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Perfect coloring of graphs

A perfect k-coloring (equitable k-partition) is a function f from the vertex
set to colors {1, . . . , k} such that each vertex of color i is adjacent to
exactly si ,j vertices of color j .

S = (si ,j) is the parameter matrix of a perfect coloring.

S =

r b

r 2 1
b 1 2
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Eigenvalues and coverings of graphs

Adjacency matrix M of a graph G : mi ,j = 1 if (i , j) is an edge, mi ,j = 0
otherwise.

Perfect coloring is a (0, 1)-matrix P, pv ,j = 1⇔ f (v) = j , such that

MP = PS .

Eigenvalues and eigenvectors of a graph G are eigenvalues and
eigenvectors of the adjacency matrix M.

Every eigenvalue of the parameter matrix S of a perfect coloring is an
eigenvalue of the adjacency matrix M.

A covering of a graph H by a graph G = a perfect coloring of G with the
parameter matrix equal to the adjacency matrix of H.

Our goal: develop the similar concepts for hypergraphs
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Hypergraphs, incidence matrices, bipartite representation

G(X ,W ) is a hypergraph,
X is the vertex set, |X | = n, W is the hyperedge set, |W | = m.

The incidence matrix I of G is an (n ×m)-rectangular (0, 1)-matrix with a
(x ,w)-entry equals 1 ⇔ x ∈ w in G.

A degree deg(S) of S ⊂ X is the number of hyperedges, containing all
vertices from S .
A hypergraph is d-uniform if each hyperedge consists of exactly d vertices.

The bipartite representation G (X ,W ;E ) of a hypergraph G(X ,W ) is a
bipartite graph, x is adjacent to w in G iff x is incident to w in G.
The adjacency matrix MG of the bipartite representation is

MG =

(
0 I
IT 0

)
.
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Plain adjacency matrix of a hypergraph

Let G be a hypergraph with the incidence matrix I.

Simple graph is a 2-uniform hypergraph. The adjacency matrix of a graph
is M = IIT − D, where D is the diagonal degree matrix.

Let the plain adjacency matrix of a hypergraph G be the matrix
M = IIT − D.
Plain eigenvalues and eigenvectors of a hypergraph are eigenvalues and
eigenvectors of its plain adjacency matrix.

Such approach to the adjacency matrix was used for studying Berge
cycles, metric and expanding properties of hypergraphs.

Another approach: the adjacency matrix of a d-uniform hypergraph is a
d-dimensional matrix.
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Multidimensional adjacency matrices

A d-dimensional matrix A of order n is an array (aα), α = (α1, . . . , αd),
αi ∈ {1, . . . , n}.

1. Combinatorial approach: The adjacency matrix M of a d-uniform
hypergraph G on n vertices is a d-dimensional (0, 1)-matrix of order n with
entries mα = 1 ⇔ (α1, . . . , αd) is a hyperedge in G.

2. Algebraic approach: For 2-dimensional matrices B1, . . . ,Bd of order n
define folding C = [B1, . . . ,Bd ] to be the d-dimensional matrix of order n:

cα1,...,αd
=

n∑
i=1

b1α1,i · · · b
d
αd ,i

.

The full adjacency matrix A of a d-uniform hypergraph G on n vertices is

A = [I, . . . , I].
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Full adjacency matrices and totally regular hypergraphs

Proposition

Let A be the full adjacency matrix of a d-uniform hypergraph. Then
entries aα are exactly the degrees of sets S(α) = {α1, . . . , αd}.

We will say that a d-uniform hypergraph G = (X ,W ) is totally
(r1, . . . , rd−1)-regular if every S ⊂ X , |S | = i , has deg(S) = ri .

Proposition

If G is a d-uniform totally (r1, . . . , rd−1)-regular hypergraph, then

A = M +
d−1∑
t=1

rtIt ,

where It is a d-dimensional (0, 1)-matrix, whose unity entries indexed by
(α1, . . . , αd) with exactly t different components.
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Products of multidimensional matrices

The following multidimensional matrix products and eigenvalues were
studied by L. Qi, L.H. Lim, S. Hu, C. Ling, J.-Yu Shao, Z. Huang, J.
Cooper, A. Dutle, ...

Let A be d-dimensional matrix of order n. Define product ◦:
If v is a vector, then A ◦ v is a vector u:

uj =
n∑

i1,...,id−1=1

aj ,i1,...,id−1
vi1 · · · vid−1

.

If P is a 2-dimensional matrix, then A◦P is a d-dimensional matrix C :

Cj ,k1...,kd−1
=

n∑
i1,...,id−1=1

aj ,i1,...,id−1
pk1,i1 · · · pkd−1,id−1

.

If B a t-dimensional matrix of order n, then A ◦ B is a similar
((d − 1)(t − 1) + 1)-dimensional matrix.
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Eigenvalues of hypergraphs
λ is an eigenvalue and v is the eigenvector of a d-dimensional matrix A if

A ◦ v = λ(I ◦ v),

where I = I1 is the d-dimensional identity matrix.

Let G be a d-uniform hypergraph.
Eigenvalues and eigenvectors of G are eigenvalues and eigenvectors of the
adjacency matrix M.
Full eigenvalues and eigenvectors of G are eigenvalues and eigenvectors of
the full adjacency matrix A.

Theorem (T., 2021+)

Let v be a plain eigenvector for G. Then

v is a full eigenvector for G;

If G is a totally regular hypergraph, then v is an eigenvector for G.

In all cases, eigenvalues of one type can be counted from another.
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Perfect colorings of hypergraphs
Let G = (X ,W ) be a d-uniform hypergraph with the incidence matrix I.

Direct definition: A function f : X → {1, . . . , k} is a perfect k-coloring
of G if a coloring of a vertex uniquely defines the coloring of all incident
hyperedges.
Using bipartite representation: A perfect k-coloring of a G is given by
vertex k-coloring matrix P and hyperedge coloring matrix R satisfying(

0 I
IT 0

)(
0 P
R 0

)
=

(
0 P
R 0

)(
0 S
T 0

)
.

S is the HV-parameter matrix; T is the VH-parameter matrix.
Multidimensional definition: A vertex k-coloring matrix P defines a
perfect coloring of G if

A ◦ P = P ◦ S.

Parameter matrix S is a d-dimensional matrix of order k .

All three definitions are equivalent.
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hyperedges.
Using bipartite representation: A perfect k-coloring of a G is given by
vertex k-coloring matrix P and hyperedge coloring matrix R satisfying(

0 I
IT 0

)(
0 P
R 0

)
=

(
0 P
R 0

)(
0 S
T 0

)
.

S is the HV-parameter matrix; T is the VH-parameter matrix.
Multidimensional definition: A vertex k-coloring matrix P defines a
perfect coloring of G if

A ◦ P = P ◦ S.

Parameter matrix S is a d-dimensional matrix of order k .
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Transversals in hypergraphs

Let G = (X ,W ) be a d-uniform r -regular hypergraph.
A t-transversal in G is a set U ⊆ X such that each hyperedge w contains
exactly t vertices from U.

If U is a t-transversal in G, then U and X \ U are the color classes of a
perfect 2-coloring of G.

HV- and VH-parameter matrices:

S =
(
t d − t

)
; T =

(
r
r

)
.

The parameter matrix S:

Sα = r
d∏

i=2

tαi (d − t)1−αi ; αi ∈ {0, 1}.
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Parameter matrix of a hypergraph

Let G be a d-uniform hypergraph with the full adjacency matrix A.
P is a perfect k-coloring of G if

A ◦ P = P ◦ S.

S is the parameter matrix of the perfect coloring.

Theorem (T., 2021+)

S is the HV-parameter matrix and T is the VH-parameter matrix of a
perfect coloring of a hypergraph G if and only if

S = [T ,ST , . . . ,ST ].
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Properties of parameter matrices

In case of totally regular hypergraphs, perfect colorings can be defined as
through the adjacency matrix, as the full adjacency matrix.

Proposition

If G is a uniform totally regular hypergraph, P is a vertex coloring matrix,
then

A ◦ P = P ◦ S⇔M ◦ P = P ◦ T.

Theorem (T., 2021+)

Let P be a perfect coloring of a hypergraph G with the parameter matrix
S. If λ and v are eigenvalue and eigenvector of S, then λ and v are
eigenvalue and eigenvector of the full adjacency matrix A.

Theorem (T., 2021+)

The parameter matrix S of a perfect coloring of a hypergraph can be
symmetrized by the vector of color densities.
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Minimal coloring

Theorem (Weisfeiler, Leman, 1968)

Let G be a graph. Then there is the minimal perfect coloring f such that
every other perfect coloring of G is obtained from f by splitting of color
classes.

For regular graphs the minimal perfect coloring is monochromatic.

Theorem (T., 2021+)

Let G be a hypergraph. Then there is the minimal perfect coloring f such
that every other perfect coloring of G is obtained from f by slitting of
color classes.

The proof relies on the existence of the minimal perfect coloring for the
bipartite representation of a hypergraph.
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Coverings of hypergraphs

A hypergraph G is a covering of a hypergraph H, if there exists a perfect
coloring of G whose parameter matrix S is the full adjacency matrix of H.

Equivalently: G is a k-covering of H if one get the hypergraph H uniting
suitable groups of k vertices in G and preserving the adjacency between
them.

Theorem (T., 2021+)

If a hypergraph G is a covering of H, then every eigenvalue of H is an
eigenvalue of G.
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Coverings of hypergraphs

Theorem (T., 2021+)

Let G be a covering of a hypergraph H. Then for every perfect coloring of
H with the parameter matrix S, there is a perfect coloring of G with the
same parameter matrix S.

Theorem (Leighton, 1982)

Graphs H1 and H2 have the minimal perfect coloring with the same
parameter matrix if and only if there exists a graph G covering both H1

and H2.

Theorem (T., 2021+)

Hypergraphs H1 and H2 have the minimal perfect coloring with the same
parameter matrix if and only if there exists a hypergraph G covering both
H1 and H2.
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Thank you for your attention!
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