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The Dawn of Deep Learning in Public Life

Health Care

Telecommunication/
Speech RecognitionSelf-Driving Cars

Legal Issues



Spectacular Success in Science



Impact on Mathematical Problem Settings

Some Examples:

I Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

I Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...
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Deep Learning = Alchemy?



Problem with Trustworthiness



Missing Mathematical Foundation



Role of Mathematics

Two Key Challenges for Mathematics:

Mathematics for Deep Learning!

I Can we derive a deep mathematical understanding of deep learning?

I How can we make deep learning more robust?

I ...

Deep Learning for Mathematics!

I How can we use deep learning to improve imaging science?

I Can we develop superior PDE solvers via deep learning?

I ...



Delving Deeper into Deep Neural Networks...



First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

I Develop an algorithmic approach to learning.

I Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!



Artificial Neurons
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Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R
and activation function ρ : R→ R is defined as the function f : Rn → R
given by

f (x1, ..., xn) = ρ

(
n∑

i=1

xiwi − b

)
= ρ(〈x ,w〉 − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

I Heaviside function ρ(x) =

{
1, x > 0,

0, x ≤ 0.

I Sigmoid function ρ(x) = 1
1+e−x .

I Rectifiable Linear Unit (ReLU) ρ(x) = max{0, x}.
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Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

Φ : R3 → R2, Φ(x) = W (2)ρ(W (1)x + b(1)) + b(2).

W (1) =

 w
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; Sparse matrices lead to sparse connectivity!



Definition of a Deep Neural Network

Definition:
Assume the following notions:

I d ∈ N: Dimension of input layer.

I L: Number of layers.

I ρ : R→ R: (Non-linear) function called activation function.

I T` : RN`−1 → RN` , ` = 1, . . . , L, where T`x = W (`)x + b(`)

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).



Training of Deep Neural Networks

High-Level Set Up:
I Samples (xi , f (xi ))mi=1 of a function

such as f :M→ {1, 2, . . . ,K}.
; Training- and test data set.

I Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (W (`))L`=1,

i.e., weights, are set to zero at this point.

I Learn the affine-linear functions (T`)
L
`=1 = (W (`) ·+b(`))L`=1 by

min
(W (`),b(`))`

m∑
i=1

L(Φ(W (`),b(`))`
(xi ), f (xi )) + λR((W (`), b(`))`)

yielding the network Φ(W (`),b(`))`
: Rd → RNL ,

Φ(W (`),b(`))`
(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(W (`),b(`))`
≈ f
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Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
I Drastic improvement of computing power.

; Networks with hundreds of layers can be trained.
; Deep Neural Networks!

I Age of Data starts.
; Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Berner, Grohs, K, Petersen; 2021)

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)
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Mathematics for Deep Learning

I Expressivity:
I Which aspects of a neural network architecture affect the performance

of deep learning?
; Applied Harmonic Analysis, Approximation Theory, ...

I Learning:
I Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?
; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

I Generalization:
I What is the role of depth?
I Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

I Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...
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Explainability

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Selected Questions:

I What exactly is relevance in a mathematical sense?

I Can we develop a theory for optimal relevance maps?

I How to extend to challenging modalities?

Source: Rate-Distortion Explanation (RDE)

(Macdonald, Wäldchen, Hauch, K; 2020)

(Heiß, Levie, Resnick, K, Bruna; 2021)
Vision:

Explanation of a decision indistinguishable from a human being!

; Requires interdisciplinary approach and novel mathematics!
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Deep Learning for Mathematics

I Inverse Problems:
I How do we optimally combine deep learning with model-based

approaches?
I Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

I Partial Differential Equations:
I Why do neural networks perform well in very high-dimensional

environments?
I Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...

Are deep neural networks at least as good
as all previous mathematical methods?
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Revisiting Classical Approximation Theory



Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (ϕi )i∈I ⊆ L2(Rd). Measure the suitability of
(ϕi )i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

‖f − fN‖2 := inf
IN⊂I ,#IN=N,(ci )i∈IN

‖f −
∑
i∈IN

ciϕi‖2.

The largest γ > 0 such that

sup
f ∈C
‖f − fN‖2 = O(N−γ) as N →∞

determines the optimal (sparse) approximation rate of C by (ϕi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where ∅ 6= B ⊂ [0, 1]2 simply connected with C 2-boundary and bounded
curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ‖fi‖C2 ≤ 1, i = 0, 1.

Theorem (Donoho; 2001):
Let (ψλ)λ ⊆ L2(R2). Allowing only polynomial depth search, we have the
following optimal behavior for f ∈ E2(R2):

‖f − fN‖2 � N−1 as N →∞.
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What can Wavelets do?

Problem:

I Isotropic structure of wavelets:

{2jψ(

(
2j 0
0 2j

)
x −m) : j ∈ Z,m ∈ Z2}, ψ ∈ L2(R2).

I For f ∈ E2(R2), wavelets only achieve

‖f − fN‖2 � N−
1
2 , N →∞.

Non-Exhaustive List of Approaches:

I Ridgelets (Candès and Donoho; 1999)

I Curvelets (Candès and Donoho; 2002)

I Contourlets (Do and Vetterli; 2002)

I Bandlets (LePennec and Mallat; 2003)

I Shearlets (K and Labate; 2006)
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(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(φ, ψ, ψ̃) generated by
φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· −m) : m ∈ Z2},

{23j/4ψ(SkA2j · −m) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −m) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2}.
The associated shearlet transform will be denoted by SH.
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Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

‖f − fN‖2 . N−1(logN)
3
2 as N →∞.

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

I Matlab (K, Lim, Reisenhofer; 2013)

I Julia (Loarca; 2017)

I Python (Look; 2018)

I Tensorflow (K, Loarca; 2019)
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Universality of Deep Neural Networks:

An Analysis of Their Expressivity



Complexity of a Deep Neural Network

Recall:

I L: Number of layers.

I ρ : R→ R: Activation function.

I T` : RN`−1 → RN` , ` = 1, . . . , L, where T`x = W (`)x + b(`)

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).

We write Φ ∈ NNL,C(Φ),d ,ρ.

Measure for Complexity: The complexity C (Φ) is defined by

C (Φ) :=
L∑
`=1

(
‖W (`)‖0 + ‖b(`)‖0

)
.

Key Challenge:
Approximation accuracy ↔ Complexity of approximating network

in terms of memory efficiency!
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d ∈ N, K ⊂ Rd compact, f : K → R continuous, ρ : R→ R
continuous and not a polynomial. Then, for each ε > 0, there exist
N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

‖f −
N∑

k=1

akρ(〈wk , ·〉 − bk)‖∞ ≤ ε.

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f ∈ C = C s([0, 1]d) and ρ the ReLU,
i.e., ρ(x) = max{0, x}, there exist neural networks (Φn)n∈N with
L(Φn) ≈ log(n) such that

‖f − Φn‖∞ . C (Φn)−
s
d → 0 as n→∞.

This result is not optimal!
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A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent γ∗(C) measures the complexity of C ⊂ L2(Rd).

Theorem (Bölcskei, Grohs, K, and Petersen; 2019):
Let d ∈ N, ρ : R→ R, and let C ⊂ L2(Rd). Further, let

Learn : (0, 1)× C → NN∞,∞,d ,ρ
satisfy that, for each f ∈ C and 0 < ε < 1,

sup
f ∈C
‖f − Learn(ε, f )‖2 ≤ ε.

Then, for all γ < γ∗(C),

εγ sup
f ∈C

C (Learn(ε, f ))→∞, as ε→ 0.

Conceptual bound independent on the learning algorithm!

; What happens for γ = γ∗(C)?
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Optimal Approximation

Key Ideas for a Specific Function Class:

I Consider a representation system with an optimal approximation rate.

I Realize each element of a representation system by a neural network.

I Mimic best N-term approximation by networks.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bölcskei, Grohs, K, and Petersen; 2019):
Let ρ be a suitably chosen, and let ε > 0. Then, for all f ∈ E2(R2) and
N ∈ N, there exists Φ ∈ NN 3,O(N),2,ρ with

‖f − Φ‖2 . N−1+ε → 0 as N →∞.

This is the optimal rate; hence the first bound is sharp!

Deep neural networks achieve optimal approximation
properties of all affine systems combined!
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Numerical Experiments (with ReLUs & Backpropagation)

Linear Singularity Subnetworks: ≈ Ridgelets!

Curvilinear Singularity Subnetworks: ≈ Shearlets!
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Are Deep Neural Networks Really Better

Than Classical Methods?



Solving Inverse Problems

Sparse Regularization:
Given an (ill-posed) inverse problem

Kf = g , where K : X → Y ,

an approximate solution f α ∈ X , α > 0, can be determined by

f α := argmin
f

[
‖Kf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ϕi 〉)i∈I‖1︸ ︷︷ ︸
Penalty term

]
.

Some Typical Deep Learning Approaches to Inverse Problems:
Iterative solvers, e.g., ADMM, contain a ...

I denoising step, which can be replaced by a neural network.
; Plug-and-play with CNN-denoising [Venkatakrishnan,Bouman,Wohlberg,’13],

[Romano,Elad,Milanfar,’16], [Meinhardt et al.,’17], [Reehorst,Schniter,’19] . . .

I proximal steps, which can be learnt using a deep learning-based approach.

; Learned Iterative Schemes [Gregor,LeCun,’10], [Yang et al.,’16],

[Hammernick et al.,’16] [Adler,Öktem,’17], [Hammernick et al.,’18], [Hauptmann et al.,’18] . . .
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(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
, φ ∈ [−π/2, π/2), and s ∈ R.

Challenging inverse problem if Rf (·, s) is only sampled
on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, electron tomography,...

Model-Based Approaches Fail (60◦ Missing Angle):

Original Image Filtered Backprojection Sparse Regularization with Shearlets
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Zooming in on the Limited-Angle CT Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Illustration of Theorem [Quinto, 1993]:

‘visible”: singularities tangent “invisible”: singularities not tangent

to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

f = 1D for a set D ⊆ R2

with smooth boundary

Theorem (K, Labate; 2006):
“Shearlets can identify the wavefront set at fine scales.”

Shearlets can Separate the Visible and Invisible Part:
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Our Approach “Learn the Invisible (LtI)”
(Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible

f ∗ := argmin
f≥0

‖Rφ f − g‖2
2 + ‖SHψ(f )‖1,w

I Best available classical solution (little artifacts, denoised)

I Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k , l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
U-Net

Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )



Numerical Results

Original

Filtered Backprojection Sparse Regularization with Shearlets

[Gu & Ye, 2017] Learn the Invisible (LtI)

Deep neural networks can outperform classical methods by far!
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Deep Network Shearlet Edge Extractor (DeNSE)
(Andrade-Loarca, K, Öktem, Petersen; 2019)

Original

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE



Deep Learning for Mathematics

I Inverse Problems:
I How do we optimally combine deep learning with model-based

approaches?
I Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

I Partial Differential Equations:
I Why do neural networks perform well in very high-dimensional

environments?
I Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...

Why should one use deep neural networks
for solving PDEs at all?
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A Final Glimpse into the Effectivness of

Deep Neural Networks for Solving PDEs!



Numerical Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks: Approximate the
solution u of a PDE L(u) = f by a neural network Φ, i.e., determine

L(Φ) ≈ f .

Incomplete List of Contributions: [Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero,

Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano, Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Schwab, Zech; 2019], [Raissi,

Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], . . .

Parametric PDEs: Parameter dependent families of PDEs arise in basically any
branch of science and engineering:

I Complex design problems

I Optimization tasks

I Uncertainty quantification

I ...

Parametric Map:

Y 3 y 7→ uy ∈ H such that L(uy , y) = fy .

Curse of Dimensionality: Computational cost too high!
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What can Deep Neural Networks do?

Parametric Map:

Rp ⊇ Y 3 y 7→ uh
y ∈ RD such that by

(
uhy , v

)
= fy (v) for all v .

Can a neural network approximate the parametric map?

Advantages:

I After training, extremely rapid computation of the map.

I Flexible, universal approach.

Questions: Let ε > 0.

(1) Does there exist a neural network Φ such that

‖Φ− uh
y‖ ≤ ε for all y ∈ Y?

(2) How does the complexity of Φ depend on p and D?

(3) How do neural networks perform numerically on this task?
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Theoretical Results

Theoretical Approach (K, Petersen, Raslan, Schneider; 2021):

I There exists a neural network Φ which approximates the parametric map:

‖Φ− uh
y‖ ≤ ε for all y ∈ Y.

I The dependence of C (Φ) on p and D can be (polynomially) controlled.

Numerical Results (Geist, Petersen, Raslan, Schneider, K; 2021)

I Parametric diffusion equation with various parametrizations

I Fixed neural network architecture: 11 layers and 0.2-LReLU

I Training set: 20000 i.i.d. parameter samples

Example (p = 91):

This performance does also not suffer from the curse of dimensionality!
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Some Final Thoughts...



Conclusions

Deep Learning:

I Impressive performance in real-world applications!

I A theoretical foundation of is largely missing!

(New) Mathematics is crucially needed (...which concerns almost all areas)!

Mathematics for Deep Learning:

I Expressivity: Optimal architectures?

I Learning: Controllable, efficient algorithms?

I Generalization: Performance on test data sets?

I Explainability: Explaining network decisions?

Deep Learning for Mathematics:

I Significantly better solvers of inverse problems.

I Beating the curse of dimensionality for partial differential equations.



The 7 Mathematical Key Problems of Deep Learning

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of
deep learning?

(3) Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

(4) Why do large neural networks not overfit?

(5) Why do neural networks perform well in very high-dimensional environments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

Exciting Future Perspectives for Mathematics!

Source: Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning, arXiv:2105.04026.
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THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:
@GittaKutyniok

Upcoming Book:
I P. Grohs and G. Kutyniok

Mathematical Aspects of Deep Learning
Cambridge University Press (in preparation)


