Analysis and approximation of fluids under singular forcing

Abner J. Salgado

Department of Mathematics University of Tennessee

8th ECM

MS – ID 39: Modeling, approximation, and analysis of partial differential equations involving singular source June 22, 2021

Collaborators:

- E.H. Otárola (UTFSM, Chile)
- A. Allendes (UTFSM, Chile)
- R.G. Durán (UBA, Argentina)

Outline

Motivation

Analysis

Approximation

Conclusions and open problems

Outline

Motivation

Analysis

Approximation

Conclusions and open problems

Motivation I: Active thin structures

- Motion of an incompressible viscous fluid.
- Active thin structures immersed in it.
- They exert a force supported on a lower dimensional object.
- The model becomes

$$-\nabla\cdot\mathbb{S}(x,\boldsymbol{\varepsilon}(\mathsf{u}))+\nabla\mathsf{p}=\mathbf{F}\delta_{\mathcal{Z}},\quad \nabla\!\cdot\mathsf{u}=0,\quad \text{ in }\Omega,\qquad \mathsf{u}=\mathbf{0} \ \text{ on }\partial\Omega.$$

Here

- $\Omega \subset \mathbb{R}^d$ is the fluid domain with d = 2 or d = 3.
- $\circ\,$ u is the velocity, p is the presssure, ${\bf F}$ is a given forcing.

•
$$\varepsilon(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}} \right)$$

- $\circ~\mathbb{S}$ is the stress tensor, e.g., $\mathbb{S}=2\nu\varepsilon$ gives the Stokes problem.
- $\mathcal{Z} \subset \overline{\Omega}$ with $0 \leq \dim \mathcal{Z} \leq d-1$.

Images shamelessly copied from:

Loïc Lacouture, Ph.D Thesis, Université Paris-Saclay, 2016.

Motivation II: Interface problems and immersed BMs, FEMs, etc.²

- Fluid-solid interaction, two immiscible fluids separated by an interface, ...
- It reduces to an interface problem:

$$\begin{split} \boldsymbol{\nu} &= \boldsymbol{\nu}_+ + (\boldsymbol{\nu}_- - \boldsymbol{\nu}_+) \, \chi_{\Omega^-}, \quad \mathbf{u} = \mathbf{0} \quad \text{in } \partial\Omega, \\ &- \nabla \cdot \mathbb{S}(x, \boldsymbol{\varepsilon}(\mathbf{u})) + \nabla \mathbf{p} = 0, \quad \nabla \cdot \mathbf{u} = 0, \quad \text{ in } \Omega^+ \cup \Omega^-, \\ \text{ and the interface conditions on } \Gamma \end{split}$$

$$\llbracket \mathbf{u} \rrbracket = \mathbf{0}, \qquad \llbracket (\mathbb{S} - \mathbf{p} \mathbb{I}) \cdot \mathbf{n} \rrbracket = \boldsymbol{\sigma},$$

where $[\![\cdot]\!]$ is the jump, and σ can denote, for instance, surface tension.

It reduces to

$$-\nabla \cdot \mathbb{S}(x, \boldsymbol{\varepsilon}(\mathbf{u})) + \nabla \mathbf{p} = \boldsymbol{\sigma} \delta_{\Gamma}$$

where now $\ensuremath{\mathbb{S}}$ is may be discontinuous.

C. Peskin, Y. Mori, D. Boffi, L. Gastaldi, L. Heltai, T. Lin, P. Yue, ...

Motivation III: Generalized Smagorinsky models

$$\mathbb{S}(x, \boldsymbol{\varepsilon}) = 2\left(\nu + \nu_{NL}|\boldsymbol{\varepsilon}|\right)\boldsymbol{\varepsilon}.$$

- One of the main criticisms of this model is that it tends to overdissipate near walls[®].
- For this reason, several refinements[®] and variations have been suggested. In particular[®].

$$\mathbb{S}(x,\boldsymbol{\varepsilon}) = 2\left(\nu + \nu_{NL} |\boldsymbol{\varepsilon}| \operatorname{dist}(x,\partial\Omega)^{\alpha}\right) \boldsymbol{\varepsilon}, \qquad \alpha \in (0,2),$$

where $dist(\cdot,\partial\Omega)$ is the distance to the boundary. The idea is that the additional dissipation is dampened as one approaches the boundary.

• In summary, our model reads

$$-\nabla\cdot\mathbb{S}(x,\boldsymbol{\varepsilon}(\mathsf{u})) + (\mathsf{u}\cdot\nabla)\,\mathsf{u} + \nabla\mathsf{p} = \mathbf{f}, \quad \nabla\cdot\mathsf{u} = 0, \quad \text{ in } \Omega, \qquad \mathsf{u} = \mathbf{0} \ \text{ on } \partial\Omega.$$

J. Smagorinsky, 1963.

Lesieur, 2008. Layton, 2016.

Sagaut, 2001. Vreman, 2003. Dunca et al., 2013. Berselli et al., 2006.

J. Rappaz and J. Rochat, CRAS 2016. J. Rappaz and J. Rochat, Comput. Methods Appl. Sci. 2019

Other non-Newtonian fluids under rough forcing

• We consider a nonlinear Stokes system

$$-\nabla \!\!\cdot \mathbb{S}(x,\boldsymbol{\varepsilon}(\mathbf{u})) + \nabla \mathbf{p} = -\nabla \!\!\cdot \mathbf{F},$$

with $\mathbf{F}\in\mathbf{L}^q(\Omega)$ with $q\in(1,\infty).$ We assume $\mathbb S$ satisfies:

- It is Carathéodory.
- $\circ~\mbox{For}~\pmb{\varepsilon}\in\mathbb{R}^{d\times d}$ and $x\in\Omega$ we have

$$|\boldsymbol{\varepsilon}|^2 - 1 \lesssim \mathbb{S}(x, \boldsymbol{\varepsilon}) : \boldsymbol{\varepsilon}, \qquad |\mathbb{S}(x, \boldsymbol{\varepsilon})| \le |\boldsymbol{\varepsilon}| + 1$$

 $\,\circ\,$ It is linear at infinity: There is $\nu>0$ such that, uniformly in x,

$$\lim_{\boldsymbol{\varepsilon}|\to\infty} \frac{|\mathbb{S}(x,\boldsymbol{\varepsilon}) - 2\nu\boldsymbol{\varepsilon}|}{|\boldsymbol{\varepsilon}|} = 0$$

• For $\varepsilon_1 \neq \varepsilon_2$ and uniformly in x

$$\left(\mathbb{S}(x,\boldsymbol{\varepsilon}_1) - \mathbb{S}(x,\boldsymbol{\varepsilon}_1)\right) : (\boldsymbol{\varepsilon}_1 - \boldsymbol{\varepsilon}_2) > 0, \quad \lim_{|\boldsymbol{\varepsilon}| \to \infty} \left| \frac{\partial \mathbb{S}(x,\boldsymbol{\varepsilon})}{\partial \boldsymbol{\varepsilon}} - 2\nu \mathbb{I} \right| = 0$$

- Notice that, if F ∉ L²(Ω), u is not an admissible test function anymore. For this reason, we call this type of forcings rough.
- Such systems have been considered before² under the assumption that $\Omega \in C^1$.

M. Bulíček, J. Burczak, S. Schwarzacher, SIMAT 2016.

Outline

Motivation

Analysis Intuition Lipschitz domains Convex polyhedra

Approximation

Conclusions and open problems

Outline

Motivation

Analysis Intuition Lipschitz domain Convex polyhedra

Approximation

Conclusions and open problems

The guiding principle I: weighted spaces

• To motivate our approach consider, for $z \in \mathbb{R}^d$,

$$-\Delta \mathbf{u} + \nabla \mathbf{p} = \mathbf{F} \delta_z, \qquad \nabla \mathbf{u} = 0, \quad \text{ in } \mathbb{R}^d,$$

i.e., the fundamental solution to the Stokes problem.

It is known that[₽]

$$|\nabla \mathsf{u}(x)| \approx |x-z|^{1-d}, \qquad |\mathsf{p}(x)| \approx |x-z|^{1-d}.$$

Thus

 $|\nabla \mathsf{u}(x)|, |\mathsf{p}(x)| \notin L^2(E),$

but

$$\alpha \in (d-2,\infty) \implies \int_E |x-z|^{\alpha} \left(|\nabla \mathsf{u}(x)|^2 + |\mathsf{p}(x)|^2 \right) \, \mathrm{d}x < \infty,$$

for every compact E.

Ur

■G.P. Galdi, 2011.

The guiding principle II: weighted spaces

- If Ω is bounded and smooth we expect a similar behavior of ${\bf u}$ and ${\bf p}.$
- If Ω is only Lipschitz boundary singularities will appear. In fact, consider[●]

$$-\Delta u = f$$
, in Ω , $u = 0$, on $\partial \Omega$

• It is known that even if $f \in C^{\infty}(\Omega)$; we have, with $s = \pi/\theta < 1$,

$$|\nabla u| \approx |x|^{s-1}, \qquad \alpha \in (-2, -2 + 2(1-s)) \implies \int_{\Omega} |x|^{\alpha} |\nabla u|^2 \, \mathrm{d}x = \infty$$

• Our analysis then will consider two cases: Lipschitz domains and convex polyhedra with d = 3.

Grisvard, 1985.

Muckenhoupt weights

Definition (Muckenhoupt weight)

Let $q\in [1,\infty).$ A function $0\leq \omega\in L^1_{loc}(\mathbb{R}^d)$ belongs to A_q if

$$\begin{split} [\omega]_{A_q} &= \sup_B \frac{1}{|B|} \int_B \omega(x) \, \mathrm{d}x \left(\frac{1}{|B|} \int_B \omega^{1/(1-q)}(x) \, \mathrm{d}x \right)^{q-1} < \infty, \\ [\omega]_{A_1} &= \sup_B \frac{1}{|B|} \int_B \omega(x) \, \mathrm{d}x \sup_{x \in B} \frac{1}{\omega(x)} < \infty. \end{split}$$

Notice: that if $\omega \in A_q$, then $\omega' = \omega^{1/(1-q)} \in A_{q'}$.

• It is known that if $\mathcal{Z} \subset \mathbb{R}^d$ with $\dim \mathcal{Z} = k < d$, then $\operatorname{dist}(\cdot, \mathcal{Z})^{\alpha} \in A_q$ provided

$$-(d-k) < \alpha < (d-k)(q-1).$$

Thus $|x-z|^{\alpha} \in A_2$ for $\alpha \in (-d,d)$.

We will look for solutions in suitably weighted spaces!

The Stokes problem

• In summary $\Omega \subset \mathbb{R}^d$ is at least Lipschitz, we seek for (u,p) that solve

$$-\nu\Delta u + \nabla p = f, \quad \nabla u = 0, \text{ in } \Omega, \qquad u = 0, \text{ on } \partial \Omega.$$

• The issue is that f is rough: e.g. $f = F\delta_z$ with $z \in \Omega$.

The functional setting

Let $\Omega\subset\mathbb{R}^d$ be a bounded domain that is at least Lipschitz. Assume that, $q\in(1,\infty)$ $\varpi\in A_q$ and introduce the weighted spaces

$$\begin{split} L^q(\varpi,\Omega) &= \left\{ v \in L^1_{loc}(\Omega) : \int_{\Omega} |v|^q \varpi \, \mathrm{d}x < \infty \right\},\\ W^{1,q}(\varpi,\Omega) &= \left\{ v \in L^q(\varpi,\Omega) : \nabla v \in \mathbf{L}^q(\varpi,\Omega) \right\},\\ W^{1,q}_0(\varpi,\Omega) &= \left\{ v \in W^{1,q}(\varpi,\Omega) : v = 0 \text{ on } \partial\Omega \right\}. \end{split}$$

- Since $\varpi \in A_q$, these spaces satisfy most of the "usual properties".
- As usual $\mathbf{L}^q(\varpi, \Omega) = L^q(\varpi, \Omega)^d$.
- We will look for:

 $\mathsf{u} \in \mathbf{W}^{1,q}_0(arpi,\Omega)$ and $\mathsf{p} \in L^q(arpi,\Omega)/\mathbb{R},$

for a suitable $q \in (1,\infty)$ and $\varpi \in A_q$.

Outline

Motivation

Analysis Intuition Lipschitz domains Convex polyhedra

Approximation

Conclusions and open problems

The class $A_q(\Omega)$

• Assume the singular source is supported on $\mathcal{Z} \subseteq \Omega$.

Definition (class $A_q(\Omega)$)

Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain. We say that $\omega \in A_q$ belongs to $A_q(\Omega)$ if there is an open set $\mathcal{G} \subset \Omega$, and positive constants $\delta > 0$ and $\omega_l > 0$ such that:

- 1. $\{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \delta\} \subset \mathcal{G}$,
- 2. $\omega|_{\bar{\mathcal{G}}} \in C(\bar{\mathcal{G}})$, and
- 3. $\omega_l \leq \omega(x)$ for all $x \in \overline{\mathcal{G}}$.

Notice that:

- $|x-z|^{\alpha} \in A_2(\Omega)$ for $\alpha \in (-d, d)$.
- More generally, if $Z \Subset \Omega$ with dim Z = k < d then $\operatorname{dist}(x, Z)^{\alpha} \in A_2(\Omega)$ for $\alpha \in (-(d-k), (d-k))$.

Generalized saddle point formulation

Define the bilinear forms

$$a: \mathbf{H}_0^1(\varpi, \Omega) \times \mathbf{H}_0^1(\varpi^{-1}, \Omega) \to \mathbb{R}$$
$$a(\mathbf{v}, \mathbf{w}) = \int_{\Omega} \nabla \mathbf{v} : \nabla \mathbf{w} \, \mathrm{d}x$$

and

$$b_{\pm} : \mathbf{H}_{0}^{1}(\varpi^{\pm 1}, \Omega) \times L^{2}(\varpi^{\mp 1}, \Omega) \to \mathbb{R}$$
$$b_{\pm}(\mathbf{v}, q) = -\int_{\Omega} q \nabla \mathbf{v} \, \mathrm{d}x$$

Problem: Given $\mathbf{f} \in \mathbf{H}_0^1(\varpi^{-1}, \Omega)'$ find $(\mathbf{u}, \mathbf{p}) \in \mathbf{H}_0^1(\varpi, \Omega) \times L^2(\varpi, \Omega)/\mathbb{R}$ such that

$$\begin{cases} a(\mathbf{u}, \mathbf{v}) + \mathbf{b}_{-}(\mathbf{v}, \mathbf{p}) = \mathbf{f}(\mathbf{v}), & \forall \mathbf{v} \in \mathbf{H}_{0}^{1}(\varpi^{-1}, \Omega), \\ \mathbf{b}_{+}(\mathbf{u}, q) = 0, & \forall q \in L^{2}(\varpi^{-1}, \Omega) / \mathbb{R}. \end{cases}$$

For instance $z \in \Omega$ and $\mathbf{f} = \mathbf{F} \delta_z$. Then:

• $\varpi(x) = |x - z|^{\alpha} \in A_2(\Omega)$ for $\alpha \in (-d, d)$. • $\delta_z \in H_0^1(\varpi^{-1}, \Omega)'$ for $\alpha \in (d - 2, d)$.

Well-posedness

Theorem (²)

Let Ω be a Lipschitz domain and $\varpi \in A_2(\Omega)$. For every $\mathbf{f} \in \mathbf{H}_0^1(\varpi^{-1}, \Omega)'$ there are unique $(\mathbf{u}, \mathbf{p}) \in \mathbf{H}_0^1(\varpi, \Omega) \times L^2(\varpi, \Omega)/\mathbb{R}$ that solve the generalized saddle point formulation. This solution satisfies

$$\|\nabla \mathsf{u}\|_{\mathbf{L}^{2}(\varpi,\Omega)} + \|\mathsf{p}\|_{L^{2}(\varpi,\Omega)/\mathbb{R}} \lesssim \|\mathbf{f}\|_{\mathbf{H}^{1}_{0}(\varpi^{-1},\Omega)'}.$$

where the hidden constant is independent of u, p and f.

Remark

There is $\epsilon \in (0,1)$ that depends only on Ω such that if $|q-2| < \epsilon$, the problem is still well-posed in $\mathbf{W}_0^{1,q}(\varpi, \Omega) \times L^q(\varpi, \Omega)/\mathbb{R}$ for $\varpi \in A_q(\Omega)$ and $\mathbf{f} \in \mathbf{W}_0^{1,q'}(\varpi', \Omega)'$.

Idea of the proof of well-posedness

- The result is true for C¹ domains and all ∞ ∈ A₂.
- In addition the result is true for $C^{0,1}$ domains and $\varpi \equiv 1$.
- WLOG we can assume that $\partial(\Omega \setminus \mathcal{G})$ is C^1 .
- Glue the two previous results: Use Bulíček in Ω \ 𝒢 and Mitrea in 𝒢.

M. Bulíček, J. Burczak, S. Schwarzacher, SIMAT 2016.
 M. Mitrea, M. Wright, Astérisque 2012.

The stationary Navier Stokes problem

• The stationary Navier Stokes problem: find (u, p) that solve

$$-\nu\Delta \mathsf{u} + (\mathsf{u}\cdot\nabla)\mathsf{u} + \nabla \mathsf{p} = \mathbf{f}, \quad \nabla \cdot \mathsf{u} = 0, \text{ in } \Omega, \qquad \mathsf{u} = \mathbf{0}, \text{ on } \partial\Omega.$$

Corollary ([⊉])

Let d = 2, Ω be Lipschitz, $\varpi \in A_2(\Omega)$, and $\mathbf{f} \in \mathbf{H}_0^1(\varpi^{-1}, \Omega)'$. The Navier Stokes problem has a solution $(u, p) \in \mathbf{H}_0^1(\varpi, \Omega) \times L^2(\varpi, \Omega)/\mathbb{R}$. This solution satisfies

$$\|\nabla \mathsf{u}\|_{\mathbf{L}^2(\varpi,\Omega)} \lesssim \|\mathbf{f}\|_{\mathbf{H}^1_0(\varpi^{-1},\Omega)'}.$$

If, in addition, either f is sufficiently small, or $\nu > 0$ sufficiently big, then the solution is unique.

 $\begin{array}{l} {\sf Proof.}\\ {\rm In \ two \ dimensions, \ for \ } \varpi \in A_2(\Omega), \ {\rm we \ have \ } H^1(\varpi, \Omega) \hookrightarrow \hookrightarrow L^4(\varpi, \Omega) \ {\rm so \ that} \end{array}$

$$\left|\int_{\Omega} \mathtt{u}\otimes \mathtt{u}: \nabla \mathbf{v}\,\mathrm{d} \mathtt{x}\right| = \left|\int_{\Omega} \varpi^{1/4} \mathtt{u}\otimes \varpi^{1/4} \mathtt{u}: \varpi^{-1/2} \nabla \mathbf{v}\,\mathrm{d} \mathtt{x}\right| \leq \|\mathtt{u}\|_{\mathbf{L}^{4}(\varpi,\Omega)}^{2} \|\nabla \mathbf{v}\|_{\mathbf{L}^{2}(\varpi^{-1},\Omega)}.$$

The rest of the proof is by the usual fixed point arguments.

U

E. Otárola, AJS, AML 2020.

Outline

Motivation

Analysis Intuition Lipschitz domains Convex polyhedra

Approximation

Conclusions and open problems

Is Lipschitz good enough?

The previous results are nice, but:

- There is a restricted range of integrability: The Stokes problem is well posed for $q \in (2 \epsilon, 2 + \epsilon)$, $\varpi \in A_q(\Omega)$ and $\mathbf{f} \in \mathbf{W}_0^{1,q}(\varpi', \Omega)'$. What if our problem requires a q outside of that range?
- What if the singular source touches the boundary?
- Recall the generalization of Smagorinsky:

$$\mathbb{S}(x, \boldsymbol{\varepsilon}) = 2 \left(\nu + \nu_{NL} | \boldsymbol{\varepsilon} | \operatorname{dist}(x, \partial \Omega)^{\alpha} \right) \boldsymbol{\varepsilon}, \qquad \alpha \in [0, 2).$$

The natural framework here is

$$\begin{split} \mathbf{u} &\in \mathbf{H}_0^1(\Omega) \cap \mathbf{W}^{1,3}(\operatorname{dist}(\cdot,\partial\Omega)^{\alpha},\Omega), \\ \mathbf{p} &\in L^2(\Omega)/\mathbb{R} + L^{3/2}(\operatorname{dist}(\cdot,\partial\Omega)^{-\alpha/2},\Omega)/\mathbb{R}. \end{split}$$

However

$$\operatorname{dist}(\cdot,\partial\Omega)^{\alpha} \in A_3 \setminus A_3(\Omega).$$

• . . .

The Green matrix

The solution to the Stokes problem

$$-\nu\Delta \mathsf{u}+\nabla \mathsf{p}=-\nabla \!\!\cdot \mathbf{f}, \qquad \nabla \!\!\cdot \mathsf{u}=g, \quad \text{ in } \Omega, \qquad \mathsf{u}=\mathbf{0}, \text{ on } \partial \Omega$$

has the representation

$$\mathsf{u}_j(\xi) = \frac{1}{\nu} \langle \mathbf{f}, \nabla \mathbf{G}_j(\cdot, \xi) \rangle - \int_{\Omega} \lambda_j(x, \xi) g(x) \, \mathrm{d}x$$

where

$$\mathbb{G} = \begin{bmatrix} \mathbf{G}_1 & \mathbf{G}_2 & \mathbf{G}_3 & \mathbf{G}_4 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix}$$

is the Green matrix. The pairs $(\mathbf{G}_j, \lambda_j)$ solve

$$\begin{cases} -\Delta_x \mathbf{G}_j(x,\xi) + \nabla_x \lambda_j(x,\xi) = \delta(x-\xi)\mathbf{e}_j, \\ \nabla_x \mathbf{G}_j(x,\xi) = 0, \\ \mathbf{G}_j(x,\xi) = \mathbf{0} x \in \partial\Omega \end{cases} \begin{cases} -\Delta_x \mathbf{G}_4(x,\xi) + \nabla_x \lambda_4(x,\xi) = \mathbf{0}, \\ \nabla_x \mathbf{G}_j(x,\xi) = \delta(x-\xi) - \phi(x), \\ \mathbf{G}_j(x,\xi) = \mathbf{0} x \in \partial\Omega \end{cases}$$

where $\phi \in C_0^{\infty}(\Omega)$ is such that $\int_{\Omega} \phi(x) \, \mathrm{d}x = 1$ and we normalize $\int_{\Omega} \lambda_j(x,\xi) \phi(x) \, \mathrm{d}x = 0, \quad j = 1, \dots, 4.$

The Green matrix: Mixed derivative estimates on convex polyhedra

Let $\Omega\subset\mathbb{R}^3$ be a convex polyhedron. Then² there is $\sigma\in(0,1)$ such that for all $\alpha,\beta\in\mathbb{N}^3_0$

$$\begin{aligned} \left| \partial_x^{\alpha} \partial_{\xi}^{\beta} \mathbb{G}_{i,j}(x,\xi) - \partial_y^{\alpha} \partial_{\xi}^{\beta} \mathbb{G}_{i,j}(y,\xi) \right| &\lesssim |x-y|^{\sigma} (|x-\xi|^{-a} + |y-\xi|^{-a}) \\ \left| \partial_x^{\alpha} \partial_{\xi}^{\beta} \mathbb{G}_{i,j}(x,\xi) - \partial_y^{\alpha} \partial_{\xi}^{\beta} \mathbb{G}_{i,j}(x,\eta) \right| &\lesssim |\xi-\eta|^{\sigma} (|x-\xi|^{-a} + |x-\eta|^{-a}) \end{aligned}$$

whenever $|\alpha| \leq 1-\delta_{i,4}\text{, }|\beta| \leq 1-\delta_{j,4}$ and

$$a = 1 + \sigma + \delta_{i,4} + \delta_{j,4} + |\alpha| + |\beta|.$$

• In particular, for $j = 1, \ldots, 3$,

$$\begin{aligned} |\partial_{x_k}\partial_{\xi_\ell}\mathbf{G}_j(x,\xi) - \partial_{x_k}\partial_{\xi_\ell}\mathbf{G}_j(x,\eta)| &\lesssim |\xi - \eta|^{\sigma}(|x - \xi|^{-3-\sigma} + |x - \eta|^{-3-\sigma}) \\ |\partial_{\xi_\ell}\lambda_j(x,\xi) - \partial_{\xi_\ell}\lambda_j(x,\eta)| &\lesssim |\xi - \eta|^{\sigma}(|x - \xi|^{-3-\sigma} + |x - \eta|^{-3-\sigma}) \end{aligned}$$

J. Rossman, Rostock Math. Kolloq 2010.

Well-posedness

Theorem ($\stackrel{\blacksquare}{\blacksquare}$) Let $\Omega \subset \mathbb{R}^3$ be a convex polyhedron, $q \in (1, \infty)$, $\varpi \in A_q$, $\mathbf{f} \in \mathbf{L}^q(\varpi, \Omega)$, and $g \in L^q(\varpi, \Omega)/\mathbb{R}$. Then, there are unique $(\mathbf{u}, \mathbf{p}) \in \mathbf{W}_0^{1,q}(\varpi, \Omega) \times L^q(\varpi, \Omega)/\mathbb{R}$ that solve the generalized saddle point formulation. This solution satisfies

 $\|\nabla \mathsf{u}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|\mathsf{p}\|_{L^q(\varpi,\Omega)/\mathbb{R}} \lesssim \|\mathbf{f}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|g\|_{L^q(\varpi,\Omega)}.$

where the hidden constant is independent of u, p, f and g.

Idea of the proof of well-posedness

- The pointwise estimates of the mixed derivatives allow us to treat the solution representation as a singular integral operator of CZ type.
- Oscillation estimate: for s > 1

 $\mathcal{M}^{\sharp}_{\Omega}\left[\nabla \mathbf{u}\right](z) \lesssim \mathcal{M}\left[|\mathbf{f}|^{s}\right](z)^{1/s} + \mathcal{M}\left[|g|^{s}\right](z)^{1/s}.$

• Weighted Fefferman-Stein inequality[₽]

$$\left\| \nabla \mathsf{u} - \frac{1}{|\Omega|} \int_{\Omega} \nabla \mathsf{u} \, \mathrm{d}x \right\|_{\mathbf{L}^{q}(\varpi,\Omega)} \leq \left\| \mathcal{M}_{\Omega}^{\sharp} \left[\nabla \mathsf{u} \right] \right\|_{\mathbf{L}^{q}(\varpi,\Omega)}$$

- Continuity of maximal function on weighted spaces $\left\|\mathcal{M}\left[|\mathbf{f}|^{s}\right]^{1/s}\right\|_{L^{q}(\varpi,\Omega)}+\left\|\mathcal{M}\left[|g|^{s}\right]^{1/s}\right\|_{L^{q}(\varpi,\Omega)}\lesssim\|\mathbf{f}\|_{\mathbf{L}^{q}(\varpi,\Omega)}+\|g\|_{L^{q}(\varpi,\Omega)}.$
- Pressure estimate: Using the surjectivity of the Bogovskii operator[®]

$$\|\mathbf{p}\|_{L^{q}(\varpi,\Omega)} \lesssim \sup_{\mathbf{v}\in\mathbf{W}_{0}^{1,q'}(\varpi',\Omega)} \frac{\int_{\Omega} \mathbf{p}\nabla \cdot \mathbf{v} \, \mathrm{d}x}{\|\nabla \mathbf{v}\|_{\mathbf{L}^{q'}(\varpi',\Omega)}}$$

Details

L. Diening, M. Růžička, K. Schumacher, 2010.

Acosta and Durán, 2017.

Generalized Smagorisnsky models I

• Recall that the generalized Smagorinsky model read

$$-\nabla \cdot \mathbb{S}(x, \boldsymbol{\varepsilon}(\mathbf{u})) + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \mathbf{p} = -\nabla \cdot \mathbf{f},$$

where

$$\mathbb{S}(x, \boldsymbol{\varepsilon}) = 2 \left(\nu + \nu_{NL} | \boldsymbol{\varepsilon} | \operatorname{dist}(x, \partial \Omega)^{\alpha} \right) \boldsymbol{\varepsilon}, \quad \alpha \in [0, 2).$$

• For $\alpha \in (-1,2)$

 $\operatorname{dist}(x,\partial\Omega)^{\alpha} \in A_3.$

• We seek for solutions

$$\begin{split} \mathbf{u} &\in \mathbf{H}_0^1(\Omega) \cap \mathbf{W}_0^{1,3}(\mathrm{dist}(\cdot,\partial\Omega)^{\alpha},\Omega) \\ \mathbf{p} &\in L^2(\Omega)/\mathbb{R} + L^{3/2}(\mathrm{dist}(\cdot,\partial\Omega)^{-\alpha/2},\Omega)/\mathbb{R} \end{split}$$

٠

Generalized Smagorisnsky models II

Theorem ($\stackrel{\blacksquare}{\frown}$) Let $\Omega \subset \mathbb{R}^3$ be a convex polyhedron and $\alpha \in (-1,2)$. If $\mathbf{f} \in \mathbf{L}^2(\Omega) + \mathbf{L}^{3/2}(\operatorname{dist}(\cdot,\partial\Omega)^{-\alpha/2},\Omega)$

Then the generalized Smagorinksy model has a solution (u, p). If, in addition ν is sufficiently large, or f sufficiently small, then u is unique.

Proof.

Minimize the energy

$$\mathcal{J}(\mathbf{v}) = \frac{\nu}{2} \int_{\Omega} |\boldsymbol{\varepsilon}(\mathbf{v})|^2 \, \mathrm{d}x + \frac{2\nu_{NL}}{3} \int_{\Omega} \operatorname{dist}(x,\partial\Omega)^{\alpha} |\boldsymbol{\varepsilon}(\mathbf{v})|^3 \, \mathrm{d}x - \int_{\Omega} \mathbf{f} : \nabla \mathbf{v} \, \mathrm{d}x.$$

- Usual tricks for convection.
- Two pressures: unweighted inf-sup $(L^2(\Omega))$ and weighted one $(L^{3/2}(\operatorname{dist}(\cdot,\partial\Omega)^{-\alpha/2},\Omega)).$

Otárola, AJS, arXiv 2021.

Generalized Smagorisnsky models III

- Notice that $\operatorname{dist}(\cdot,\partial\Omega)^{\alpha}\notin A_q(\Omega)$, for any q, whenever $\alpha\neq 0$.
- Even without convection p is unique only if

$$\alpha \leq \frac{1}{2} \implies L^2(\Omega) \hookrightarrow L^{3/2}(\operatorname{dist}(\cdot, \partial \Omega)^{-\alpha/2}, \Omega).$$

• Slight generalization: Let $q \in (1, \infty)$, $\omega \in A_q$, and $\mathbf{f} \in \mathbf{L}^2(\Omega) + \mathbf{L}^{q'}(\varpi', \Omega)$, then

$$\begin{split} \mathbf{u} &\in \mathbf{H}_0^1(\Omega) \cap \mathbf{W}_0^{1,q}(\varpi,\Omega), \\ \mathbf{p} &\in L^2(\Omega)/\mathbb{R} + L^{q'}(\varpi',\Omega)/\mathbb{R} \end{split}$$

Other non-Newtonian fluids I

• Consider now

 $-\nabla\!\!\cdot \mathbb{S}(x,\boldsymbol{\varepsilon}(\mathbf{u})) + \nabla \mathbf{p} = -\nabla\!\!\cdot \mathbf{f}, \ \nabla\!\!\cdot \mathbf{u} = g \ \text{ in } \Omega, \qquad \mathbf{u} = \mathbf{0}, \ \text{ on } \partial\Omega,$

with \mathbb{S} "linear at infinity".

Theorem ($\stackrel{\blacksquare}{=}$) Let $\Omega \subset \mathbb{R}^3$ be a convex polyhedron, $q \in (1, \infty)$, and $\varpi \in A_q$. If

$$\mathbf{f} \in \mathbf{L}^q(\varpi, \Omega), \qquad g \in L^q(\varpi, \Omega) / \mathbb{R}$$

Then the problem has a unique solution

$$(\mathbf{u},\mathbf{p})\in \mathbf{W}_{0}^{1,q}(\varpi,\Omega)\times L^{q}(\varpi,\Omega)/\mathbb{R},$$

which satisfies the estimate

$$\|\nabla \mathsf{u}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|\mathsf{p}\|_{L^q(\varpi,\Omega)/\mathbb{R}} \lesssim 1 + \|\mathbf{f}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|g\|_{L^q(\varpi,\Omega)}.$$

Otárola, AJS, arXiv 2021.

Idea of the proof

- Follow the proof for C^1 domains \blacksquare .
- Properties of weights: If, for some $s \in (1, 2]$,

$$(\mathbf{u},\mathbf{p}) \in \mathbf{W}_0^{1,s}(\Omega) \times L^s(\Omega)/\mathbb{R}$$

then $({\bf u},{\bf p})\in {\bf H}_0^1(\tilde\varpi_j,\Omega)\times L^2(\tilde\varpi_j,\Omega)/\mathbb{R}$ with

$$\tilde{\varpi}_{j} = \min\left\{ \varpi, j\mathcal{M}\left[\nabla \mathsf{u}\right]^{s-2}, j\mathcal{M}\left[\mathsf{p}\right]^{s-2}
ight\}.$$

 $\bullet\,$ Key step: Represent (u,p) as the solution to a Stokes problem so that

$$\|\nabla \mathsf{u}\|_{\mathbf{L}^{2}(\tilde{\varpi}_{j},\Omega)} + \|\mathsf{p}\|_{L^{2}(\tilde{\varpi}_{j},\Omega)} \lesssim 1 + \|\mathbf{f}\|_{\mathbf{L}^{2}(\tilde{\varpi}_{j},\Omega)} + \|g\|_{L^{2}(\varpi_{j},\Omega)},$$

uniformly in j. Pass to the limit $j \to \infty.$ Two important points here are:

- Asymptotic linearity: This allows to "absorb" nonlinear terms.
- Convexity: There is no information on the behavior of u or p near the boundary. Thus,

$$\tilde{\varpi}_j \notin A_2(\Omega).$$

M. Bulíček, J. Burczak, S. Schwarzacher, SIMAT 2016.

Outline

Motivation

Analysis

Approximation The Stokes projection Applications A posteriori error estimation

Conclusions and open problems

Outline

Motivation

Analysis

Approximation The Stokes projection

Applications A posteriori error estimation

Conclusions and open problems

Discretization

- $\mathscr{T} = \{T\}$ is a conforming and shape regular partition of $\overline{\Omega}$ into simplices of size $h_T = \operatorname{diam}(T)$.
- Set $h_{\mathscr{T}} = \max h_T$.
- $\mathcal{V}(\mathscr{T})$ is the FE velocity space, $\mathcal{P}(\mathscr{T})$ is the pressure space and we assume that they are inf-sup stable in the classical sense.
- Since, for any $q \in (1,\infty)$ and $arpi \in A_q$

$$\begin{split} \mathcal{V}(\mathscr{T}) \times \mathcal{P}(\mathscr{T}) \subset \mathbf{W}_0^{1,\infty}(\Omega) \times L^\infty(\Omega) / \mathbb{R} \\ \subset \mathbf{W}_0^{1,q}(\varpi,\Omega) \times L^q(\varpi,\Omega) / \mathbb{R}, \end{split}$$

given

$$(\mathbf{u},\mathbf{p})\in \mathbf{W}^{1,q}_0(\varpi,\Omega)\times L^q(\varpi,\Omega)/\mathbb{R}$$

we define its Stokes projection to be the pair

$$(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}) \in \mathcal{V}(\mathscr{T}) \times \mathcal{P}(\mathscr{T})$$

such that

$$\begin{cases} a(\mathbf{u} - \mathbf{u}_{\mathscr{T}}, \mathbf{v}_{\mathscr{T}}) + \mathbf{b}_{-}(\mathbf{v}_{\mathscr{T}}, \mathbf{p} - p_{\mathscr{T}}) = 0, & \forall \mathbf{v}_{\mathscr{T}} \in \mathcal{V}(\mathscr{T}), \\ \mathbf{b}_{+}(\mathbf{u} - \mathbf{u}_{\mathscr{T}}, q_{\mathscr{T}}) = 0, & \forall q_{\mathscr{T}} \in \mathcal{P}(\mathscr{T}). \end{cases}$$

Stability²

Lemma (discrete inf-sup)

Let $\Omega \subset \mathbb{R}^d$, with d = 2,3 be Lipschitz, \mathscr{T} be quasiuniform, $q \in (1,\infty)$ and $\varpi \in A_q$. Then,

$$\|r_{\mathscr{T}}\|_{L^{q}(\varpi,\Omega)} \lesssim \sup_{\mathbf{v}_{\mathscr{T}} \in \mathcal{V}(\mathscr{T})} \frac{\int_{\Omega} \nabla \mathbf{v}_{\mathscr{T}} r_{\mathscr{T}} dx}{\|\nabla \mathbf{v}_{\mathscr{T}}\|_{\mathbf{L}^{q'}(\varpi',\Omega)}}, \quad \forall r_{\mathscr{T}} \in \mathcal{P}(\mathscr{T}),$$

where the hidden constant does not depend on $h_{\mathscr{T}}$.

Theorem (stability)

Let $\Omega \subset \mathbb{R}^d$ with d=2,3 be a convex polytope. Let $q \in (1,\infty)$ and

- $q \ge 2 \ \varpi \in A_{q/2}$,
- $q \in (1,2] \ \varpi' \in A_{q'/2}.$

If \mathscr{T} is quasiuniform, then

$$\|\nabla \mathbf{u}_{\mathscr{T}}\|_{\mathbf{L}^{q}(\varpi,\Omega)} + \|p_{\mathscr{T}}\|_{L^{q}(\varpi,\Omega)} \lesssim \|\nabla \mathbf{u}\|_{\mathbf{L}^{q}(\varpi,\Omega)} + \|\mathbf{p}\|_{L^{q}(\varpi,\Omega)},$$

where the constant is independent of $h_{\mathscr{T}}$, u, and p.

R.G. Durán, E. Otárola, AJS, Math. Comp. 2020.

Idea of the proof of stability I

- The pressure estimate follows form the discrete inf-sup condition.
- The case q < 2 follows by duality.
- The case q > 2 follows from Rubio de Francia extrapolation: If

$$T: L^2(\rho, \Omega) \to L^2(\rho, \Omega)$$

boundedly for all $\rho \in A_1$, then

$$T: L^q(\varpi, \Omega) \to L^q(\varpi, \Omega)$$

boundedly for all $\varpi \in A_{q/2}$.

• It remains then to show, for $arpi \in A_1$,

$$\|\nabla \mathbf{u}_{\mathscr{T}}\|_{\mathbf{L}^{2}(\varpi,\Omega)} \lesssim \|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\varpi,\Omega)} + \|\mathbf{p}\|_{L^{2}(\varpi,\Omega)},$$

Idea of the proof of stability II

• We use the approximate Green's matrix $\tilde{\mathbf{G}}$ and its approximation $\mathbf{G}_{\mathscr{T}}$ to represent, for $z \in T \in \mathscr{T}$

$$\partial_i \mathbf{u}_{\mathscr{T}}^j(z) = a(\mathbf{u}, \mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}) + b_-(\mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}, \mathbf{p}) + \int_{\Omega} \tilde{\delta}_z \partial_i \mathbf{u}^j \, \mathrm{d}x$$

• Thus, with $\mathbf{E} = \mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}$

$$\begin{split} \int_{\Omega} \varpi |\partial_i \mathbf{u}_{\mathscr{T}}^j|^2 \, \mathrm{d}x &\lesssim \int_{\Omega} \varpi \left[\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{E} \, \mathrm{d}x \right]^2 \, \mathrm{d}z + \int_{\Omega} \varpi \left[\int_{\Omega} \mathbf{p} \nabla \cdot \mathbf{E} \, \mathrm{d}x \right]^2 \, \mathrm{d}x \\ &+ \int_{\Omega} \varpi \left[\frac{1}{|T|} \int_T \partial_i \mathbf{u}^j \, \mathrm{d}x \right]^2 \, \mathrm{d}z. \end{split}$$

• Properties of $\mathbf{E}^{\blacksquare}$ and the fact that $\varpi \in A_1$ then yield the result.

Details

Outline

Motivation

Analysis

Approximation The Stokes projection Applications A posteriori error estimation

Conclusions and open problems

An error estimate in L^q

Corollary (²)

In the setting of the previous result, if q>2

$$\|\mathbf{u}-\mathbf{u}_{\mathscr{T}}\|_{\mathbf{L}^{q}(\Omega)} \lesssim h_{\mathscr{T}}^{1+d/q} \varpi(\mathscr{T})^{-1/q} \left(\|\nabla \mathbf{u}\|_{\mathbf{L}^{q}(\varpi,\Omega)} + \|\mathbf{p}\|_{L^{q}(\varpi,\Omega)}\right),$$

where

$$\varpi(\mathscr{T}) = \sup_{T \in \mathscr{T}} \varpi(T), \qquad \varpi(T) = \int_T \varpi \, \mathrm{d}x$$

In particular, if the forcing is $\mathbf{F}\delta_z$ we have, for any $\epsilon > 0$,

$$\|\mathbf{u}-\mathbf{u}_{\mathscr{T}}\|_{\mathbf{L}^{2}(\Omega)} \lesssim h_{\mathscr{T}}^{2-d/2-\epsilon}.$$

Proof. A duality argument.

Generalized Smagorinsky models

- Consider the generalized Smagorinsky model. $\Omega \subset \mathbb{R}^3$ is a convex polyhedron.
- No convection.
- (u, p) is the exact solution, $(u_{\mathscr{T}}, p_{\mathscr{T}})$ is its Galerkin approximation, and $(u_{\mathscr{T}}, p_{\mathscr{T}})$ is its Stokes projection.

Corollary (🖉)

Assume that \mathscr{T} is quasiuniform, and that $\alpha \in (-1, 1/2)$. Then, the pair $(\mathfrak{u}_{\mathscr{T}}, \mathfrak{p}_{\mathscr{T}})$ exists, is unique, and stable. Moreover,

$$\begin{split} \|\boldsymbol{\varepsilon}(\mathsf{u}-\mathsf{u}_{\mathscr{T}})\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\boldsymbol{\varepsilon}(\mathsf{u}-\mathsf{u}_{\mathscr{T}})\|_{\mathbf{L}^{3}(\mathrm{dist}(\cdot,\partial\Omega)^{\alpha},\Omega)}^{3} \lesssim \\ \|\boldsymbol{\varepsilon}(\mathsf{u}-\mathsf{u}_{\mathscr{T}})\|_{\mathbf{L}^{2}(\Omega)}^{2} + \|\boldsymbol{\varepsilon}(\mathsf{u}-\mathsf{u}_{\mathscr{T}})\|_{\mathbf{L}^{3}(\mathrm{dist}(\cdot,\partial\Omega)^{\alpha},\Omega)}^{3/2}. \end{split}$$

Proof.

Repeat the old arguments for the *p*-Laplacian^{**D**}. The restriction $\alpha \in (-1, 1/2)$ guarantees that $\operatorname{dist}(\cdot, \partial \Omega)^{\alpha} \in A_{3/2}$.

Glowinski, Marrocco. RAIRO 1975. Ciarlet book 1978. S.-S. Chow, Numer. Math. 1989.

Other non-Newtonian fluids

- Consider the "linear at infinity" models.
- $\Omega \subset \mathbb{R}^3$ is a convex polyhedron, $q \in (1, \infty)$, $\varpi \in A_{q/2}$, $\mathbf{f} \in \mathbf{L}^q(\varpi, \Omega)$, and g = 0.
- (u, p) is the exact solution, $(u_{\mathscr{T}}, p_{\mathscr{T}})$ is its Galerkin approximation, and $(u_{\mathscr{T}}, p_{\mathscr{T}})$ is its Stokes projection.

Theorem (²)

If \mathscr{T} is quasiuniform the pair $(u_{\mathscr{T}}, p_{\mathscr{T}})$ exists, is unique, and stable. Moreover, up to subsequences, in $\mathbf{W}_0^{1,q}(\varpi, \Omega)$

$$\mathbf{u}_{\mathscr{T}} \rightharpoonup \mathbf{u}, \qquad h_{\mathscr{T}} \rightarrow 0.$$

Proof.

- Finite dimensions \implies Existence and uniquenes.
- Stability of the Stokes projection \implies stability of $(u_{\mathscr{T}}, p_{\mathscr{T}})$.
- Convergence by compactness. We require Minty's trick, and a Fortin operator in weighted spaces (discrete inf-sup).

Outline

Motivation

Analysis

Approximation The Stokes projection Applications A posteriori error estimation

Conclusions and open problems

A posteriori error estimation

- Since we are trying to approximate rough objects we need to consider a posteriori error estimators.
- Consider the Stokes problem with forcing $\mathbf{F}\delta_z$ and $z \in \Omega$. Define

$$D_T = \max_{x \in T} |x - z|, \qquad T \in \mathscr{T}.$$

• The local error indicator, for $T\in \mathscr{T},$ is

$$\mathcal{E}_{\alpha}(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}; T)^{2} = h_{T}^{2} D_{T}^{\alpha} \| \Delta \mathbf{u}_{\mathscr{T}} - \nabla p_{\mathscr{T}} \|_{\mathbf{L}^{2}(T)}^{2} + \| \nabla \mathbf{u}_{\mathscr{T}} \|_{L^{2}(\operatorname{dist}_{z}^{\alpha}, T)}^{2} \\ + h_{T} D_{T}^{\alpha} \| \llbracket (\nabla \mathbf{u}_{\mathscr{T}} - p_{\mathscr{T}} \mathbb{I}) \cdot \mathbf{n} \rrbracket \|_{\mathbf{L}^{2}(\partial T \setminus \partial \Omega)}^{2} + h_{T}^{\alpha+2-d} |\mathbf{F}|^{2} \# (T \cap \{z\}),$$

where, as usual, ${\bf n}$ is the normal to ∂T and $[\![w]\!]$ denotes the jump of w.

• The error estimator, as expected, is then

$$\mathcal{E}_{\alpha}(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}, \mathscr{T}) = \|\{\mathcal{E}_{\alpha}(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}; T)\}\|_{\ell^{2}(\mathscr{T})}.$$

A posteriori error estimation: Reliability

From now on $(\mathbf{e}_u, e_p) = (\mathbf{u} - \mathbf{u}_{\mathscr{T}}, \mathbf{p} - p_{\mathscr{T}})$. We have Theorem (²) If $\alpha \in (d-2, d)$ then

$$\|\nabla \mathbf{e}_u\|_{\mathbf{L}^2(\operatorname{dist}_z^{\alpha},\Omega)} + \|\mathbf{e}_p\|_{L^2(\operatorname{dist}_z^{\alpha},\Omega)} \lesssim \mathcal{E}_{\alpha}(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}, \mathscr{T}),$$

where the hidden constant is independent of the continuous and discrete solutions, $h_{\mathcal{T}}$ and $\#\mathcal{T}$.

Proof.

- Usual "disintegration by parts argument" + Galerkin orthogonality.
- The existence of an interpolation operator $\Pi_{\mathscr{T}} : \mathbf{L}^1(\Omega) \to \mathcal{V}(\mathscr{T})$ that plays nice with weighted norms.

• A bound on
$$\|\delta_z\|'_{H^1(\operatorname{dist}_z^{-\alpha},T)}$$
 for $z \in T^{\textcircled{a}}$.

R.H. Nochetto, E. Otárola and AJS. Numer. Math. 2016.

A. Allendes, E. Otárola, AJS. CMAME 2019.

J.P. Agnelli, E. Garau, P. Morin. M2AN 2014.

A posteriori error estimation: Local efficiency I

Theorem (\blacksquare) If $\alpha \in (d-2,d)$ and $T \in \mathscr{T}$ then $\mathcal{E}_{\alpha}(\mathbf{u}_{\mathscr{T}}, p_{\mathscr{T}}; T)^2 \lesssim \|\nabla \mathbf{e}_u\|_{\mathbf{L}^2(\operatorname{dist}^{\alpha}, \mathcal{N}_T)}^2 + \|e_p\|_{L^2(\operatorname{dist}^{\alpha}, \mathcal{N}_T)}^2$,

where \mathcal{N}_T is the patch of T.

Proof (Ingredients)

- If $z \notin T$, the volume and jump terms are controlled via usual bubble function arguments.
- If $z \in T$:
 - The term $h_T^{\alpha+2-d}|\mathbf{F}|^2 \#(T \cap \{z\})$ is controlled via a function $\eta \in W_0^{1,\infty}(\Omega)$ such that

 $\eta(z) = 1$, $\operatorname{supp}(\eta) \subset \mathcal{N}_T$, $\|\nabla^k \eta\|_{L^{\infty}(\Omega)} = h_T^{-k}$, k = 0, 1,

and testing the error equation with $(\mathbf{F}\eta, 0)$.

A. Allendes, E. Otárola, AJS. CMAME 2019.

Local efficiency II

Proof (continued)

- If $z \in T^{\textcircled{a}}$:
 - $\circ~$ The volume term uses a bubble function φ_T such that $0 \leq \varphi_T \leq 1$ and \Box

$$\varphi_T(z) = 0, \quad |T| \lesssim \int_T \varphi_T, \quad |\varphi_T| \lesssim h_T^{-1}$$

and $\operatorname{supp} \varphi_T \subset \overline{T^\star}$, where T^\star is a subsimplex of T.

Test the error equation with $(\varphi_T(\Delta \mathbf{u}_{\mathscr{T}} - \nabla p_{\mathscr{T}}), 0)$

 $\circ~$ The jump term uses a bubble function φ_S such that $0\leq \varphi_S\leq 1$ and

$$\varphi_S(z) = 0, \quad |S| \lesssim \int_S \varphi_S, \quad |\nabla \varphi_S| \lesssim h_T^{-1/2} |S|^{1/2}$$

and $\operatorname{supp}\varphi_S\subset\overline{T_1^\star\cup T_2^\star},$ where T_i^\star are subsimplices of T_i with $S=\bar{T}_1\cap\bar{T}_2.$

Test the error equation with $(\varphi_S \llbracket (\nabla \mathbf{u}_{\mathscr{T}} - p_{\mathscr{T}} \mathbb{I}) \cdot \mathbf{n} \rrbracket, 0)$

U

J.P. Agnelli, E. Garau, P. Morin. M2AN, 2014.

Local efficiency III

Figure: Support the bubble functions η_T , φ_T and φ_S .

Outline

Motivation

Analysis

Approximation

Conclusions and open problems

Conclusions

- We allow non-standard behavior, either in the forcing or constitutive law by considering weighted spaces.
- Stability of the Stokes projection on weighted spaces.
- A priori and a posteriori error analysis for linear and some nonlinear[®] models.
- Other models: Bousinessq², ...

A. Allendes, E. Otárola, AJS, M3AN 2021.

Open questions

Analysis

- Navier Stokes for d = 3? It would require $q \neq 2$.
- Other models?

Approximation

- Stability of the Stokes projection:
 - Non quasi-uniform meshes?
 - Non convex domains?
 - $\varpi \notin A_{q/2}$?
- Error analysis for other models?
- Pseudo norm estimates for Smagorinsky?[●]

J.W. Barrett, W.B. Liu, Math. Comp. 1993.

Thank You!

Well-posedness in Lipschitz domains I

• Gårding-like inequality: If $(u, p) \in H^1_0(\varpi, \Omega) \times L^2(\varpi, \Omega)/\mathbb{R}$ is a solution, then we have

 $\|\nabla \mathsf{u}\|_{\mathbf{L}^2(\varpi,\Omega)} + \|\mathsf{p}\|_{L^2(\varpi,\Omega)/\mathbb{R}} \lesssim \|\mathbf{f}\|_{\mathbf{H}^1_0(\varpi^{-1},\Omega)'} + \|\mathsf{u}\|_{\mathbf{L}^2(\mathcal{G})} + \|\mathsf{p}\|_{H^{-1}(\mathcal{G})}.$

- Introduce a partition $\psi_i, \psi_\partial \in C_0^{\infty}(\Omega)$, $\psi_i + \psi_\partial \equiv 1$ with $\psi_i \equiv 1$ near $\Omega \setminus \mathcal{G}$ and $\psi_i \equiv 0$ near $\partial \Omega$. $\Omega_i = \operatorname{supp} \psi_i$ is C^1 .
- $u_i = u\psi_i$ and $p_i = p\psi_i$ are solutions on Ω_i , a C^1 domain, \implies use the weighted result for C^1 domains.
- $\mathbf{u}_{\partial} = \mathbf{u}\psi_{\partial}$ and $\mathbf{p}_{\partial} = \mathbf{p}\psi_{\partial}$ are solutions on \mathcal{G} , a Lipschitz domain, \implies use the unweighted result for Lipschitz domains.

Well-posedness in Lipschitz domains II

- Uniqueness: From this it follows that, if $\mathbf{f}\equiv\mathbf{0},$ then $u\equiv\mathbf{0}$ and $p\equiv0.$
- A priori estimate: Using the usual ADN contradiction argument we get that, if $(u, p) \in \mathbf{H}_0^1(\varpi, \Omega) \times L^2(\varpi, \Omega) / \mathbb{R}$ is a solution,

$$\|\nabla \mathsf{u}\|_{\mathbf{L}^{2}(\varpi,\Omega)} + \|\mathsf{p}\|_{L^{2}(\varpi,\Omega)/\mathbb{R}} \lesssim \|\mathbf{f}\|_{\mathbf{H}^{1}_{0}(\varpi^{-1},\Omega)'}.$$

• *Existence*: By approximation, $(\mathbf{u}_k, \mathbf{p}_k) \in \mathbf{H}_0^1(\varpi, \Omega) \times L^2(\varpi, \Omega)/\mathbb{R}$ is a solution for $\mathbf{f}_k \in \mathbf{C}_0^\infty(\Omega)$, such that $\mathbf{f}_k \to \mathbf{f}$ in $\mathbf{H}_0^1(\varpi^{-1}, \Omega)'$. The a priori estimates allow us to pass to the limit.

◀ Back

Well-posedness in convex polyhedra I

• Let $z \in \Omega$ and Q a cube centered in z. We decompose

$$\mathbf{f} = \mathbf{f}_1 + \mathbf{f}_2, \quad \mathbf{f}_1 = \mathbf{f}\chi_{2Q}, \qquad g = g_1 + g_2, \quad \operatorname{supp} g_1 = 2Q.$$

The decomposition of g is a Bogovskiĭ decomposition, i.e., it preserves the zero averages.

- (u^i, p^i) solves the Stokes problem with data $(-\nabla \mathbf{f}_i, g_i)$.
- We estimate the oscillation of u, i.e., $\mathcal{M}^{\sharp}_{\Omega}\left[
 abla \mathsf{u}
 ight](z)$

$$\mathcal{M}_{\Omega}^{\sharp} \left[\nabla \mathbf{u} \right](z) \approx \int_{Q} \left| \nabla \mathbf{u}(x) - \nabla \mathbf{u}^{2}(z) \right| \mathrm{d}x$$
$$\leq \int_{Q} \left| \nabla \mathbf{u}^{1}(x) \right| \mathrm{d}x + \int_{Q} \left| \nabla \mathbf{u}^{2}(x) - \nabla \mathbf{u}^{2}(z) \right| \mathrm{d}x = N + F.$$

Well-posedness in convex polyhedra II

For N the data is supported on a cube. Since Ω is a convex polyhedron, for s > 1[●],

$$N \lesssim \frac{1}{|Q|^{1/s}} \|\nabla \mathsf{u}^1\|_{\mathbf{L}^s(\Omega)} \lesssim \frac{1}{|Q|^{1/s}} \left(\|\mathbf{f}_1\|_{\mathbf{L}^s(2Q)} + \|g\|_{L^s(2Q)} \right)$$

$$\lesssim \mathcal{M} \left[|\mathbf{f}|^s \right] (z)^{1/s} + \mathcal{M} \left[|g|^s (z)^{1/s} \right].$$

• For F we use the mixed derivative estimates

$$F \leq \frac{\ell(Q)^{\sigma}}{|Q|} \int_{Q} \int_{2Q^c} \frac{|\mathbf{f}(y)| + |g_2(y)|}{|z - y|^{3 + \sigma}} \,\mathrm{d}y \,\mathrm{d}x \lesssim \mathcal{M}\left[|\mathbf{f}|\right](z) + \mathcal{M}\left[|g|\right](z).$$

In conclusion

 $\mathcal{M}_{\Omega}^{\sharp}\left[\nabla \mathbf{u}\right](z) \lesssim \mathcal{M}\left[|\mathbf{f}|^{s}\right](z)^{1/s} + \mathcal{M}\left[|g|^{s}\right](z)^{1/s}.$

• By simple scaling

$$\int_{\Omega} \varpi \left(\frac{1}{|\Omega|} \int_{\Omega} \nabla \mathsf{u} \, \mathrm{d}x \right)^q \lesssim \|\mathbf{f}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|g\|_{L^q(\varpi,\Omega)}.$$

Well-posedness in convex polyhedra III

• The weighted Fefferman-Stein inequality[₽] implies

$$\begin{split} \left\| \nabla \mathsf{u} - \frac{1}{|\Omega|} \int_{\Omega} \nabla \mathsf{u} \, \mathrm{d}x \right\|_{\mathbf{L}^{q}(\varpi,\Omega)} &\lesssim \left\| \mathcal{M}_{\Omega}^{\sharp} \left[\nabla \mathsf{u} \right] \|_{\mathbf{L}^{q}(\varpi,\Omega)} \\ &\lesssim \left\| \mathcal{M} \left[|\mathbf{f}|^{s} \right]^{1/s} \right\|_{\mathbf{L}^{q}(\varpi,\Omega)} + \left\| \mathcal{M} \left[|g|^{s} \right]^{1/s} \right\|_{L^{q}(\varpi,\Omega)}. \end{split}$$

• The continuity of the maximal function on weighted spaces finally gives

$$\|
abla \mathsf{u}\|_{\mathbf{L}^q(arpi,\Omega)} \lesssim \|\mathbf{f}\|_{\mathbf{L}^q(arpi,\Omega)} + \|g\|_{L^q(arpi,\Omega)}$$

• The properties of the Bogovskiĭ operator on weighted spaces[®] imply

$$\|\mathbf{p}\|_{L^{q}(\varpi,\Omega)} \lesssim \sup_{\mathbf{v} \in \mathbf{W}_{0}^{1,q'}(\varpi',\Omega)} \frac{\int_{\Omega} \mathbf{p} \nabla \cdot \mathbf{v} \, \mathrm{d}x}{\|\nabla \mathbf{v}\|_{\mathbf{L}^{q'}(\varpi',\Omega)}}$$

meaning

$$\|\mathbf{p}\|_{L^q(\varpi,\Omega)} \lesssim \|\mathbf{f}\|_{\mathbf{L}^q(\varpi,\Omega)} + \|g\|_{L^q(\varpi,\Omega)}.$$

Acosta and Durán, 2017.

L. Diening, M. Růžička, K. Schumacher

Stability of the Stokes projection I

• Approximate Dirac delta: $z \in T \in \mathscr{T}$, then $\tilde{\delta}_z \in C_0^\infty(T)$ with

$$\int_{\Omega} \tilde{\delta}_z \, \mathrm{d}x = 1, \quad \|\tilde{\delta}_z\|_{L^{\infty}(\Omega)} \lesssim h_T^{-d}, \quad \int_{\Omega} \tilde{\delta}_z \mathbf{v}_{\mathscr{T}} \, \mathrm{d}x = \mathbf{v}_{\mathscr{T}}(z), \, \forall \mathbf{v}_{\mathscr{T}} \in \mathcal{V}(\mathscr{T}).$$

• The regularized (derivative of the) Green's function:

$$-\Delta \tilde{\mathbf{G}} + \nabla \tilde{\lambda} = -\partial_i \tilde{\delta}_z \mathbf{e}_j.$$

- The pair $(\mathbf{G}_{\mathscr{T}}, \lambda_{\mathscr{T}}) \in \mathcal{V}(\mathscr{T}) \times \mathcal{P}(\mathscr{T})$ is its Galerkin approximation.
- Recall that \blacksquare , there is $\lambda \in (0,1)$,

$$\sup_{z \in \Omega} \|\sigma_y^{\mu/2} \nabla(\tilde{\mathbf{G}} - \mathbf{G}_{\mathscr{T}})\|_{\mathbf{L}^2(\Omega)} \lesssim h^{\lambda/2}, \quad \mu = d + \lambda$$

where the regularized distance[®] is

$$\sigma_y(x) = \left(|x - y|^2 + (\kappa h_{\mathscr{T}})^2\right)^{1/2}$$

V. Girault, R.H. Nochetto, R. Scott, Num. Math. 2015.

■ F. Natterer, 1976. J.Nitchse, 1977. ...

Stability of the Stokes projection II

• We have

$$\begin{aligned} a(\mathbf{u}, \tilde{\mathbf{G}}) + b_{-}(\mathbf{u}, \tilde{\lambda}) &= \int_{\Omega} \tilde{\delta}_{z} \partial_{i} \mathbf{u}^{j} \, \mathrm{d}x \\ a(\mathbf{u}_{\mathscr{T}}, \mathbf{G}_{\mathscr{T}}) + b_{-}(\mathbf{u}_{\mathscr{T}}, \lambda_{\mathscr{T}}) &= \partial_{i} \mathbf{u}_{\mathscr{T}}^{j}(z) \\ a(\mathbf{u}_{\mathscr{T}}, \tilde{\mathbf{G}} - \mathbf{G}_{\mathscr{T}}) + b_{-}(\mathbf{u}_{\mathscr{T}}, \tilde{\lambda} - \lambda_{\mathscr{T}}) &= 0 \\ a(\mathbf{u} - \mathbf{u}_{\mathscr{T}}, \mathbf{G}_{\mathscr{T}}) + b_{-}(\mathbf{G}_{\mathscr{T}}, \mathbf{p} - p_{\mathscr{T}}) &= 0. \end{aligned}$$

• Using that u and $\tilde{\mathbf{G}}$ are solenoidal, that $\mathbf{u}_{\mathscr{T}}$ and $\mathbf{G}_{\mathscr{T}}$ are discretely solenoidal, and that a is symmetric we eventually reach

$$\partial_i \mathbf{u}_{\mathscr{T}}^j(z) = a(\mathbf{u}, \mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}) + b_-(\mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}, \mathbf{p}) + \int_{\Omega} \tilde{\delta}_z \partial_i \mathbf{u}^j \, \mathrm{d}x$$

• Thus, with $\mathbf{E} = \mathbf{G}_{\mathscr{T}} - \tilde{\mathbf{G}}$

$$\begin{split} \int_{\Omega} \varpi |\partial_i \mathbf{u}_{\mathscr{T}}^j|^2 \, \mathrm{d}x &\lesssim \int_{\Omega} \varpi \left[\int_{\Omega} \nabla \mathbf{u} : \nabla \mathbf{E} \, \mathrm{d}x \right]^2 \, \mathrm{d}z + \int_{\Omega} \varpi \left[\int_{\Omega} \mathbf{p} \nabla \cdot \mathbf{E} \, \mathrm{d}x \right]^2 \, \mathrm{d}z \\ &+ \int_{\Omega} \varpi \left[\frac{1}{|T|} \int_T \partial_i \mathbf{u}^j \, \mathrm{d}x \right]^2 \, \mathrm{d}z \\ &= I + II + III. \end{split}$$

Stability of the Stokes projection III

• By continuity of the maximal function on weighted spaces

$$III \lesssim \int_{\Omega} \varpi \left| \mathcal{M} \left[\partial_{i} \mathsf{u}^{j} \right] \right|^{2} \, \mathrm{d}z \lesssim \| \partial_{i} \mathsf{u}^{j} \|_{L^{2}(\varpi, \Omega)}^{2}.$$

• Using the regularized distance

$$I + II \lesssim \int_{\Omega} \varpi \left(\int_{\Omega} \sigma_z^{d+\lambda} |\nabla \mathbf{E}|^2 \, \mathrm{d}x \right) \left(\int_{\Omega} \frac{|\nabla \mathbf{u}|^2 + |\mathbf{p}|^2}{\sigma_z^{d+\lambda}} \, \mathrm{d}x \right) \, \mathrm{d}z$$

We saw that

$$\int_{\Omega} \sigma_z^{d+\lambda} |\nabla \mathbf{E}|^2 \, \mathrm{d}x \lesssim h_{\mathscr{T}}^{\lambda}$$

• A dyadic decomposition shows that

$$h_{\mathscr{T}}^{\lambda} \int_{\Omega} \frac{\varpi(z)}{\sigma_z^{d+\lambda}(x)} \, \mathrm{d}z \lesssim \mathcal{M}[\varpi](x) \underset{\sim}{\lesssim} \varpi(x)$$

where the last step requires $\varpi \in A_1$.

In conclusion

$$I + II \lesssim \int_{\Omega} \varpi \left(|\nabla \mathbf{u}|^2 + |\mathbf{p}|^2 \right) \, \mathrm{d}x.$$

