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Spectacular Success in Science

NEWS - 30 NOVEMBER 2020

‘It will change everything”: DeepMind’s Al
makes gigantic leap in solving protein
structures

Google's deep-learning program for determining the 3D shapes of proteins

stands to transform biology, say scientists.
Noture 588, 203-204 (2020)

STRUCTURE SOLVER

PeapMind’s AlphaFald 2 slgarithm significantly
outparformed ather tearms at the CASP14 protsin
folding cantest — and Its previous version's
performance at the last CASP.

100
AlphaFold 2 -
90 ph %
BO = soore above 90
E & S ts considerad rowghly
=6 equivalent to the
§ 5 g6 exparimantally MDhaFQId“\
,E = determined structure
80
TE
Es
2o 30
@
20
10

200B 2008 2010 2012 20014 206 2018 2020

e Contest year




Impact on Mathematical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~> Denoising

~> Edge Detection

~> Inpainting

~» Classification

~» Superresolution

~» Limited-Angle Computed Tomography




Impact on Mathematical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~> Denoising

~» Edge Detection

~> Inpainting

~» Classification

~» Superresolution

~» Limited-Angle Computed Tomography

Numerical Analysis of Partial Differential Equations (2017-)
~> Black-Scholes PDE
~> Allen-Cahn PDE
~» Parametric PDEs




Deep Learning = Alchemy?

Al researchers allege that machine learning is
alchemy

By Mafthess Hutson | May. 3, 20131115 AM

Ali Rashimi, a researcher in artificial inteligenca (Al) st Google in San Francisco, Califomia, took a
swipe at his field last December—and received a 40-sacond ovation for it. Speaking at an Al
canference, Rahimi charged that machine leaming algerithms, in which computers leam through
trial and error, have become a form of “alchemy” Researchers, he said, do not know why sorme
algerithms wark and others dert, nar do they have rigoraus criteria for chaasing ane Al
architecture over another. Now, In a paper presented on 50 April at the Intemational Conference
‘on Leaming Representations in Vancouver, Cansda, Rahimi and his collaborators document
examples of what they see s the alchemy problem and offer prescriptions for bolstering Al's
rigor.

LMU



Problem with Trustworthiness

By Lindo Goddes 5 Decombar 2015

Computers can be made to see a sea turtle as a gun or hear
aconcerto as someone's voice, which is raising concerns
about using artificial intelligence in the real world,

MACHINE MINDS | ARTIFICIAL INTELLIGENCE EE




Missing Mathematical Foundation

Deep, Deep Trouble
Deep Learning’s Impact on Image Processing, Mathematics, and Humanity
By Michael Elad

| am really confused. | keep changing my opinion on a daily basis, and | cannot seem o settle on one solid view
of this puzzle. Mo, | am not talking about world politics or the current ULS. president, but rather something far
more ritical to humankind, and mare specifically to our existence and work as engineers and researchers. | am
talking about...deep leaming.




Role of Mathematics

Two Key Challenges for Mathematics:

Mathematics for Deep Learning!

Can we derive a deep mathematical understanding of deep learning?

How can we make deep learning more robust?

Deep Learning for Mathematics!

How can we use deep learning to improve imaging science?

Can we develop superior PDE solvers via deep learning?




Delving Deeper into Deep Neural Networks...




First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):
Develop an algorithmic approach to learning.

Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!
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Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function p : R — R is defined as the function f : R” — R

given by

(X1, Xn) = p (ZX;W; - b) = p((x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).




Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function p : R — R is defined as the function f : R” — R

given by

(X1, Xn) = p (ZX;W; - b) = p((x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).

Examples of Activation Functions:
1, > 0,

Heaviside function p(x) = x
0, x<0.

Sigmoid function p(x) = 14—%

Rectifiable Linear Unit (ReLU) p(x) = max{0, x}. .m
LMU




Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

R = R d(x) = WO p(WMx 4 pM)) 4 p2),

® 0

Wi Wi
wih =1 o o w
o 0w

2 2
w® — W1(1) W1(2) 0
o 0o wd

~» Sparse matrices lead to sparse connectivity!




Definition of a Deep Neural Network

Definition:
Assume the following notions:

d € N: Dimension of input layer.

L: Number of layers.

p : R — R: (Non-linear) function called activation function.

Ty RNt s RNe p=1. ... L, where Tyx = WO x 4+ p©)
Then ¢ : R — RM given by

®(x) = Tep(Ti—1p(- .. p(T1(x))), x € RY,
is called (deep) neural network (DNN).




Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))7; of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.
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Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))7; of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.

Select an architecture of a deep neural network
i.e., a choice of d, L, (Ng)ﬁzl, and p.

Sometimes selected entries of the matrices (W())E_, |
i.e., weights, are set to zero at this point.

Learn the affine- Imear functions (Tg)e 1= (W(E) —i—b(e))‘,Z 1 by

L 0
ml/?(‘)) Zﬁ((b(w b0, (i), F(xi)) + AR((WO, b))

yieldlng the network q)(W(f),b“))e ‘R4 — RM,
P by, (x) = Tep(Tr-1p(. . . p(T1(x)))-

This is often done by stochastic gradient descent. .M
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Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))7; of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.

Select an architecture of a deep neural network
i.e., a choice of d, L, (Ng)ﬁzl, and p.

Sometimes selected entries of the matrices (W())E_, |
i.e., weights, are set to zero at this point.

Learn the affine- Imear functions (Tg)e 1= (W(E) —i—b(e))‘,Z 1 by

L 0
ml/?(‘)) Zﬁ((b(w b0, (i), F(xi)) + AR((WO, b))

yieldlng the network q)(W(f),b“))e ‘R4 — RM,
P by, (x) = Tep(Tr-1p(. . . p(T1(x)))-

This is often done by stochastic gradient descent. .M
Goal: ¢(W([)7b(£))l ~ f LMU




Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
Drastic improvement of computing power.
~» Networks with hundreds of layers can be trained.
~» Deep Neural Networks!

Age of Data starts.
~» Vast amounts of training data is available.
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Key Observations by Y. LeCun et al. (around 2000):
Drastic improvement of computing power.
~» Networks with hundreds of layers can be trained.
~» Deep Neural Networks!
Age of Data starts.
~» Vast amounts of training data is available.
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Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
~» Networks with hundreds of layers can be trained.

~» Deep Neural Networks! * A
Age of Data starts. N [} N ‘ ,Ilf
~» Vast amounts of training data is available. N, N
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Mathematics for Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance
of deep learning?

~> Applied Harmonic Analysis, Approximation Theory, ...
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Mathematics for Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance
of deep learning?

~> Applied Harmonic Analysis, Approximation Theory, ...

Learning;:
Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

~ Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

What is the role of depth?
Why do large neural networks not overfit?
~ Learning Theory, Probability Theory, Statistics, ...

Explainability:
Why did a trained deep neural network reach a certain decision?

Which features of data are learned by deep architectures? .M
~» Information Theory, Uncertainty Quantification, ... LMU




Explainability

Main Goal: We aim to understand decisions of “black-box" predictors!

map for digit 3  map for digit 8

Selected Questions:
What exactly is relevance in a mathematical sense?
Can we develop a theory for optimal relevance maps?

How to extend to challenging modalities?

Source: Rate-Distortion Explanation (RDE)
(Macdonald, Wildchen, Hauch, K; 2020)
- (HeiB, Levie, Resnick, K, Bruna; 2021)
Vision:
Explanation of a decision indistinguishable from a human being!

~» Requires interdisciplinary approach and novel mathematics! M




Mathematics for Deep Learning

Expressivity:
Which aspects of a neural network architecture affect the performance
of deep learning?

~> Applied Harmonic Analysis, Approximation Theory, ...

Learning;:
Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

~ Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

What is the role of depth?
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~> Learning Theory, Probability Theory, Statistics, ...

Explainability:
Why did a trained deep neural network reach a certain decision?

Which features of data are learned by deep architectures? .M
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Deep Learning for Mathematics

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~» Imaging Science, Inverse Problems, Microlocal Analysis, ...
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Deep Learning for Mathematics

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~» Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations:
Why do neural networks perform well in very high-dimensional
environments?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Numerical Mathematics, Partial Differential Equations, ...

Are deep neural networks at least as good
as all previous mathematical methods? .M
LMU




Revisiting Classical Approximation Theory




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by

f—fN 2 = inf f— CiQill2.
| ” INC1L#IN=N,(ci)iely | ,EZ/% il
The largest v > 0 such that

sup || — fyll2 = O(N™7) as N — oo
fec

determines the optimal (sparse) approximation rate of C by (pi)icy.
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Definition: The error of best N-term approximation of some f € C is
given by
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in terms of sparsity
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Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions £2(R?) is defined by

EXR?) ={fe > (R®): f=f+f xs}

where () # B C [0, 1]? simply connected with C2-boundary and bounded
curvature, and i € C?(R2) with supp f; € [0,1]%2 and ||fi||c2 <1, i =0,1.




Modeling Anisotropic Structures

Definition (Donoho; 2001):
The set of cartoon-like functions £2(R?) is defined by

EXR?) ={fe > (R®): f=f+f xs}

where () # B C [0, 1]? simply connected with C2-boundary and bounded
curvature, and i € C?(R2) with supp f; € [0,1]%2 and ||fi||c2 <1, i =0,1.

Theorem (Donoho; 2001):
Let (1x)x C L?(R?). Allowing only polynomial depth search, we have the

following optimal behavior for f € £2(R?):
If —fyllax Nt as N — oco. .m
LMU




What can Wavelets do?

Problem:

Isotropic structure of wavelets:

{2J¢(<0 ;)x—m):jeZ,meZz}, ¥ € L2(R?).

For f € £2(R?), wavelets only achieve

||f—fN||2 N— 2 N — oo.

&

ol



What can Wavelets do?

Problem:

Isotropic structure of wavelets:
{2sz(( 0 2OJ )x— m):jeZ,meZ?, e l?R?).

For f € £2(R?), wavelets only achieve
||f—fN||2 N— 2 N — oo.

Non-Exhaustive List of Approaches: ﬁ ﬁ
Ridgelets (Candés and Donoho; 1999)
Curvelets (Candeés and Donoho; 2002)
Contourlets (Do and Vetterli; 2002)

Bandlets (LePennec and Mallat; 2003)
Shearlets (K and Labate; 2006)

ol




(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ~ length?’):

Orientation via shearing;: .

1 k
5k—<0 1), k € Z.




(Cone-adapted) Discrete Shearlet Systems

Parabolic scaling (‘width ~ length?’):

Orientation via shearing;: .

1 k
5k—<0 1), k € Z.

Definition (K, Labate; 2006): 5
The (cone-adapted) discrete shearlet system SH(¢,1),1)) generated by
¢ € L?(R?) and 1,7 € L?(R?) is the union of 0

{¢(- — m):meZ?}, Eramss
(VIS - —m):j > 0K < [P mez?y,
{(2¥/40(SkAy - —m) 1 j >0, |k| < [2/2],m € 2%},
The associated shearlet transform will be denoted by SH.

ol



Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let q‘),w,zZ € L?(R?) be compactINy supported, and let gﬁ $ satisfy certain

decay condition. Then SH(¢,1,1)) provides an optimally sparse
approximation of f € £2(R?), i.e.,

If — fulls < N (log N)2  as N — cc. ~




Optimally Sparse Approximation

Theorem (K, Lim; 2011):

Let (b,w,iZ € L?(R?) be compactly supported, and let @5 @Z satisfy certain
decay condition. Then SH(¢,1,1)) provides an optimally sparse
approximation of f € SQ(RQ), ie.,

If — fulls < N (log N)2  as N — cc. ~

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):
Matlab (K, Lim, Reisenhofer; 2013)
Julia (Loarca; 2017)
Python (Look; 2018)
Tensorflow (K, Loarca; 2019)




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by
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Universality of Deep Neural Networks:

An Analysis of Their Expressivity




Complexity of a Deep Neural Network

Recall:

L: Number of layers.

p R — R: Activation function.
To RNt s RNe ¢ =1, ..., L, where Tyx = WO x 4 p(®)
Then ¢ : R — RM given by
®(x) = Tep(Ti—1p(- .. p(T1(x))), x € RY,
is called (deep) neural network (DNN).
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Recall:

L: Number of layers.

p R — R: Activation function.
To RNt s RNe ¢ =1, ..., L, where Tyx = WO x 4 p(®)
Then ¢ : R — RM given by
®(x) = Tep(Teoap(. .- p(Ti(x))),  x € RY,
is called (deep) neural network (DNN). We write ® € NNL,C(¢)7d7p.

Measure for Complexity: The complexity C(®) is defined by

L
c(@) =3 (IWOljg + 16V o) .
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Complexity of a Deep Neural Network

Recall:

L: Number of layers.

p R — R: Activation function.
To RNt s RNe ¢ =1, ..., L, where Tyx = WO x 4 p(®)
Then ¢ : R — RM given by

O(x) = Tep(Tio1p(. .. p(T1(x))), x € R,
is called (deep) neural network (DNN). We write ® € NN} c(0).d,p-

Measure for Complexity: The complexity C(®) is defined by

L
(@) :=> (IWOo+ [15“o)
(=1
Key Challenge:
Approximation accuracy <» Complexity of approximating network

in terms of memory efficiency!

ol



One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € RY compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each € > 0, there exist

N €N, ai, b € R, wyx € RY such that

N
1 =3 akp({we ) = billoe < e %
k=1
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € RY compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each € > 0, there exist

N €N, ai, b € R, wyx € RY such that

N
1 =3 akp({we ) = billoe < e %%@
k=1

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f € C = C*([0,1]9) and p the RelLU,
i.e., p(x) = max{0, x}, there exist neural networks (®,),cn with
L(®,) ~ log(n) such that

|f = Dplloe < C(Pn)"d =0 as n— oco.
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d € N, K € RY compact, f : K — R continuous, p: R — R
continuous and not a polynomial. Then, for each € > 0, there exist

N €N, ai, b € R, wyx € RY such that

N
1 =3 akp({we ) = billoe < e %%@
k=1

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f € C = C*([0,1]9) and p the RelLU,
i.e., p(x) = max{0, x}, there exist neural networks (®,),cn with
L(®,) ~ log(n) such that

|f = Dplloe < C(Pn)"d =0 as n— oco.

This result is not optimal!

ol




A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent v*(C) measures the complexity of C C L2(RY).




A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent 4*(C) measures the complexity of C C L2(RY).

Theorem (Bdlcskei, Grohs, K, and Petersen; 2019):
Let d €N, p: R = R, and let C C L?(RY). Further, let
Learn : (0,1) X C = NN 00,d,p
satisfy that, for each f € Cand 0 < e < 1,
sup ||f — Learn(e, f)|2 < e.
feC

Then, for all v < ~*(C),

¢’ sup C(Learn(e, f)) — oo, as € — 0.
fec

Conceptual bound independent on the learning algorithm!
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A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent 4*(C) measures the complexity of C C L2(RY).

Theorem (Bdlcskei, Grohs, K, and Petersen; 2019):
Let d €N, p: R = R, and let C C L?(RY). Further, let
Learn : (0,1) X C = NN 00,d,p
satisfy that, for each f € Cand 0 < e < 1,
sup ||f — Learn(e, f)|2 < e.
feC

Then, for all v < ~*(C),

¢’ sup C(Learn(e, f)) — oo, as € — 0.
fec

Conceptual bound independent on the learning algorithm!

= ~* 7
~» What happens for v = v*(C) M




Optimal Approximation

Key ldeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.
Realize each element of a representation system by a neural network.

Mimic best N-term approximation by networks.




Optimal Approximation

Key ldeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.
Realize each element of a representation system by a neural network.
Mimic best N-term approximation by networks.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bdlcskei, Grohs, K, and Petersen; 2019):
Let p be a suitably chosen, and let € > 0. Then, for all f € £2(R?) and
N € N, there exists ¢ € /\/'/\/'370(,\,)’2,%, with

[f—®a SN =0 as N — oo.

This is the optimal rate; hence the first bound is sharp!
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Optimal Approximation

Key ldeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.
Realize each element of a representation system by a neural network.
Mimic best N-term approximation by networks.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bdlcskei, Grohs, K, and Petersen; 2019):
Let p be a suitably chosen, and let € > 0. Then, for all f € £2(R?) and
N € N, there exists ¢ € /\/'/\/'370(,\,)’2,%, with

[f—®la SN TS0 as N — .

This is the optimal rate; hence the first bound is sharp!

Deep neural networks achieve optimal approximation
properties of all affine systems combined!

ol



Numerical Experiments (with ReLUs & Backpropagation)
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Linear Singularity Subnetworks: ~~ Ridgelets!




Numerical Experiments (with ReLUs & Backpropagation)

50 100 150 200 250 10 20 30 40 50 60

Linear Singularity Subnetworks: ~~ Ridgelets!

40 60 80 100 10 20 30 40 50

Curvilinear Singularity Subnetworks: ~ Shearlets!




Are Deep Neural Networks Really Better

Than Classical Methods?




Solving Inverse Problems

Sparse Regularization:
Given an (ill-posed) inverse problem

Kf =g, where K: X =Y,

an approximate solution f* € X, a > 0, can be determined by

F = argmin | [IKF gl + a- |({F, iDierlly |-
f — —_—

Data fidelity term Penalty term
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Data fidelity term Penalty term

Some Typical Deep Learning Approaches to Inverse Problems:
Iterative solvers, e.g., ADMM, contain a ...

denoising step, which can be replaced by a neural network.

> P/ug—and—p/ay Wlth CNN—denOiSing [Venkatakrishnan,Bouman,Wohlberg,'13],
[Romano,Elad,Milanfar,"16], [Meinhardt et al.,'17], [Reehorst,Schniter,'19] ...

proximal steps, which can be learnt using a deep learning-based approach.

~» Learned Iterative Schemes [Gregor,LeCun,'10], [Yang et al.,'16],

[Hammernick et al.,'16] [Adler,Oktem,’17], [Hammernick et al.,’18], [Hauptmann et al.,’18] ... m




(Limited Angle-) Computed Tomography
A CT scanner samples the Radon transform
e[ o [RHE
L((b s

for L(¢,s) = {x € R? : x; cos(¢) + xpsin(¢) = s}, ¢ € [-7/2,7/2), and s € R.
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for L(¢,s) = {x € R? : x; cos(¢) + xpsin(¢) = s}, ¢ € [-7/2,7/2), and s € R.

Challenging inverse problem if Rf(-,s) is only sampled
on [=¢,¢] C [-7/2,7/2).

Applications: Dental CT, electron tomography,... 'ﬁ
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(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform
- '

RF(d,5) = /L . )

for L(¢,s) = {x € R? : x; cos(¢) + xpsin(¢) = s}, ¢ € [-7/2,7/2), and s € R.

Challenging inverse problem if Rf(-,s) is only sampled
on [=¢,¢] C [-7/2,7/2).

Applications: Dental CT, electron tomography,... 'ﬂ

Model-Based Approaches Fail (60° Missing Angle):

Original Image Filtered Backprojection Sparse Regularization with Shearlets



Zooming in on the Limited-Angle CT Problem

¢ = 15°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 30°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 45°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 60°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 75°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 90°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 90°, filtered backprojection (FBP)

lllustration of Theorem [Quinto, 1993]:

‘visible": singularities tangent “invisible”: singularities not tangent

ol

to sampled lines to sampled lines



Shearlets can Help

Key ldea: Filling the missing angle is an l
inpainting problem of the wavefront set! i ]
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f:lDforaseth]R2
with smooth boundary
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Theorem (K, Labate; 2006):
“Shearlets can identify the wavefront set at fine scales.”




Shearlets can Help

Key ldea: Filling the missing angle is an I
inpainting problem of the wavefront set! i ]

| i

f:lDforaseth]R2
with smooth boundary

Theorem (K, Labate; 2006):
“Shearlets can identify the wavefront set at fine scales.”

Shearlets can Separate the Visible and Invisible Part:




Our Approach “Learn the Invisible (Ltl)”

(Bubba, K, Lassas, Marz, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible
F* o= argmin| Ry £ = g + | SHy() 1.0

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets: It
For (j, k, 1) € Tiny: SHy(F*)(j k1) = 0 s R
For (j, k,1) € Zyss: SHy(f*)(j k. reliable and near perfect i/ N

Step 2: Learn the invisible

N/\/e : SHw(f*)Ivis E‘::
U

e — F (é SHw(fgt)Lm)

et

= oo

Step 3: Combine

ol

fier = SHI (SHy(F)z... + F)



Numerical Results

Filtered Backprojection Sparse Regularization with Shearlets

Original

[Gu & Ye, 2017] Learn the Invisible (Ltl)



Numerical Results
\
A\

)

Sparse Regularization with Shearlets

Original

[Gu & Ye, 2017] Learn the Invisible (Ltl)

Deep neural networks can outperform classical methods by far!



Deep Network Shearlet Edge Extractor (DeNSE)
(Andrade-Loarca, K, Oktem, Petersen: 2019)

Human Annotation SEAL [Yu et al; 2018]

Original

CoShREM [Reisenhofer et al.; 2015]




Deep Learning for Mathematics

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~» Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations:
Why do neural networks perform well in very high-dimensional
environments?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Numerical Mathematics, Partial Differential Equations, ...

ol



Deep Learning for Mathematics

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~» Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations:
Why do neural networks perform well in very high-dimensional
environments?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Numerical Mathematics, Partial Differential Equations, ...

Why should one use deep neural networks

for solving PDEs at all? .M
LMU




A Final Glimpse into the Effectivness of

Deep Neural Networks for Solving PDEs!




Numerical Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks: Approximate the
solution u of a PDE £L(u) = f by a neural network ®, i.e., determine

L(P)~ .

Incomplete List of Contributions: [Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero,

Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano, Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Schwab, Zech; 2019], [Raissi,
Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], . ..
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Common Approach to Solve PDEs with Neural Networks: Approximate the
solution u of a PDE £L(u) = f by a neural network ®, i.e., determine

L(P)~ .
Incomplete List of Contributions: [Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero,

Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano, Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Schwab, Zech; 2019], [Raissi,

Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], . ..

Parametric PDEs: Parameter dependent families of PDEs arise in basically any
branch of science and engineering:

Complex design problems

Optimization tasks

Uncertainty quantification

Parametric Map:
Yoy — uy, € H  such that E(Uy,y) = ﬂ, .M
Curse of Dimensionality: Computational cost too high! LMU




What can Deep Neural Networks do?

Parametric Map:

RPOY3y — uy € R? suchthat by (uf,v) =f(v) forall v.

Can a neural network approximate the parametric map?




What can Deep Neural Networks do?

Parametric Map:

RPOY3y — uy € R? suchthat by (uf,v) =f(v) forall v.

Can a neural network approximate the parametric map?

Advantages:
After training, extremely rapid computation of the map.

Flexible, universal approach.

Questions: Let € > 0.
Does there exist a neural network ® such that
|®—up[|<e forallye)?

How does the complexity of ® depend on p and D?
How do neural networks perform numerically on this task? M




Theoretical Results

Theoretical Approach (K, Petersen, Raslan, Schneider; 2021):

There exists a neural network ® which approximates the parametric map:
& —ull<e forallye.

The dependence of C(®) on p and D can be (polynomially) controlled.




Theoretical Results

Theoretical Approach (K, Petersen, Raslan, Schneider; 2021):
There exists a neural network ® which approximates the parametric map:
||<b—u;‘|| <e for all y € V.
The dependence of C(®) on p and D can be (polynomially) controlled.

Numerical Results (Geist, Petersen, Raslan, Schneider, K; 2021)
Parametric diffusion equation with various parametrizations
Fixed neural network architecture: 11 layers and 0.2-LRelLU

Training set: 20000 i.i.d. parameter samples

Example (p = 91): -

i N salution (7 14%]
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This performance does also not suffer from the curse of dimensionality!



Some Final Thoughts...




Conclusions

Deep Learning:
Impressive performance in real-world applications!

A theoretical foundation of is largely missing!

(New) Mathematics is crucially needed (...which concerns almost all areas)!

Mathematics for Deep Learning:

Expressivity: Optimal architectures?
Learning: Controllable, efficient algorithms?
Generalization: Performance on test data sets?

Explainability: Explaining network decisions?

Deep Learning for Mathematics:

Significantly better solvers of inverse problems.

Beating the curse of dimensionality for partial differential equai.“ions.m




The 7 Mathematical Key Problems of Deep Learning

What is the role of depth?

Which aspects of a neural network architecture affect the performance of
deep learning?

Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

Why do large neural networks not overfit?
Why do neural networks perform well in very high-dimensional environments?
Which features of data are learned by deep architectures?

Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

ol

Source: Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning, arXiv:2105.04026.



The 7 Mathematical Key Problems of Deep Learning

What is the role of depth?

Which aspects of a neural network architecture affect the performance of
deep learning?

Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

Why do large neural networks not overfit?
Why do neural networks perform well in very high-dimensional environments?
Which features of data are learned by deep architectures?

Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences? n

Exciting Future Perspectives for Mathematics!

ol

Source: Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning, arXiv:2105.04026.



MATHEMAT L FOUNDATIONS

OF ARTIFICIAL INTELLIGENCE

THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:
0GittaKutyniok
Upcoming Book:

P. Grohs and G. Kutyniok
Mathematical Aspects of Deep Learning L
Cambridge University Press (in preparation)




