
Analysis and approximation of fluids under
singular forcing

Abner J. Salgado

Department of Mathematics
University of Tennessee

8th ECM
MS – ID 39: Modeling, approximation, and analysis of partial

differential equations involving singular source
June 22, 2021

Collaborators:
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Motivation I: Active thin structures�

• Motion of an incompressible
viscous fluid.

• Active thin structures
immersed in it.

• They exert a force supported
on a lower dimensional object.

• The model becomes

−∇·S(x, ε(u)) +∇p = FδZ , ∇·u = 0, in Ω, u = 0 on ∂Ω.

Here

◦ Ω ⊂ Rd is the fluid domain with d = 2 or d = 3.
◦ u is the velocity, p is the presssure, F is a given forcing.
◦ ε(u) = 1

2
(∇u +∇uᵀ)

◦ S is the stress tensor, e.g., S = 2νε gives the Stokes problem.
◦ Z ⊂ Ω̄ with 0 ≤ dimZ ≤ d− 1.

� Images shamelessly copied from:
Löıc Lacouture, Ph.D Thesis, Université Paris-Saclay, 2016.



Motivation II: Interface problems and immersed BMs,

FEMs, etc.�

∂Ω

ΓΩ+

Ω−

• Fluid–solid interaction, two immiscible
fluids separated by an interface, . . .

• It reduces to an interface problem:

ν = ν++(ν− − ν+)χΩ− , u = 0 in ∂Ω,

−∇·S(x, ε(u))+∇p = 0, ∇·u = 0, in Ω+∪Ω−,

and the interface conditions on Γ

JuK = 0, J(S− pI) · nK = σ,

where J·K is the jump, and σ can
denote, for instance, surface tension.

• It reduces to

−∇·S(x, ε(u)) +∇p = σδΓ

where now S is may be discontinuous.

�C. Peskin, Y. Mori, D. Boffi, L. Gastaldi, L. Heltai, T. Lin, P. Yue, . . .



Motivation III: Generalized Smagorinsky models
• One of the first subgrid models of turbulence is due to Smagorinsky�

S(x, ε) = 2 (ν + νNL|ε|) ε.

• One of the main criticisms of this model is that it tends to
overdissipate near walls�.

• For this reason, several refinements� and variations have been
suggested. In particular�.

S(x, ε) = 2 (ν + νNL|ε|dist(x, ∂Ω)α) ε, α ∈ (0, 2),

where dist(·, ∂Ω) is the distance to the boundary. The idea is that
the additional dissipation is dampened as one approaches the
boundary.

• In summary, our model reads

−∇·S(x, ε(u))+(u·∇) u+∇p = f , ∇·u = 0, in Ω, u = 0 on ∂Ω.

�J. Smagorinsky, 1963.

�Lesieur, 2008. Layton, 2016.

�Sagaut, 2001. Vreman, 2003. Dunca et al., 2013. Berselli et al., 2006.

�J. Rappaz and J. Rochat, CRAS 2016. J. Rappaz and J. Rochat, Comput. Methods Appl. Sci. 2019



Other non-Newtonian fluids under rough forcing
• We consider a nonlinear Stokes system

−∇·S(x, ε(u)) +∇p = −∇·F,

with F ∈ Lq(Ω) with q ∈ (1,∞). We assume S satisfies:
◦ It is Carathéodory.
◦ For ε ∈ Rd×d and x ∈ Ω we have

|ε|2 − 1 . S(x, ε) : ε, |S(x, ε)| ≤ |ε|+ 1

◦ It is linear at infinity: There is ν > 0 such that, uniformly in x,

lim
|ε|→∞

|S(x, ε)− 2νε|
|ε| = 0

◦ For ε1 6= ε2 and uniformly in x

(S(x, ε1)− S(x, ε1)) : (ε1 − ε2) > 0, lim
|ε|→∞

∣∣∣∣∂S(x, ε)

∂ε
− 2νI

∣∣∣∣ = 0

• Notice that, if F /∈ L2(Ω), u is not an admissible test function
anymore. For this reason, we call this type of forcings rough.

• Such systems have been considered before� under the assumption
that Ω ∈ C1.

�M. Buĺıček, J. Burczak, S. Schwarzacher, SIMAT 2016.
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The guiding principle I: weighted spaces

• To motivate our approach consider, for z ∈ Rd,

−∆u +∇p = Fδz, ∇·u = 0, in Rd,

i.e., the fundamental solution to the Stokes problem.

• It is known that�

|∇u(x)| ≈ |x− z|1−d, |p(x)| ≈ |x− z|1−d.

• Thus
|∇u(x)|, |p(x)| /∈ L2(E),

but

α ∈ (d− 2,∞) =⇒
ˆ
E

|x− z|α
(
|∇u(x)|2 + |p(x)|2

)
dx <∞,

for every compact E.

�G.P. Galdi, 2011.



The guiding principle II: weighted spaces

• If Ω is bounded and smooth we expect a similar behavior of u and p.

• If Ω is only Lipschitz boundary singularities will appear. In fact,
consider�

−∆u = f, in Ω, u = 0, on ∂Ω

Ω

x = 0

θ

• It is known that even if f ∈ C∞(Ω); we have, with s = π/θ < 1,

|∇u| ≈ |x|s−1, α ∈ (−2,−2+2(1−s)) =⇒
ˆ

Ω

|x|α|∇u|2 dx =∞

• Our analysis then will consider two cases: Lipschitz domains and
convex polyhedra with d = 3.

�Grisvard, 1985.



Muckenhoupt weights

Definition (Muckenhoupt weight)
Let q ∈ [1,∞). A function 0 ≤ ω ∈ L1

loc(Rd) belongs to Aq if

[ω]Aq = sup
B

1

|B|

ˆ
B

ω(x) dx

(
1

|B|

ˆ
B

ω1/(1−q)(x) dx

)q−1

<∞,

[ω]A1 = sup
B

1

|B|

ˆ
B

ω(x) dx sup
x∈B

1

ω(x)
<∞.

Notice: that if ω ∈ Aq, then ω′ = ω1/(1−q) ∈ Aq′ .

• It is known that if Z ⊂ Rd with dimZ = k < d, then
dist(·,Z)α ∈ Aq provided

−(d− k) < α < (d− k)(q − 1).

Thus |x− z|α ∈ A2 for α ∈ (−d, d).

• We will look for solutions in suitably weighted spaces!



The Stokes problem

• In summary Ω ⊂ Rd is at least Lipschitz, we seek for (u, p) that solve

−ν∆u +∇p = f , ∇·u = 0, in Ω, u = 0, on ∂Ω.

• The issue is that f is rough: e.g. f = Fδz with z ∈ Ω.



The functional setting

Let Ω ⊂ Rd be a bounded domain that is at least Lipschitz. Assume
that, q ∈ (1,∞) $ ∈ Aq and introduce the weighted spaces

Lq($,Ω) =

{
v ∈ L1

loc(Ω) :

ˆ
Ω

|v|q$ dx <∞
}
,

W 1,q($,Ω) = {v ∈ Lq($,Ω) : ∇v ∈ Lq($,Ω)} ,
W 1,q

0 ($,Ω) =
{
v ∈W 1,q($,Ω) : v = 0 on ∂Ω

}
.

• Since $ ∈ Aq, these spaces satisfy most of the “usual properties”.

• As usual Lq($,Ω) = Lq($,Ω)d.

• We will look for:

u ∈W1,q
0 ($,Ω) and p ∈ Lq($,Ω)/R,

for a suitable q ∈ (1,∞) and $ ∈ Aq.
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The class Aq(Ω)

• Assume the singular source is supported on Z b Ω.

Definition (class Aq(Ω))

Let Ω ⊂ Rd be a Lipschitz domain. We say that ω ∈ Aq belongs to
Aq(Ω) if there is an open set G ⊂ Ω, and positive constants δ > 0 and
ωl > 0 such that:

1. {x ∈ Ω : dist(x, ∂Ω) < δ} ⊂ G,

2. ω|Ḡ ∈ C(Ḡ), and

3. ωl ≤ ω(x) for all x ∈ Ḡ.

Notice that:

• |x− z|α ∈ A2(Ω) for α ∈ (−d, d).

• More generally, if Z b Ω with dimZ = k < d then
dist(x,Z)α ∈ A2(Ω) for α ∈ (−(d− k), (d− k)).



Generalized saddle point formulation
Define the bilinear forms

a : H1
0($,Ω)×H1

0($−1,Ω)→ R

a(v,w) =

ˆ
Ω

∇v : ∇w dx

and

b± : H1
0($±1,Ω)× L2($∓1,Ω)→ R

b±(v, q) = −
ˆ

Ω

q∇·v dx

Problem: Given f ∈ H1
0($−1,Ω)′ find (u, p) ∈ H1

0($,Ω)× L2($,Ω)/R
such that {

a(u,v) + b−(v, p) = f(v), ∀v ∈ H1
0($−1,Ω),

b+(u, q) = 0, ∀q ∈ L2($−1,Ω)/R.

For instance z ∈ Ω and f = Fδz. Then:

• $(x) = |x− z|α ∈ A2(Ω) for α ∈ (−d, d).

• δz ∈ H1
0 ($−1,Ω)′ for α ∈ (d− 2, d).



Well-posedness

Theorem (�)
Let Ω be a Lipschitz domain and $ ∈ A2(Ω). For every
f ∈ H1

0($−1,Ω)′ there are unique (u, p) ∈ H1
0($,Ω)× L2($,Ω)/R that

solve the generalized saddle point formulation. This solution satisfies

‖∇u‖L2($,Ω) + ‖p‖L2($,Ω)/R . ‖f‖H1
0($−1,Ω)′ .

where the hidden constant is independent of u, p and f .

Remark
There is ε ∈ (0, 1) that depends only on Ω such that if |q − 2| < ε, the
problem is still well-posed in W1,q

0 ($,Ω)× Lq($,Ω)/R for $ ∈ Aq(Ω)

and f ∈W1,q′

0 ($′,Ω)′.

�E. Otárola, AJS, JMAA 2019



Idea of the proof of well-posedness

• The result is true for C1 domains
and all $ ∈ A2. �

• In addition the result is true for
C0,1 domains and $ ≡ 1. �

• WLOG we can assume that
∂(Ω \ G) is C1.

• Glue the two previous results:
Use Buĺıček in Ω \ G and Mitrea
in G.

Details

�M. Buĺıček, J. Burczak, S. Schwarzacher, SIMAT 2016.

�M. Mitrea, M. Wright, Astérisque 2012.



The stationary Navier Stokes problem

• The stationary Navier Stokes problem: find (u, p) that solve

−ν∆u + (u·∇)u +∇p = f , ∇·u = 0, in Ω, u = 0, on ∂Ω.

Corollary (�)
Let d = 2, Ω be Lipschitz, $ ∈ A2(Ω), and f ∈ H1

0($−1,Ω)′. The
Navier Stokes problem has a solution (u, p) ∈ H1

0($,Ω)× L2($,Ω)/R.
This solution satisfies

‖∇u‖L2($,Ω) . ‖f‖H1
0($−1,Ω)′ .

If, in addition, either f is sufficiently small, or ν > 0 sufficiently big, then
the solution is unique.

Proof.
In two dimensions, for $ ∈ A2(Ω), we have H1($,Ω) ↪→↪→ L4($,Ω) so that

∣∣∣∣ˆ
Ω

u ⊗ u : ∇v dx

∣∣∣∣ =

∣∣∣∣ˆ
Ω
$

1/4u ⊗$1/4u : $
−1/2∇v dx

∣∣∣∣ ≤ ‖u‖2
L4($,Ω)

‖∇v‖
L2($−1,Ω)

.

The rest of the proof is by the usual fixed point arguments.

�E. Otárola, AJS, AML 2020.
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Is Lipschitz good enough?

The previous results are nice, but:

• There is a restricted range of integrability: The Stokes problem is
well posed for q ∈ (2− ε, 2 + ε), $ ∈ Aq(Ω) and f ∈W1,q

0 ($′,Ω)′.
What if our problem requires a q outside of that range?

• What if the singular source touches the boundary?

• Recall the generalization of Smagorinsky:

S(x, ε) = 2 (ν + νNL|ε|dist(x, ∂Ω)α) ε, α ∈ [0, 2).

The natural framework here is

u ∈ H1
0(Ω) ∩W1,3(dist(·, ∂Ω)α,Ω),

p ∈ L2(Ω)/R + L3/2(dist(·, ∂Ω)−α/2,Ω)/R.

However
dist(·, ∂Ω)α ∈ A3 \A3(Ω).

• . . .



The Green matrix
The solution to the Stokes problem

−ν∆u +∇p = −∇·f , ∇·u = g, in Ω, u = 0, on ∂Ω

has the representation

uj(ξ) =
1

ν
〈f ,∇Gj(·, ξ)〉 −

ˆ
Ω

λj(x, ξ)g(x) dx

where

G =

[
G1 G2 G3 G4

λ1 λ2 λ3 λ4

]
is the Green matrix.
The pairs (Gj , λj) solve


−∆xGj(x, ξ) +∇xλj(x, ξ) = δ(x − ξ)ej ,

∇·xGj(x, ξ) = 0,

Gj(x, ξ) = 0 x ∈ ∂Ω

j = 1, . . . , 3


−∆xG4(x, ξ) +∇xλ4(x, ξ) = 0,

∇·xGj(x, ξ) = δ(x − ξ) − φ(x),

Gj(x, ξ) = 0 x ∈ ∂Ω

where φ ∈ C∞0 (Ω) is such that
´

Ω
φ(x) dx = 1 and we normalizeˆ

Ω

λj(x, ξ)φ(x) dx = 0, j = 1, . . . , 4.



The Green matrix: Mixed derivative estimates on convex
polyhedra

Let Ω ⊂ R3 be a convex polyhedron. Then� there is σ ∈ (0, 1) such that
for all α, β ∈ N3

0∣∣∣∂αx ∂βξGi,j(x, ξ)− ∂αy ∂βξGi,j(y, ξ)∣∣∣ . |x− y|σ(|x− ξ|−a + |y − ξ|−a)∣∣∣∂αx ∂βξGi,j(x, ξ)− ∂αy ∂βξGi,j(x, η)
∣∣∣ . |ξ − η|σ(|x− ξ|−a + |x− η|−a)

whenever |α| ≤ 1− δi,4, |β| ≤ 1− δj,4 and

a = 1 + σ + δi,4 + δj,4 + |α|+ |β|.

• In particular, for j = 1, . . . , 3,

|∂xk∂ξ`Gj(x, ξ)− ∂xk∂ξ`Gj(x, η)| . |ξ − η|σ(|x− ξ|−3−σ + |x− η|−3−σ),

|∂ξ`λj(x, ξ)− ∂ξ`λj(x, η)| . |ξ − η|σ(|x− ξ|−3−σ + |x− η|−3−σ).

�J. Rossman, Rostock Math. Kolloq 2010.



Well-posedness

Theorem (�)
Let Ω ⊂ R3 be a convex polyhedron, q ∈ (1,∞), $ ∈ Aq, f ∈ Lq($,Ω),
and g ∈ Lq($,Ω)/R. Then, there are unique
(u, p) ∈W1,q

0 ($,Ω)× Lq($,Ω)/R that solve the generalized saddle
point formulation. This solution satisfies

‖∇u‖Lq($,Ω) + ‖p‖Lq($,Ω)/R . ‖f‖Lq($,Ω) + ‖g‖Lq($,Ω).

where the hidden constant is independent of u, p, f and g.

�E. Otárola, AJS, arXiv 2021.



Idea of the proof of well-posedness
• The pointwise estimates of the mixed derivatives allow us to treat

the solution representation as a singular integral operator of CZ type.

• Oscillation estimate: for s > 1

M]
Ω [∇u] (z) .M [|f |s] (z)1/s +M [|g|s] (z)1/s.

• Weighted Fefferman-Stein inequality�∥∥∥∥∇u− 1

|Ω|

ˆ
Ω

∇u dx

∥∥∥∥
Lq($,Ω)

≤ ‖M]
Ω [∇u] ‖Lq($,Ω)

• Continuity of maximal function on weighted spaces∥∥∥M [|f |s]1/s
∥∥∥
Lq($,Ω)

+
∥∥∥M [|g|s]1/s

∥∥∥
Lq($,Ω)

. ‖f‖Lq($,Ω)+‖g‖Lq($,Ω).

• Pressure estimate: Using the surjectivity of the Bogovskĭı operator�

‖p‖Lq($,Ω) . sup
v∈W1,q′

0 ($′,Ω)

´
Ω

p∇·v dx

‖∇v‖Lq′ ($′,Ω)

.

Details

�L. Diening, M. Růžička, K. Schumacher, 2010.

�Acosta and Durán, 2017.



Generalized Smagorisnsky models I

• Recall that the generalized Smagorinsky model read

−∇·S(x, ε(u)) + (u·∇)u +∇p = −∇·f ,

where

S(x, ε) = 2 (ν + νNL|ε|dist(x, ∂Ω)α) ε, α ∈ [0, 2).

• For α ∈ (−1, 2)
dist(x, ∂Ω)α ∈ A3.

• We seek for solutions

u ∈ H1
0(Ω) ∩W1,3

0 (dist(·, ∂Ω)α,Ω)

p ∈ L2(Ω)/R + L3/2(dist(·, ∂Ω)−α/2,Ω)/R.



Generalized Smagorisnsky models II

Theorem (�)
Let Ω ⊂ R3 be a convex polyhedron and α ∈ (−1, 2). If

f ∈ L2(Ω) + L3/2(dist(·, ∂Ω)−α/2,Ω)

Then the generalized Smagorinksy model has a solution (u, p). If, in
addition ν is sufficiently large, or f sufficiently small, then u is unique.

Proof.
• Minimize the energy

J (v) =
ν

2

ˆ
Ω

|ε(v)|2 dx+
2νNL

3

ˆ
Ω

dist(x, ∂Ω)α|ε(v)|3 dx−
ˆ

Ω

f : ∇v dx.

• Usual tricks for convection.

• Two pressures: unweighted inf-sup (L2(Ω)) and weighted one
(L3/2(dist(·, ∂Ω)−α/2,Ω)).

�Otárola, AJS, arXiv 2021.



Generalized Smagorisnsky models III

• Notice that dist(·, ∂Ω)α /∈ Aq(Ω), for any q, whenever α 6= 0.

• Even without convection p is unique only if

α ≤ 1

2
=⇒ L2(Ω) ↪→ L3/2(dist(·, ∂Ω)−α/2,Ω).

• Slight generalization: Let q ∈ (1,∞), ω ∈ Aq, and

f ∈ L2(Ω) + Lq
′
($′,Ω), then

u ∈ H1
0(Ω) ∩W1,q

0 ($,Ω),

p ∈ L2(Ω)/R + Lq
′
($′,Ω)/R



Other non-Newtonian fluids I

• Consider now

−∇·S(x, ε(u)) +∇p = −∇·f , ∇·u = g in Ω, u = 0, on ∂Ω,

with S “linear at infinity”.

Theorem (�)
Let Ω ⊂ R3 be a convex polyhedron, q ∈ (1,∞), and $ ∈ Aq. If

f ∈ Lq($,Ω), g ∈ Lq($,Ω)/R

Then the problem has a unique solution

(u, p) ∈W1,q
0 ($,Ω)× Lq($,Ω)/R,

which satisfies the estimate

‖∇u‖Lq($,Ω) + ‖p‖Lq($,Ω)/R . 1 + ‖f‖Lq($,Ω) + ‖g‖Lq($,Ω).

�Otárola, AJS, arXiv 2021.



Idea of the proof
• Follow the proof for C1 domains �.

• Properties of weights: If, for some s ∈ (1, 2],

(u, p) ∈W1,s
0 (Ω)× Ls(Ω)/R

then (u, p) ∈ H1
0($̃j ,Ω)× L2($̃j ,Ω)/R with

$̃j = min
{
$, jM [∇u]

s−2
, jM [p]

s−2
}
.

• Key step: Represent (u, p) as the solution to a Stokes problem so
that

‖∇u‖L2($̃j ,Ω) + ‖p‖L2($̃j ,Ω) . 1 + ‖f‖L2($̃j ,Ω) + ‖g‖L2($j ,Ω),

uniformly in j. Pass to the limit j →∞. Two important points here
are:

◦ Asymptotic linearity: This allows to “absorb” nonlinear terms.
◦ Convexity: There is no information on the behavior of u or p near

the boundary. Thus,
$̃j /∈ A2(Ω).

�M. Buĺıček, J. Burczak, S. Schwarzacher, SIMAT 2016.
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Discretization
• T = {T} is a conforming and shape regular partition of Ω̄ into

simplices of size hT = diam(T ).

• Set hT = maxhT .

• V(T ) is the FE velocity space, P(T ) is the pressure space and we
assume that they are inf-sup stable in the classical sense.

• Since, for any q ∈ (1,∞) and $ ∈ Aq

V(T )× P(T ) ⊂W1,∞
0 (Ω)× L∞(Ω)/R

⊂W1,q
0 ($,Ω)× Lq($,Ω)/R,

given
(u, p) ∈W1,q

0 ($,Ω)× Lq($,Ω)/R
we define its Stokes projection to be the pair

(uT , pT ) ∈ V(T )× P(T )

such that{
a(u− uT ,vT ) + b−(vT , p− pT ) = 0, ∀vT ∈ V(T ),

b+(u− uT , qT ) = 0, ∀qT ∈ P(T ).



Stability�

Lemma (discrete inf-sup)
Let Ω ⊂ Rd, with d = 2, 3 be Lipschitz, T be quasiuniform, q ∈ (1,∞)
and $ ∈ Aq. Then,

‖rT ‖Lq($,Ω) . sup
vT ∈V(T )

´
Ω
∇·vT rT dx

‖∇vT ‖Lq′ ($′,Ω)

, ∀rT ∈ P(T ),

where the hidden constant does not depend on hT .

Theorem (stability)
Let Ω ⊂ Rd with d = 2, 3 be a convex polytope. Let q ∈ (1,∞) and

• q ≥ 2 $ ∈ Aq/2,

• q ∈ (1, 2] $′ ∈ Aq′/2.

If T is quasiuniform, then

‖∇uT ‖Lq($,Ω) + ‖pT ‖Lq($,Ω) . ‖∇u‖Lq($,Ω) + ‖p‖Lq($,Ω),

where the constant is independent of hT , u, and p.

�R.G. Durán, E. Otárola, AJS, Math. Comp. 2020.



Idea of the proof of stability I

• The pressure estimate follows form the discrete inf-sup condition.

• The case q < 2 follows by duality.

• The case q > 2 follows from Rubio de Francia extrapolation: If

T : L2(ρ,Ω)→ L2(ρ,Ω)

boundedly for all ρ ∈ A1, then

T : Lq($,Ω)→ Lq($,Ω)

boundedly for all $ ∈ Aq/2.

• It remains then to show, for $ ∈ A1,

‖∇uT ‖L2($,Ω) . ‖∇u‖L2($,Ω) + ‖p‖L2($,Ω),



Idea of the proof of stability II

• We use the approximate Green’s matrix G̃ and its approximation
GT to represent, for z ∈ T ∈ T

∂iu
j
T (z) = a(u,GT − G̃) + b−(GT − G̃, p) +

ˆ
Ω

δ̃z∂iu
j dx

• Thus, with E = GT − G̃

ˆ
Ω

$|∂iujT |
2 dx .

ˆ
Ω

$

[ˆ
Ω

∇u : ∇Edx

]2

dz +

ˆ
Ω

$

[ˆ
Ω

p∇·Edx

]2

dx

+

ˆ
Ω

$

[
1

|T |

ˆ
T

∂iu
j dx

]2

dz.

• Properties of E� and the fact that $ ∈ A1 then yield the result.

Details

�V. Girault, R.H. Nochetto, R. Scott, Num. Math. 2015.
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An error estimate in Lq

Corollary (�)
In the setting of the previous result, if q > 2

‖u− uT ‖Lq(Ω) . h
1+d/q
T $(T )−1/q

(
‖∇u‖Lq($,Ω) + ‖p‖Lq($,Ω)

)
,

where

$(T ) = sup
T∈T

$(T ), $(T ) =

ˆ
T

$ dx.

In particular, if the forcing is Fδz we have, for any ε > 0,

‖u− uT ‖L2(Ω) . h
2−d/2−ε
T .

Proof.
A duality argument.

�R.G. Durán, E. Otárola, AJS, Math. Comp. 2020.



Generalized Smagorinsky models
• Consider the generalized Smagorinsky model. Ω ⊂ R3 is a convex

polyhedron.

• No convection.

• (u, p) is the exact solution, (uT , pT ) is its Galerkin approximation,
and (uT , pT ) is its Stokes projection.

Corollary (�)
Assume that T is quasiuniform, and that α ∈ (−1, 1/2). Then, the pair
(uT , pT ) exists, is unique, and stable. Moreover,

‖ε(u− uT )‖2L2(Ω) + ‖ε(u− uT )‖3L3(dist(·,∂Ω)α,Ω) .

‖ε(u− uT )‖2L2(Ω) + ‖ε(u− uT )‖3/2L3(dist(·,∂Ω)α,Ω).

Proof.
Repeat the old arguments for the p–Laplacian�.
The restriction α ∈ (−1, 1/2) guarantees that dist(·, ∂Ω)α ∈ A3/2.
�E. Otárola, AJS. arXiv 2021

�Glowinski, Marrocco. RAIRO 1975. Ciarlet book 1978. S.-S. Chow, Numer. Math. 1989.



Other non-Newtonian fluids
• Consider the “linear at infinity” models.

• Ω ⊂ R3 is a convex polyhedron, q ∈ (1,∞), $ ∈ Aq/2,
f ∈ Lq($,Ω), and g = 0.

• (u, p) is the exact solution, (uT , pT ) is its Galerkin approximation,
and (uT , pT ) is its Stokes projection.

Theorem (�)
If T is quasiuniform the pair (uT , pT ) exists, is unique, and stable.
Moreover, up to subsequences, in W1,q

0 ($,Ω)

uT ⇀ u, hT → 0.

Proof.
• Finite dimensions =⇒ Existence and uniquenes.

• Stability of the Stokes projection =⇒ stability of (uT , pT ).

• Convergence by compactness. We require Minty’s trick, and a Fortin
operator in weighted spaces (discrete inf-sup).

�E. Otárola, AJS. arXiv 2021
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A posteriori error estimation

• Since we are trying to approximate rough objects we need to
consider a posteriori error estimators.

• Consider the Stokes problem with forcing Fδz and z ∈ Ω. Define

DT = max
x∈T
|x− z|, T ∈ T .

• The local error indicator, for T ∈ T , is

Eα(uT , pT ;T )2 = h2
TD

α
T ‖∆uT −∇pT ‖2L2(T )+‖∇·uT ‖2L2(distαz ,T )

+hTD
α
T ‖J(∇uT − pT I)·nK‖2L2(∂T\∂Ω) +hα+2−d

T |F|2#(T ∩{z}),

where, as usual, n is the normal to ∂T and JwK denotes the jump of
w.

• The error estimator, as expected, is then

Eα(uT , pT ,T ) = ‖{Eα(uT , pT ;T )}‖`2(T ) .



A posteriori error estimation: Reliability

From now on (eu, ep) = (u− uT , p− pT ). We have

Theorem (�)
If α ∈ (d− 2, d) then

‖∇eu‖L2(distαz ,Ω) + ‖ep‖L2(distαz ,Ω) . Eα(uT , pT ,T ),

where the hidden constant is independent of the continuous and discrete
solutions, hT and #T .

Proof.
• Usual “disintegration by parts argument” + Galerkin orthogonality.

• The existence of an interpolation operator ΠT : L1(Ω)→ V(T )
that plays nice with weighted norms�.

• A bound on ‖δz‖′H1(dist−αz ,T )
for z ∈ T�.

�A. Allendes, E. Otárola, AJS. CMAME 2019.

�R.H. Nochetto, E. Otárola and AJS. Numer. Math. 2016.

�J.P. Agnelli, E. Garau, P. Morin. M2AN 2014.



A posteriori error estimation: Local efficiency I

Theorem (�)
If α ∈ (d− 2, d) and T ∈ T then

Eα(uT , pT ;T )2 . ‖∇eu‖2L2(distαz ,NT ) + ‖ep‖2L2(distαz ,NT ),

where NT is the patch of T .

Proof (Ingredients)

• If z /∈ T , the volume and jump terms are controlled via usual bubble
function arguments.

• If z ∈ T :

◦ The term hα+2−d
T |F|2#(T ∩ {z}) is controlled via a function

η ∈W 1,∞
0 (Ω) such that

η(z) = 1, supp(η) ⊂ NT , ‖∇kη‖L∞(Ω) = h−kT , k = 0, 1,

and testing the error equation with (Fη, 0).

�A. Allendes, E. Otárola, AJS. CMAME 2019.



Local efficiency II

Proof (continued)

• If z ∈ T�:

◦ The volume term uses a bubble function ϕT such that 0 ≤ ϕT ≤ 1
and

ϕT (z) = 0, |T | .
ˆ
T

ϕT , |ϕT | . h−1
T

and suppϕT ⊂ T ?, where T ? is a subsimplex of T .

Test the error equation with (ϕT (∆uT −∇pT ), 0)

◦ The jump term uses a bubble function ϕS such that 0 ≤ ϕS ≤ 1 and

ϕS(z) = 0, |S| .
ˆ
S

ϕS , |∇ϕS | . h
−1/2
T |S|1/2

and suppϕS ⊂ T ?1 ∪ T ?2 , where T ?i are subsimplices of Ti with
S = T̄1 ∩ T̄2.

Test the error equation with (ϕSJ(∇uT − pT I)·nK, 0)

�J.P. Agnelli, E. Garau, P. Morin. M2AN, 2014.



Local efficiency III

δz

δz

Figure: Support the bubble functions ηT , ϕT and ϕS .
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Conclusions

• We allow non-standard behavior, either in the forcing or constitutive
law by considering weighted spaces.

• Stability of the Stokes projection on weighted spaces.

• A priori and a posteriori error analysis for linear and some nonlinear�

models.

• Other models: Bousinessq�, . . .

�A. Allendes, E. Otárola, AJS, SISC 2020.

�A. Allendes, E. Otárola, AJS, M3AN 2021.



Open questions

Analysis

• Navier Stokes for d = 3? It would require q 6= 2.

• Other models?

Approximation

• Stability of the Stokes projection:

◦ Non quasi-uniform meshes?
◦ Non convex domains?
◦ $ /∈ Aq/2?

• Error analysis for other models?

• Pseudo norm estimates for Smagorinsky?�

�J.W. Barrett, W.B. Liu, Math. Comp. 1993.



Thank You!



Well-posedness in Lipschitz domains I

• G̊arding–like inequality: If (u, p) ∈ H1
0($,Ω)× L2($,Ω)/R is a

solution, then we have

‖∇u‖L2($,Ω)+‖p‖L2($,Ω)/R . ‖f‖H1
0($−1,Ω)′+‖u‖L2(G)+‖p‖H−1(G).

◦ Introduce a partition ψi, ψ∂ ∈ C∞0 (Ω), ψi + ψ∂ ≡ 1 with ψi ≡ 1
near Ω \ G and ψi ≡ 0 near ∂Ω. Ωi = suppψi is C1.

◦ ui = uψi and pi = pψi are solutions on Ωi, a C1 domain, =⇒ use
the weighted result for C1 domains.

◦ u∂ = uψ∂ and p∂ = pψ∂ are solutions on G, a Lipschitz domain,
=⇒ use the unweighted result for Lipschitz domains.



Well-posedness in Lipschitz domains II

• Uniqueness: From this it follows that, if f ≡ 0, then u ≡ 0 and
p ≡ 0.

• A priori estimate: Using the usual ADN contradiction argument we
get that, if (u, p) ∈ H1

0($,Ω)× L2($,Ω)/R is a solution,

‖∇u‖L2($,Ω) + ‖p‖L2($,Ω)/R . ‖f‖H1
0($−1,Ω)′ .

• Existence: By approximation, (uk, pk) ∈ H1
0($,Ω)× L2($,Ω)/R is

a solution for fk ∈ C∞0 (Ω), such that fk → f in H1
0($−1,Ω)′. The

a priori estimates allow us to pass to the limit.

Back



Well-posedness in convex polyhedra I

• Let z ∈ Ω and Q a cube centered in z. We decompose

f = f1 + f2, f1 = fχ2Q, g = g1 + g2, supp g1 = 2Q.

The decomposition of g is a Bogovskĭı decomposition, i.e., it
preserves the zero averages.

• (ui, pi) solves the Stokes problem with data (−∇·fi, gi).

• We estimate the oscillation of u, i.e., M]
Ω [∇u] (z)

M]
Ω [∇u] (z) ≈

 
Q

|∇u(x)−∇u2(z)|dx

≤
 
Q

|∇u1(x)|dx+

 
Q

|∇u2(x)−∇u2(z)|dx = N + F.



Well-posedness in convex polyhedra II
• For N the data is supported on a cube. Since Ω is a convex

polyhedron, for s > 1�,

N .
1

|Q|1/s
‖∇u1‖Ls(Ω) .

1

|Q|1/s
(
‖f1‖Ls(2Q) + ‖g‖Ls(2Q)

)
.M [|f |s] (z)1/s +M [|g|s( z)1/s.

• For F we use the mixed derivative estimates

F ≤ `(Q)σ

|Q|

ˆ
Q

ˆ
2Qc

|f(y)|+ |g2(y)|
|z − y|3+σ

dy dx .M [|f |] (z)+M [|g|] (z).

• In conclusion

M]
Ω [∇u] (z) .M [|f |s] (z)1/s +M [|g|s] (z)1/s.

• By simple scaling

ˆ
Ω

$

(
1

|Ω|

ˆ
Ω

∇u dx

)q
. ‖f‖Lq($,Ω) + ‖g‖Lq($,Ω).

�V. Maz’ya, J. Rossman, Math. Nachr. 2007.



Well-posedness in convex polyhedra III
• The weighted Fefferman-Stein inequality� implies∥∥∥∥∇u− 1

|Ω|

ˆ
Ω

∇u dx

∥∥∥∥
Lq($,Ω)

. ‖M]
Ω [∇u] ‖Lq($,Ω)

.
∥∥∥M [|f |s]1/s

∥∥∥
Lq($,Ω)

+
∥∥∥M [|g|s]1/s

∥∥∥
Lq($,Ω)

.

• The continuity of the maximal function on weighted spaces finally
gives

‖∇u‖Lq($,Ω) . ‖f‖Lq($,Ω) + ‖g‖Lq($,Ω).

• The properties of the Bogovskĭı operator on weighted spaces� imply

‖p‖Lq($,Ω) . sup
v∈W1,q′

0 ($′,Ω)

´
Ω

p∇·v dx

‖∇v‖Lq′ ($′,Ω)

meaning
‖p‖Lq($,Ω) . ‖f‖Lq($,Ω) + ‖g‖Lq($,Ω).

Back

�L. Diening, M. Růžička, K. Schumacher

�Acosta and Durán, 2017.



Stability of the Stokes projection I

• Approximate Dirac delta: z ∈ T ∈ T , then δ̃z ∈ C∞0 (T ) with

ˆ
Ω

δ̃z dx = 1, ‖δ̃z‖L∞(Ω) . h−dT ,

ˆ
Ω

δ̃zvT dx = vT (z), ∀vT ∈ V(T ).

• The regularized (derivative of the) Green’s function:

−∆G̃ +∇λ̃ = −∂iδ̃zej .

• The pair (GT , λT ) ∈ V(T )× P(T ) is its Galerkin approximation.

• Recall that�, there is λ ∈ (0, 1),

sup
z∈Ω
‖σµ/2y ∇(G̃−GT )‖L2(Ω) . hλ/2, µ = d+ λ

where the regularized distance� is

σy(x) =
(
|x− y|2 + (κhT )2

)1/2
�V. Girault, R.H. Nochetto, R. Scott, Num. Math. 2015.

�F. Natterer, 1976. J.Nitchse, 1977. . . .



Stability of the Stokes projection II
• We have

a(u, G̃) + b−(u, λ̃) =

ˆ
Ω

δ̃z∂iu
j dx

a(uT ,GT ) + b−(uT , λT ) = ∂iu
j
T (z)

a(uT , G̃−GT ) + b−(uT , λ̃− λT ) = 0

a(u− uT ,GT ) + b−(GT , p− pT ) = 0.

• Using that u and G̃ are solenoidal, that uT and GT are discretely
solenoidal, and that a is symmetric we eventually reach

∂iu
j
T (z) = a(u,GT − G̃) + b−(GT − G̃, p) +

ˆ
Ω

δ̃z∂iu
j dx

• Thus, with E = GT − G̃ˆ
Ω

$|∂iujT |
2 dx .

ˆ
Ω

$

[ˆ
Ω

∇u : ∇Edx

]2

dz +

ˆ
Ω

$

[ˆ
Ω

p∇·Edx

]2

dz

+

ˆ
Ω

$

[
1

|T |

ˆ
T

∂iu
j dx

]2

dz

= I + II + III.



Stability of the Stokes projection III
• By continuity of the maximal function on weighted spaces

III .
ˆ

Ω

$
∣∣M [

∂iu
j
]∣∣2 dz . ‖∂iuj‖2L2($,Ω).

• Using the regularized distance

I + II .
ˆ

Ω

$

(ˆ
Ω

σd+λ
z |∇E|2 dx

)(ˆ
Ω

|∇u|2 + |p|2

σd+λ
z

dx

)
dz

• We saw that ˆ
Ω

σd+λ
z |∇E|2 dx . hλT

• A dyadic decomposition shows that

hλT

ˆ
Ω

$(z)

σd+λ
z (x)

dz .M[$](x).$(x)

where the last step requires $ ∈ A1.
• In conclusion

I + II .
ˆ

Ω

$
(
|∇u|2 + |p|2

)
dx.
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