: learning the structure/DAG from observational data︸ ︷︷ ︸
P0

it’s impossible in general without additional assumptions!

can (only) estimate a Markov equivalence class of graphs
Verma & Pearl (1990); Sprites, Glymour & Scheines (1993); Lauritzen (1996);
Chickering (2002); Kalisch & PB (2007); ...

that is:
given data-generating distribution P0, several DAG structures
and corresponding function models generate P0 in the SEM
; learning directions (“causal relations”) is troublesome!



Models for perturbations based on structural equations:
Pearl’s do-intervention as an example

X1 Y

X2X3

X3 ← ε3

X2 ← f2(X3, ε2)

X1 ← f1(X2, ε1)

Y ← fY (X1,X2, εY )

do(X2 = x)
;

X1 Y

xX3

X3 ← ε3

X2 ← x
X1;x ← f1(X2 = x , ε1)

Yx ← fY (X1,x ,X2 = x , εY )

dynamic propagation of interventions
same functions in structural equations
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many other perturbation models based on structural equations
e.g. additive shift

all of them exhibiting
I dynamic propagation of interventions
I “parts of” the structural equations remain the same:

autonomy assumption (which is a “huge” assumption...)



“Causal thinking” for generalization

with perturbation models at hand

causality: is giving a prediction (a quantitative answer) to a
“what if I do/perturb” question

but that perturbation (aka “new situation”) is not observed

see for example

Judea Pearl
Turing Award, 2011



Neyman’s potential outcome model: in his 1923 master thesis!

Jerzy Neyman

potential outcome: what would have happened if we would
have assigned a certain treatment

Neyman’s potential outcome model: a milestone!



many modern applications are faced with such prediction tasks:

I genomics: what would be the effect of knocking down (the
activity of) a gene on the growth rate of a plant?

we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

I advertising in E-commerce
I policy making
I algorithmic fairness
I ...



and therefore:
; causality can be used to generalize to new scenarios

what would happen for a new patient who is different
(a “perturbed version”) from the ones in the study?



Predicting an intervention effect (synthetic data)

manipulate x = −8
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Predicting an intervention effect: real gene expression data

Challenge:
how to predict?
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Predicting an intervention effect: real gene expression data

results (see later):
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The word “causality”

the term “causality” is perhaps overly ambitious...

it’s really about predicting intervention effects:

what would happen if you would
perturb/assign/do ...?

and you have never seen the
perturbation/assignment/do-action



A short intermediate “summary”

causal SEM model

+ intervention
model

=⇒ prediction
of
interventions

what we want:

inferring
causal system &
enhancing robustness

perturbation
model

⇐=

observing
unspecific
interventions
from E
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Heterogeneity, Robustness and a bit of causality

assume heterogeneous data from different known observed
environments or experimental conditions or

perturbations or sub-populations e ∈ E :

(X e,Y e) ∼ Pe, e ∈ E

with response variables Y e︸︷︷︸
target

and predictor variables X e︸ ︷︷ ︸
features

examples:
• data from 10 different countries
• medical data from 13 different centers/hospitals
•

large-scale data applications



consider “many possible” but mostly non-observed
environments/perturbations F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• 13 centers/hospitals and many new ones

problem:
predict Y given X such that the prediction works well
(is “robust”/“replicable”) for “many possible” new environments
e ∈ F based on data from much fewer environments from E



a pragmatic prediction problem:
predict Y given X such that the prediction works well
(is “robust”/“replicable”) for “many possible” environments
e ∈ F based on data from much fewer environments from E

for example with linear models: find

argminβ∈Rd max
e∈F

E|Y e − X eβ|2

it is “robustness”

and causality
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for example with linear models: find
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it is “robustness” and causality



Causality and worst case risk over perturbations

for linear models: in a nutshell

argminβ∈Rd max
e∈F

E|Y e − X eβ|2 = causal parameter

where F = . . .

Haavelmo (1943); Peters, PB & Meinshausen (2016); Rojas-Carulla,
Schölkopf, Turner & Peters (2018); Arjovsky, Bottou, Gulrajani, Lopez-Paz
(2019), PB (2020), Rothenhäusler, PB, Peters & Meinshausen (2021), ...

risk optimization ←→ causality



Causality and worst case risk over perturbations

for linear models: in a nutshell

for F = {all perturbations not acting on Y directly
(but dynamically propagated)},

argminβ∈Rd max
e∈F

E|Y e − X eβ|2 = causal parameter = β0

X Y

E

β0

X Y

HE

β0

β0 the causal (“system”) parameter”; in linear SEMs:

Y ←
∑

j∈pa(Y )

β0
j Xj + εY , causal parameter := {β0

j ; j ∈ pa(Y )}



Causality and worst case risk over perturbations

for linear models: in a nutshell

for F = {all perturbations not acting on Y directly
(but dynamically propagated)},

argminβ∈Rd max
e∈F

E|Y e − X eβ|2 = causal parameter = β0

X Y

E

β0
X Y

H hiddenE

β0

β0 the causal (“system”) parameter”; in linear SEMs:

Y ←
∑

j∈paX (Y )

β0
j Xj +

∑
r∈paH (Y )

γr Hr + εY , caus. par. := {β0
j ; j ∈ paX (Y )}



causality and distributional robustness are intrinsically related
(Haavelmo, 1943)

Trygve Haavelmo, Nobel Prize in Economics 1989

in fact: Haavelmo (1943) derived an invariance principle:

L(Y e − X eβ0
causal) invariant across all e ∈ F

that is: causal =⇒ invariance



Haavelmo (1943): causal =⇒ invariance

and we advocate to “invert” (Peters, PB & Meinshasuen, 2016):

causal ⇐= invariance

search (by statistical testing) for β∗ such that

L(Y e − X eβ∗) invariant across observed e ∈ E
; β∗ = β0

causal if observed E is sufficiently rich

inferring
causal system &
enhancing robustness

invariance⇐=
observing
unspecific
interventions
from E



this “inverted” process: Invariant Causal Prediction (ICP)
(Peters, PB & Meinshausen, 2016)

ICP has statistical error control (under some assumptions):

P[at least one false positive claim] ≤ α

; has led to interesting findings in gene network of
Saccharomyces Cerevisiae (yeast) which were
biologically validated by gene knock-out experiments

Meinshausen, Hauser, Mooij, Peters, Versteeg & PB (2016)
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Genome-wide mRNA expressions in yeast: p = 6170 genes

I nobs = 160 “observational” samples of wild-types
I nint = 1479 “interventional” samples

corresponding to a single gene deletion strain

fit invariant linear model and
rank genes according to p-values for invariance

(one gene expression is response; all others the covariates)
that is: observed gene knock-outs (“environments”) are used to
predict new gene knock-out effects

validation: 1/3 of the interventional data are set aside
check whether a predicted intervention effect actually exhibited
a strong true effect
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I : invariant causal prediction method
H: invariant causal prediction with some hidden variables

for predicting interventions (the red dot)
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I : invariant causal prediction method
H: invariant causal prediction with some hidden variables

we can prioritize future experiments!



Causal regularization

encouraging various degree of invariance, from small to large
L(Y e − X eβ∗) ≡ const. w.r.t. e

the environments e ∈ E from before:
now outcomes of a q-dimensional random variable A (“anchor”)

plausible construction for estimator based on n data points
Yn×1, Xn×d , An×q:

argminβ∈Rd (‖Y − Xβ‖22/n + ξ‖ AT (Y − Xβ)︸ ︷︷ ︸
“correlations”

‖22)

ξ > 0 a regularization parameter

encouraging “correlation invariance”
i.e., residuals being uncorrelated of A (aka envs.)



argminβ∈Rd

(
‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)‖22

)
causal regularization:

β̂ = argminβ
(
‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n

)

+ λ‖β‖1

ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares
I for 0 ≤ γ <∞: general causal regularization

+ `1-penalty

convex optimization problem



argminβ∈Rd

(
‖Y − Xβ‖22/n + ξ‖AT (Y − Xβ)‖22

)
causal regularization:

β̂ = argminβ
(
‖(I − ΠA)(Y − Xβ)‖22/n + γ‖ΠA(Y − Xβ)‖22/n + λ‖β‖1

)
ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: least squares + `1-penalty
I for 0 ≤ γ <∞: general causal regularization + `1-penalty

convex optimization problem



the framework also encompasses nonlinear function estimation
(e.g. Random Forests, deep neural networks, etc.) PB (2020)

argminf∈F

(
‖(I − ΠA)(Y − f (X ))‖22/n + γ‖ΠA(Y − f (X ))‖22/n

)

e.g. Quarteroni’s physical heart model
(8th ECM first plenary talk)

can “add invariance” to a broad class of mathematical models!
and perhaps one “should”...



the framework also encompasses nonlinear function estimation
(e.g. Random Forests, deep neural networks, etc.) PB (2020)

argminf∈F
(

‖(I − ΠA)(Y − f (X ))‖22/n + ξ`physical(Y ,X , f )

+ γ‖ΠA(Y − f (X ))‖22/n)
)

e.g. Quarteroni’s physical heart model
(8th ECM first plenary talk)

can “add invariance” to a broad class of mathematical models!
and perhaps one “should”...



Causal regularization: nice mathematical guarantees

here for simplicity for linear models

X Y

H hiddenA

β0

?

Y ← Xβ0 + Hδ + εY ,

X ← Aα+ Hγ + εX

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Causal regularization: nice mathematical guarantees

here for simplicity for linear models

X Y

H hiddenA

β0

Y ← Xβ0 + Hδ + εY ,

X ← Aα+ Hγ + εX

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)



Causal regularization and Anchor regression
(Rothenhäusler, PB, Peters & Meinshausen, 2021)

X Y

H hiddenA

β0

A is an “anchor”
source node!

allowing also for
feedback loops

; called Anchor regressionX
Y
H

← B

X
Y
H

+ ε+ MA



allow that A acts on Y and H

; there is a fundamental identifiability problem
cannot identify β0

this is the price for more realistic assumptions than IV model



... but Causal Regularization offers something

but causal regularization solves for

argminβ∈Rd max
e∈F

E|Y e − X eβ|2

for a certain class of shift perturbations F



Model for F : shift perturbations

model for observed heterogeneous data (“corresponding to E”)X
Y
H

 = B

X
Y
H

+ ε+ MA

model for shift perturbations F (in test data)
shift vectors vX v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v

v ∈ Cγ ⊂ span(M), γ measuring the size of v

i.e. v ∈ Cγ = {v ; v = Mu for some u with E[uuT ] � γE[AAT ]}



v ∈ Cγ = {v ; v = Mu for some u with E[uuT ] ⊂ span(M)

in folklore:

perturbations (v ) in new test data have the same direction
(span(M)) as the observed heterogeneity/perturbations in the
training data

but they could be much stronger in the test data (γ large)

I the most natural extrapolation!
I the more perturbations and heterogeneity you see, the

better we can extrapolate (larger span(M))!

this is controversial in classical statistics – but it has
fundamental consequences for robustness



A fundamental duality theorem
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

PA the population projection onto A: PA• = E[•|A]

For any β

max
v∈Cγ

E[|Y v − X vβ|2] = E
[∣∣(Id− PA)(Y − Xβ)

∣∣2]+ γE
[∣∣PA(Y − Xβ)

∣∣2]
≈ ‖(I − ΠA)(Y − Xβ)‖2

2/n + γ‖ΠA(Y − Xβ)‖2
2/n︸ ︷︷ ︸

objective function on data

worst case shift interventions←→ regularization!
in the population case

; just regularize! (instead of l.h.s. which is a difficult object)



robustness ←→ causal regularization

Robust Statistics
Robust Optimization
Adversarial Learning

Peter Huber Arkadi Nemirovski
Aharon Ben-Tal

Ian Goodfellow

Causality

Phil Dawid Peter Spirtes

Judea Pearl



distributional robustness ←→ causal regularization
sup

d(P,P0)≤ρ
EP [(Y − Xβ)2] = max

v∈Cγ

E[|Y v − X vβ|2]

I P0 is the observational distribution (steady state)
I for Gaussian case:

d(., .) = dM(., .) is Wasserstein between Gaussians with
interventional data-dependent covariances,

potentially degenerate
; learned metric from the observed perturbations,

especially useful in high dimensions



distributional robustness ←→ causal regularization
sup

d(P,P0)≤ρ
EP [(Y − Xβ)2] = max

v∈Cγ

E[|Y v − X vβ|2]

(mathcurve.com)

postulated sphere←→ ellipsoid metric learned from data



robustness ←→ causality

the languages are rather different:

I metric for robustness
Wasserstein, f-divergence

I optimal transport and
adversarial robustness

I minimax optimality
I regularization
I ...

I causal graphs
I Markov properties on

graphs
I perturbation models
I identifiability of systems
I transferability of systems
I ...

mathematics allows to classify equivalences and differences
; can be exploited for better methods and algorithms

taking “the good” from both worlds!



and indeed, one can improve prediction
with causal-type regularization

I causal-robust machine learning
Leon Bottou et al. since 2013 (Microsoft and now Facebook)

I CNN-based classification with conditional invariance
(Heinze-Deml and Meinshausen, 2017)

I invariant risk minimization
(Arjovsky, Bottou, Gulrajani & Lopez-Paz, 2019)

I causal domain adaptation
(Magliacane et al., 2017; Chen & PB, 2020; ...)



Towards interpretation:
Science aims for causal understanding

... but this may be a bit ambitious...

causal inference necessarily requires (often untestable)
additional assumptions

e.g. in anchor regression model: we cannot find/identify the
causal (“systems”) parameter β0

X Y

H hiddenA

β0



Invariance and “diluted causality”

by the fundamental duality for causal regularization:

βγ = argminβ∈Rd

(
E[|(I − PA)(Y − Xβ)|2] + γE[|PA(Y − Xβ)|2]

)
γ →∞ leads to shift invariance of residuals
Y − Xβ→∞ has the same distribution over shift perturbations

β→∞ is generally not the causal parameter
but because of shift invariance: call it “diluted causal”
note: causal = invariance w.r.t. very many perturbations



notions of associations

marginal correlation

regression

causal*

invariance = "diluted causal"

invariance = “diluted causal”

under faithfulness conditions, the figure is valid (causal* are the causal variables as in

e.g. large parts of Dawid, Pearl, Robins, Rubin, ...)



Stabilizing

John W. Tukey (1915 – 2000), also co-inventor of FFT
Tukey (1954)

“One of the major arguments for regression instead of corre-
lation is potential stability. We are very sure that the correlation
cannot remain the same over a wide range of situations, but it is
possible that the regression coefficient might. ...
We are seeking stability of our coefficients so that we can hope to
give them theoretical significance.”

marginal correlation

regression

causal*

invariance = "diluted causal"



“Diluted causality”: important proteins for cholesterol

Ruedi Aebersold, ETH Zürich

3934 other proteins
which of those are
“diluted causal”
for cholesterol

experiments with mice: 2 environments with fat/low fat diet

high-dimensional regression, total sample size n = 270
Y = cholesterol pathway activity, X = 3934 protein expressions



x-axis: importance w.r.t
regression but non-invariant

y-axis: importance w.r.t.
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... and we have some forms of validation

e.g. with respect to finding known pathways

for Ribosome pathway

Ribosome − diet, mRNA
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invariance performs better than regression association!
for inferring known pathway structure



... and the story would go on

causal regularization leads to
I better distributional replicability of findings in new datasets

in genomics Rothenhäusler, Peters, PB & Meinshausen (2018)
I large-scale kinetic systems based on metabolomics

(Pfister, Bauer and Peters, 2019)

I finding more promising proteins and genes: based on
high-throughput proteomics

I prediction of gene knock-downs: based on transcriptomics



Conclusions

I interpretation/“causality” and robustness are related to
each other!
at least in the outlined framework of causality and robustness

I stabilizing and finding suitable invariances in large datasets
are powerful and can make a relevant difference in practice
in the context of many mathematical models

I we hear nowadays quite often about “causal AI”
overly ambitious wording and “true(ish) causality” is far away

but in fact, it is mostly about “robust and reliable prediction”



robustness – causality


