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Motivation |: Active thin structures

e Motion of an incompressible
viscous fluid.

e Active thin structures
immersed in it.

e They exert a force supported
on a lower dimensional object.

mucus

periciliary layer

///—— cell surface

e The model becomes
-V S(z,e(u)) + Vp=Féz, Vu=0, inQ, u=0 on o

Here
o Q c R% is the fluid domain with d = 2 or d = 3.
u is the velocity, p is the presssure, F is a given forcing.
e(u) =1 (Vu+4wu)
S is the stress tensor, e.g., S = 2ve gives the Stokes problem.
ZCcQwith0<dimZzZ <d-1.

O O O O

8| mages shamelessly copied from:
Loic Lacouture, Ph.D Thesis, Université Paris-Saclay, 2016.



Motivation |l: Interface problems and immersed BMs,
FEMs, etc.®

e Fluid—solid interaction, two immiscible
fluids separated by an interface, ...

e It reduces to an interface problem:

v=vi+{v_ —vy)xa-, u=0 in9Q,

Q-
~VS(z,e(u))+Vp=0, Vu=0, inQTUQ",
and the interface conditions on T’
[[=0, [(S—pI) n]=0,
r where [-] is the jump, and o can

denote, for instance, surface tension.

e |t reduces to

o0
—V:S(z,e(u)) + Vp = odr

where now S is may be discontinuous.

8¢ Peskin, Y. Mori, D. Boffi, L. Gastaldi, L. Heltai, T. Lin, P. Yue, ...



Motivation Ill: Generalized Smagorinsky models

e One of the first subgrid models of turbulence is due to Smagorinsky®
S(z,e) =2 (v +vnLle]) €.

e One of the main criticisms of this model is that it tends to
overdissipate near walls® .

e For this reason, several refinements® and variations have been
suggested. In particular®.

S(z,e) = 2 (v + vyile| dist(z, 0N2)Y) €, a € (0,2),

where dist(-, 0€2) is the distance to the boundary. The idea is that
the additional dissipation is dampened as one approaches the
boundary.

e In summary, our model reads

—VS(z,e(u))+(u-V)u+Vp=£f, Vu=0, inQQ, u=0 on 9N.

&), Smagorinsky, 1963.

8 esieur, 2008. Layton, 2016.

5agaut, 2001. Vreman, 2003. Dunca et al., 2013. Bersell et al., 2006.

8 ). Rappaz and J. Rochat, CRAS 2016. J. Rappaz and J. Rochat, Comput. Methods Appl. Sci. 2019



Other non-Newtonian fluids under rough forcing

e We consider a nonlinear Stokes system
—V:S(z,e(u)) + Vp = —V-F,

with F € L(Q) with ¢ € (1,00). We assume S satisfies:
o It is Carathéodory.
o For e € R™4 and 2 € Q we have
= 1<S@e) e, [S(e) < el +1

o It is linear at infinity: There is v > 0 such that, uniformly in z,

o For &1 # €2 and uniformly in x

(S(z,e1) —S(z,€1)) : (61 —€2) >0, lim ’% - 21/]1' =0

|e|—o0
e Notice that, if F ¢ L?(Q), u is not an admissible test function
anymore. For this reason, we call this type of forcings rough.
e Such systems have been considered before® under the assumption
that Q € (!

8y, Buligek, J. Burczak, S. Schwarzacher, SIMAT 2016.
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The guiding principle |: weighted spaces

e To motivate our approach consider, for z € R,
—Au+ Vp =F6,, Viu=0, inRY

i.e., the fundamental solution to the Stokes problem.
e It is known that®

Vu(e)| = |z —2""% [p(a)] = o —2' 77

e Thus
[Vu(@)|, [p(2)] ¢ L*(E),

but
a€(d—200) = / |z — 2|* (|Vu(2) > + |p(2)[?) dz < oo,
JE

for every compact E.

&cp. Galdi, 2011.



The guiding principle Il: weighted spaces

e If 2 is bounded and smooth we expect a similar behavior of u and p.

e If Q is only Lipschitz boundary singularities will appear. In fact,
consider®

—Au=f, inQ, u=0, ondf)
\
e It is known that even if f € C*°(Q); we have, with s = 7/0 < 1,
V| ~ 2, ae (=2, -242(1—s)) —> /Q|x|a\vu|2dx=oo

e Our analysis then will consider two cases: Lipschitz domains and
convex polyhedra with d = 3.

B Grisvard, 1985.



Muckenhoupt weights

Definition (Muckenhoupt weight)
Let ¢ € [1,00). A function 0 < w € L} (R?) belongs to A, if

la, S“p|B|/ (i3, 1/(1_Q)<x)d“””>q_l<°°’

[w] / x)d ! <
w|A, sup T sup —— < 00.
|B| zEB UJ( )

Notice: that if w € Ay, then W’ = wl/(=9) ¢ Ay

e It is known that if Z C R? with dim Z = k < d, then
dist(+, Z)* € A, provided

—(d-—k)<a<(d-k)(¢g—1).

Thus |z — z|* € A for o € (—d, d).

e We will look for solutions in suitably weighted spaces!



The Stokes problem

e In summary Q C R? is at least Lipschitz, we seek for (u, p) that solve
—vAu+Vp=f£f, Vu=0, inQ, u=0, on JQ.

e The issue is that f is rough: e.g. f = F¢, with z € Q.



The functional setting

Let Q € R? be a bounded domain that is at least Lipschitz. Assume
that, ¢ € (1,00) w € A, and introduce the weighted spaces

LY (w,Q) = {v €L (Q): / [v|% de < oo} )
Q
W (@, Q) = {v € L(w,Q) : Vv € LY(w,Q)},
W, (w,Q) = {ve W (w, Q) :v=0o0n 0N} .
e Since w € A, these spaces satisfy most of the “usual properties”.

e As usual L(w, ) = Li(w, Q)%
e We will look for:

ue Wii(w, Q) and p € LY(w, Q)/R,

for a suitable ¢ € (1,00) and w € A,.



Outline

Analysis

Lipschitz domains

or



The class A4,(9?)

e Assume the singular source is supported on Z € ().

Definition (class A,(€2))
Let Q C R? be a Lipschitz domain. We say that w € A, belongs to
A, (Q) if there is an open set G C Q, and positive constants § > 0 and
w; > 0 such that:

1. {z € Q:dist(z,00) < §} C G,

2. wlg € C(G), and
3. wy <w(x) forallz €G.

Notice that:
o |z —z|* € Ay(Q) for a € (—d, d).
e More generally, if Z € Q with dim Z = k < d then
dist(z, Z)* € A2(Q) for a € (—(d — k), (d — k)).



Generalized saddle point formulation
Define the bilinear forms

a:Hi(w, Q) xHy(w ™, Q) =R

a(v,w) = / Vv:Vwdz
Q

and
by Hy(w®!, Q) x LA (wT,0Q) = R
bi(v,q) = —/ qV-vdax
Q

Problem: Given f € H} (w1, Q) find (u,p) € H{(w, Q) x L?*(w,Q)/R
such that

a(u,v) +b_(v,p) =f(v), ¥WwecH}(z 1 Q),

by(u,q) =0, Vg € L*(w ™, Q)/R.

For instance z € Q and f = F§,. Then:
o w(x)=|zr—z|* € A2(Q) for a € (—d,d).
e 0, € HY (w™1,Q) for a € (d—2,d).



Well-posedness

Theorem (&)

Let Q be a Lipschitz domain and w € A5(Q2). For every
f € Hi(w™1, Q) there are unique (u,p) € H}(w, Q) x L*(w,Q)/R that
solve the generalized saddle point formulation. This solution satisfies

||V“||L2(w,ﬂ) + HPHL?(w,Q)/R S HfHH(l)(w*l,Q)/-
where the hidden constant is independent of u,p and f.

Remark
There is € € (0,1) that depends only on Q such that if |¢ — 2| < ¢, the
problem is still well-posed in W(w, Q) x L4 (w, Q)/R for w € A,(Q)

and f € Wb (', Q).

¢, Otarola, AJS, JMAA 2019



Idea of the proof of well-posedness

e The result is true for C' domains
and all @ € A,. @

e In addition the result is true for
C°%' domainsand w=1. &

e WLOG we can assume that
A\ G) is C*.

e Glue the two previous results:
Use Bulitek in ©\ G and Mitrea
in G.

&\ Bulitek, J. Burczak, S. Schwarzacher, SIMAT 2016.
B\ Mitrea, M. Wright, Astérisque 2012.

or



The stationary Navier Stokes problem

e The stationary Navier Stokes problem: find (u, p) that solve

—vAu+ (uViu+Vp=1f, Vu=0, inQ, u=0, on dN.

Corollary (&)

Let d = 2, Q be Lipschitz, w € A3(Q2), and f € H}(w ™1, Q). The
Navier Stokes problem has a solution (u,p) € H}(w, Q) x L?(w,Q)/R.
This solution satisfies

[VullL2(w,0) S [1Ellez w10

If, in addition, either f is sufficiently small, or v > 0 sufficiently big, then
the solution is unique.

Proof.

In two dimensions, for w € Ag(£2), we have H1 (@, Q) —— L4(w, ) so that

129y de| < ull?

: : 1/4 1/4
‘/Qu@u:Vvdw‘=|/Qw g w4 w T VY2 (-1 o)

The rest of the proof is by the usual fixed point arguments. O

FE Otarola, AJS, AML 2020.
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Is Lipschitz good enough?

The previous results are nice, but:

e There is a restricted range of integrability: The Stokes problem is
well posed for g € (2—€,24¢€), w € A,(Q) and f € W(w’, Q).
What if our problem requires a g outside of that range?

e What if the singular source touches the boundary?

e Recall the generalization of Smagorinsky:
S(z,€) = 2 (v + vyr|e| dist(x, 0N)Y) €, a €1[0,2).
The natural framework here is

u € HY(Q) n Wh3(dist(-, 0Q)*, Q),
p e L3(Q)/R + L*?(dist(-, 0Q)~*/2,Q) /R.

However
dist(-, 002)* € Az \ A3(Q).



The Green matrix
The solution to the Stokes problem

—vAu+ Vp = —V{, Viu=g, in§, u=0, on 99

has the representation
1
() = L 0.VG(€) — [ X(o.€)gla) da

where
c_[G1 G Gy G
DV VR VD VI

is the Green matrix.
The pairs (G, A;) solve

VzGj(z, &) = 8(z — &) — o(x),

—AzGy(z,€) + Verg(z,€) =0,
{Gj(w,g) =0z € 9Q

Az Gj(x, &) + Varj(z, &) = 5(z — £)ej,
V-2 Gz, €) =0, J=1, ., 3

Gj(z,€) =0z € 09

where ¢ € C§°(9) is such that [, ¢(x)dz =1 and we normalize

/Q)\j(x,ﬁw(;v)dx =0, j=1,...,4.



The Green matrix: Mixed derivative estimates on convex

polyhedra

Let © C R? be a convex polyhedron. Then® there is o € (0,1) such that
for all o, 3 € N3

020G j(w,€) = 9500Gi(y,&)| S o — vl (o — €7 + |y — € %)

200Gy (w,€) = 300Gy (w,m)| S I =l (lo = €17 + o — | )

whenever [a| <1 -4, [B] <1—6;4 and

a=140+04a+3ds+|a|+18]

e In particular, for j =1,...,3,

|6xkaflGJ(I7£) - 5‘xk85[GJ(x7n)| SJ |§ — 77|U(|SC _ §|737a' + |.’,U . T]|7370)7
|0, \j (,6) = D, N ()| S 1€ = |7 (| — €[ 7277 + & —n[7277).

& ). Rossman, Rostock Math. Kollog 2010.



Well-posedness

Theorem (E)

Let 2 C R? be a convex polyhedron, q € (1,00), w € A, f € LI(w,Q),
and g € L9(w,))/R. Then, there are unique

(u,p) € Wy (w, Q) x Li(w, Q) /R that solve the generalized saddle
point formulation. This solution satisfies

||VUHLQ(w,Q) + ”p”Lq(w,Q)/R N ”fHLq(w,Q) + ||9||Lq(w,sz)-

where the hidden constant is independent of u,p,f and g.

FE Otsrola, AJS, arXiv 2021.



Idea of the proof of well-posedness

e The pointwise estimates of the mixed derivatives allow us to treat
the solution representation as a singular integral operator of CZ type.
Oscillation estimate: for s > 1

M§ [V (2) S MIEFT ()Y + Mgl ().

Weighted Fefferman-Stein inequality®

1
Vu——/Vudx
H 12 /o

Continuity of maximal function on weighted spaces

1(
|| Mg

< M, (VU] [lLae,0)
L4 (w,0)

HM [|f|5]1/s

S fllne(e,0) gl La(ew,0)-

Li(w,Q) Li(w,)

Pressure estimate: Using the surjectivity of the Bogovskii operator®

JopV-vde

Ploowea S sup
(=) IVVIlge (.0

vEWé’q’(w’,Q)

& Diening, M. Razitka, K. Schumacher, 2010.
& pcosta and Durén, 2017.



Generalized Smagorisnsky models |

e Recall that the generalized Smagorinsky model read
—V:S(z,e(u)) + (u-V)u+ Vp = =V,
where
S(z,€) = 2 (v + vyrle| dist(z,00)) e, a€]0,2).

e Fora e (—1,2)
dist(z, 900Q)* € As.

e We seek for solutions
u e HY(Q) N W3 (dist(-, 00)*, Q)
p e L2(Q)/R + L¥2(dist(-, 0Q2) "%/, Q) /R.



Generalized Smagorisnsky models Il

Theorem (&)
Let Q C R? be a convex polyhedron and o € (—1,2). If

f e L2(Q) 4+ L3/2(dist(-, 9Q) /2, Q)

Then the generalized Smagorinksy model has a solution (u,p). If, in
addition v is sufficiently large, or f sufficiently small, then u is unique.

Proof.

e Minimize the energy

/|€ )2 dz /dlst(x 99)%e(v |3dx/ Vv da,

e Usual tricks for convection.

e Two pressures: unweighted inf-sup (L?(2)) and weighted one
(L3/2(dist (-, 00)~*/% Q). O

& 0tarola, AJS, arxiv 2021.



Generalized Smagorisnsky models Il

o Notice that dist(-, 0Q)* ¢ A,(Q2), for any ¢, whenever o # 0.

e Even without convection p is unique only if

a < = L2Q) = L32(dist(-, 00) /%, Q).

N

e Slight generalization: Let ¢ € (1,00), w € 4,, and
f e L2(Q) 4+ LY (', Q), then

u e HY(Q) N Wi (@, ),
pe L(Q)/R + L7 (=, Q)/R



Other non-Newtonian fluids |

e Consider now
—VS(z,e(u)) + Vp=—-Vof, Vu=g in Q, u=20, on 9d9Q,
with S “linear at infinity".

Theorem (5’)
Let Q C R? be a convex polyhedron, q € (1,00), and @ € A,. If

f e LYw,Q), g€ Li(w,Q)/R
Then the problem has a unique solution

(u,p) € Wy(w,Q) x Li(w, Q)/R,

which satisfies the estimate

VullLa(w,0) + IPllza(w,0)/r S 1+ [[fllLiw.) + 19lLi(w.0)-

& 0térola, AJS, arxiv 2021.



Idea of the proof

e Follow the proof for C'! domains &.
e Properties of weights: If, for some s € (1, 2],

(u,p) € W™ () x L*(Q)/R

then (u,p) € Hy(c;, Q) x L*(;,Q)/R with
&, = min {m MV, M [p]H} .

e Key step: Represent (u, p) as the solution to a Stokes problem so
that

IVullLz(e,.0) + IPllz2(@,.0 S 1+ IflL2 ;.0 + 19lL2(w;.9)

uniformly in j. Pass to the limit j — co. Two important points here
are:
o Asymptotic linearity: This allows to “absorb” nonlinear terms.
o Convexity: There is no information on the behavior of u or p near
the boundary. Thus,

@; ¢ A2(Q).

8y, Buligek, J. Burczak, S. Schwarzacher, SIMAT 2016.
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Discretization

e 7 = {T} is a conforming and shape regular partition of 2 into
simplices of size hp = diam(T).

e Set hgy = max hr.

e V() is the FE velocity space, P(.7) is the pressure space and we
assume that they are inf-sup stable in the classical sense.

e Since, for any ¢ € (1,00) and w € 4,
V(T) x P(T) C Wy™(Q) x L=(Q)/R
C Wi (w, Q) x L(w,Q)/R,

given
(u,p) € Wy (w, Q) x LI(w, Q) /R

we define its Stokes projection to be the pair
(uz,p7) €V(T) X P(T)
such that

alu—ug,vg)+b_(va,p—pz)=0, YvzeV(T),
b+(u_u97q9)207 VQQE'P(Q)



Stability®

Lemma (discrete inf-sup)

Let Q C RY, with d = 2,3 be Lipschitz, T be quasiuniform, q € (1, 00)
and w € A,y. Then,

V-vgredx
[rollawa < sup fgi, Vrg € P(T),
voev( ) IVVa e (w0

where the hidden constant does not depend on h .

Theorem (stability)

Let  C RY with d = 2,3 be a convex polytope. Let q € (1,00) and
e g>2we Aq/2,
e qgc (1,2 @' € Ay)s.

If 7 is quasiuniform, then

||Vu9||m(w,ﬂ) + ||p9||Lq(w,Q) S ||VUHLq(w,Q) + ||P||Lq(w,9),

where the constant is independent of h o, u, and p.

Bra. Durén, E. Otérola, AJS, Math. Comp. 2020.



|dea of the proof of stability |

The pressure estimate follows form the discrete inf-sup condition.

The case g < 2 follows by duality.

The case g > 2 follows from Rubio de Francia extrapolation: If
T:L*p,Q) = L*(p,Q)

boundedly for all p € Ay, then
T:LY(w,N) = L(w,Q)

boundedly for all @ € A, /5.

It remains then to show, for @w € A;,

IVuz L2 (w,0) S IVullLz(w,0) + [IPll22(w,0)



|dea of the proof of stability Il

o We use the approximate Green's matrix G and its approximation
G 7 to represent, for z€ T € T

(=) = a(u, G — G) + b_(Gy — G, p) +/ 50007 da
Q

e Thus, withE=G4 — G

2 2
/w|aiug|2dx§/w[/ Vu:Vde} dz+/w[/ pV-de} da
Q Q Q Q Q
1 2
—I—/w{/&»ujdx} dz.
o LTIz

o Properties of E& and the fact that w € A, then yield the result.

8y Girault, R.H. Nochetto, R. Scott, Num. Math. 2015.
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An error estimate in L4

Corollary (&)
In the setting of the previous result, if ¢ > 2

lu— vzl Sy =(7)7 (| VullLo(wa) + [PlLo=a)

where

w(T) = ng;; w(T), w(T) = /dex.

In particular, if the forcing is Fé, we have, for any ¢ > 0,

2—d/2—
lu—uzlLe@) Shy /3¢,

Proof.
A duality argument.

Bra. Durén, E. Otérola, AJS, Math. Comp. 2020.



Generalized Smagorinsky models
o Consider the generalized Smagorinsky model. 0 C R? is a convex
polyhedron.
e No convection.

e (u,p) is the exact solution, (uz,p) is its Galerkin approximation,
and (uz,ps) is its Stokes projection.

Corollary (&)
Assume that 7 is quasiuniform, and that « € (—1,1/2). Then, the pair

(uz,py) exists, is unique, and stable. Moreover,
le(u— Uﬂ)”izm) + [le(u— Uﬂ)H?ﬁS(dist(.,aQ)a,Q) <

3/2
le(u = uz) 32 + lleu = ua)IFh g .00y0.0)-

Proof.
Repeat the old arguments for the p-Laplacian®.
The restriction o € (—1,1/2) guarantees that dist(-, 0Q)* € Az5. O

FE Otdrola, AJS. arXiv 2021
8 Glowinski, Marrocco. RAIRO 1975. Ciarlet book 1978. S.-5. Chow, Numer. Math. 1989.



Other non-Newtonian fluids

e Consider the “linear at infinity” models.

e Q1 C R? is a convex polyhedron, g € (1,00), @ € Ay)s,
f e LY(w, ), and g = 0.

e (u,p) is the exact solution, (uz,p) is its Galerkin approximation,
and (uz,ps) is its Stokes projection.

Theorem (&)
If T is quasiuniform the pair (ug,py) exists, is unique, and stable.

; 1
Moreover, up to subsequences, in Wy (w, )

ug — u, hg—)O.

Proof.

e Finite dimensions = Existence and uniquenes.
e Stability of the Stokes projection = stability of (uz,p4).

e Convergence by compactness. We require Minty's trick, and a Fortin
operator in weighted spaces (discrete inf-sup). O

e Otérola, AJS. arXiv 2021
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A posteriori error estimation

e Since we are trying to approximate rough objects we need to
consider a posteriori error estimators.
e Consider the Stokes problem with forcing F'é, and z € Q. Define

Dy = max |z — 2|, Ted.
zeT
e The local error indicator, for T' € .7, is
Ea(ug,p7;T)? = WD Aug =V 7|72 )+ Vuz |72 gisee 1)

+he DE(|[(Vug = poD)n]lizoro0) + R FP#(T 0 {}),

where, as usual, n is the normal to 9T and [w] denotes the jump of

w.
e The error estimator, as expected, is then

ga(u(77p177 y) = H{ga(u9>p9§T)}H52(g) .



A posteriori error estimation: Reliability

From now on (e,,e,) = (u—ugz,p —pz). We have

Theorem (&)
Ifa € (d—2,d) then

||Veu||L2(distg,Q) + ”epHL?(distg,Q) Séa(uz,pz, T),

where the hidden constant is independent of the continuous and discrete
solutions, hz and #.5 .

Proof.
e Usual “disintegration by parts argument” + Galerkin orthogonality.

e The existence of an interpolation operator Il : L1(Q2) — V(.7)

that plays nice with weighted norms®.

e A bound on |0 || for z e TH.

(dist7=,T)

&, Allendes, E. Otérola, AJS. CMAME 2019.
Brh. Nochetto, E. Otarola and AJS. Numer. Math. 2016.
8,p Agnelli, E. Garau, P. Morin. M2AN 2014.



A posteriori error estimation: Local efficiency |

Theorem (&)
Ifae(d—2,d) and T € T then

Ealuz,pr;T)? S ”Veu”iZ(distg‘,NT) + ||ep||2L2(distg,NT)v

where Nt is the patch of T
Proof (Ingredients)

e If 2 ¢ T, the volume and jump terms are controlled via usual bubble
function arguments.
o lfzeT:

o The term RS2 F|?4(T N {z}) is controlled via a function
n € Wy™° () such that

7)(2) =1, SUPP(W) - NT7 ”vanL"Q(Q) = h;ka k= 0,1,

and testing the error equation with (F'n,0).

&, Allendes, E. Otérola, AJS. CMAME 2019.



Local efficiency Il

Proof (continued)
o Ifz €79

o The volume term uses a bubble function ¢ such that 0 < 7 <1
and

por(z) =0, ITIS/soT, or| < hpt
T

and supp o C T*, where T* is a subsimplex of T'.
Test the error equation with (pr(Aug — Vps),0)
o The jump term uses a bubble function ¢s such that 0 < s <1 and

ps(x) =0, 18]S / o5, |Vos| S hpV/?|8]2
S

and supp ps C T U T3, where T; are subsimplices of T; with
S = T1 M TQ.

Test the error equation with (ps[(Vug — po1)-n],0)

8,p Agnelli, E. Garau, P. Morin. M2AN, 2014.



Local efficiency Il

A A
A '
A A7

Figure: Support the bubble functions nr, o1 and ¢s.

or
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Conclusions

We allow non-standard behavior, either in the forcing or constitutive
law by considering weighted spaces.

Stability of the Stokes projection on weighted spaces.

A priori and a posteriori error analysis for linear and some nonlinear®
models.

Other models: Bousinesqu’,

8, Allendes, E. Otérola, AJS, SISC 2020.
&, Allendes, E. Otérola, AJS, M3AN 2021.



Open questions

Analysis
e Navier Stokes for d = 37 It would require ¢ # 2.
e Other models?

Approximation

e Stability of the Stokes projection:

o Non quasi-uniform meshes?
o Non convex domains?
o w ¢ Aq/Q?

e Error analysis for other models?

e Pseudo norm estimates for Smagorinsky?&

&, . Barrett, W.B. Liu, Math. Comp. 1993.



Thank You!



Well-posedness in Lipschitz domains |

o Girding-like inequality: If (u,p) € H}(w, Q) x L?(w,Q)/R is a
solution, then we have

IVullL2 (w,0) Pl 22 (w,0)/r S IfllH1 (@10 FullLzg) Pl a-1(0)-

o Introduce a partition 1;, s € C5°(Q), ¥; + Yo =1 with ¢; =1
near Q\ G and ¥; = 0 near 0. Q; = supp¥; is C.

o u; = ut; and p, = py; are solutions on €2;, a C' domain, = use
the weighted result for C* domains.

o up = uyy and py, = pa are solutions on G, a Lipschitz domain,
= use the unweighted result for Lipschitz domains.



Well-posedness in Lipschitz domains Il

e Uniqueness. From this it follows that, if f = 0, then u = 0 and
p=0.

e A priori estimate: Using the usual ADN contradiction argument we
get that, if (u,p) € H}(w, Q) x L?(w,Q)/R is a solution,

IVullLe(w,0) + IPll 2 (@.0)/r S ||f||H1(w 1.0y -
e Existence: By approximation, (ux,p;,) € Hi(w, Q) x L*(w,Q)/R is

a solution for fi, € CZ(£2), such that f;, — £ in H} (w1, Q). The
a priori estimates allow us to pass to the limit.



Well-posedness in convex polyhedra |

o Let z € Q and @ a cube centered in z. We decompose
f=1f+5, £ =>Ffxq, g=9g1+9g2, suppg = 2Q.

The decomposition of g is a Bogovskii decomposition, i.e., it
preserves the zero averages.

e (u?,p’) solves the Stokes problem with data (—V-f;, g;).
e We estimate the oscillation of u, i.e., Mé [Vu] (2)

SjéVu (x)|dx+]é|Vu (z) — Vu?(z)|dz = N + F.



Well-posedness in convex polyhedra Il

e For N the data is supported on a cube. Since € is a convex
polyhedron, for s > 18

N < |Q|1/3Hvu ||LS(Q |Q|1/s (Hf1||LS(2Q) + ||g||LS(2Q)>
S MUEPT ()Y + Mlgl*(2)"*.

e For F' we use the mixed derivative estimates

//QHJH%W@MSMMWHMMW»

B IQ\

e In conclusion
ME V] () S ME) ()15 + M [J]*] ()"

e By simple scaling

1 q
/W</Vudx> S e (ew,) + 19l La(w,0)-
o \Q Jq

8y Maz'ya, J. Rossman, Math. Nachr. 2007.




Well-posedness in convex polyhedra Ill
e The weighted Fefferman-Stein inequality® implies

S ||Mgz [Vu] ||L‘1(w,Q)

1
HVU — — [ Vudz
Li(w,0)

|Q| Q

S [mneere

+ Mgl

L (w,Q) Li(w,Q)

e The continuity of the maximal function on weighted spaces finally
gives
IVullLs(w,0) S [fllLew.) + 9]l Ls(w,0)-

e The properties of the Bogovskii operator on weighted spaces® imply

pV-vdx
Plien s sw ot
vewéﬁql(w“Q) Ve (=’,Q)

meaning
||P||Lq(w,9) S HfHLq(w,Q) + 119l La(w,0)-

8| Dicning, M. Rasitka, K. Schumacher
& pcosta and Duran, 2017.



Stability of the Stokes projection |

e Approximate Dirac delta: z € T' € .7, then 6, € C$°(T) with
/5 dz =1, |6. Lo hp?, /5ngz—vy() Yvg € V().

e The regularized (derivative of the) Green's function:
7AG —+ VS\ = 781'5263‘.

e The pair (Gz,\z) € V(T) x P(T) is its Galerkin approximation.
e Recall that?, there is \ € (0,1),

Sup 1642V (G — Gz S A2 p=d+\
ze

where the regularized distance® is

oy(x) = (|z — y[> + (xh)?) "

&\ Girault, RH. Nochetto, R. Scott, Num. Math. 2015.
(. Natterer, 1076. J Nitchse, 1977. ...



Stability of the Stokes projection |l
o We have

a(u,G) +b_(u,\) = / 6.0, da
Q
a(uzy,Ggz)+b_(ug,\7) = ol (z)
a(U9,G—Gy)+b_(UQ,S\—Ag) =0
alu—uz,Gz)+b0_(Gz,p—ps)=0.

e Using that u and G are solenoidal, that us and G are discretely
solenoidal, and that a is symmetric we eventually reach

o, (2) = a(u,Gz — G)+b_(Gz — G,p) + / 5.0, da
Q

e Thus, with E=Go — G

2 2
/w|aiug|2dx§/w[/ Vu:Vde} dz+/w{/ pV—de} dz
Q Q Q Q Q
1 , 2
+/w{/8iu]dx} dz
o LUTlJr

=I+1I+1I1I.



Stability of the Stokes projection Ill

e By continuity of the maximal function on weighted spaces

< / = | M (0] |* dz S 1007|200
Q

Using the regularized distance

\V/ 2 2
I—G—IIS/w </ ag+>‘|VE|2dx) < |u|dj)\|p|dx) dz
Q Q Q 0z

We saw that

/ oA\ VE|2dz < b
Q
e A dyadic decomposition shows that

@ (2)

Wy [ e dz S Miw)(@)<m ()
T o O’EH_)‘(JE)

where the last step requires w € Aj.

In conclusion

I+11%5 / @ (|Vu]® + [p|*) dz.
Q
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