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Graphs

Definition

A graph Gd = (V, E) is a set of vertices V and edges E .

Assumptions

V and E are at most countable, and Gd is connected

Gd is locally finite (vertex degree: deg(v) <∞, v ∈ V)

Aleksey Kostenko Laplacians on Graphs 2 / 27



Weighted Laplacians on Graphs

• The combinatorial Laplacian

(Lcombf )(v) =
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u).

Lcomb ∼ the adjacency matrix (Spectral Graph Theory; @8ECM:MS-46).

• The normalized Laplacian (physical Laplacian or Markov operator)

(Lnormf )(v) =
1

deg(v)

∑
u∼v

f (v)− f (u) = f (v)− 1

deg(v)

∑
u∼v

f (u).

Lnorm generates a simple random walk on Gd :

Definition

G a finitely generated group, S a finite generating set, S = S−1.

The Cayley graph C (G,S) is the graph with V = G and x ∼ y ⇔ x−1y ∈ S .

H. Kesten, Symmetric random walks on groups, Trans. AMS (1958).

WARNING: On Cayley graphs, deg ≡ #S and hence Lcomb = #S · Lnorm.
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Weighted Laplacians on Graphs

• The combinatorial Laplacian

(Lcombf )(v) =
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u).

Lcomb ∼ the adjacency matrix (Spectral Graph Theory; @8ECM:MS-46).

• The normalized Laplacian (physical Laplacian or Markov operator)

(Lnormf )(v) =
1

deg(v)

∑
u∼v

f (v)− f (u) = f (v)− 1

deg(v)

∑
u∼v

f (u).

Lnorm generates a simple random walk on Gd .

• Discrete-time Markov chain: b : E → R>0, set mb(v) =
∑

u∼v b(eu,v ). Then

(Lbf )(v) =
1

mb(v)

∑
u∼v

b(eu,v )(f (v)− f (u))

generates a discrete time random walk: Prob(Xn+1 = u |Xn = v) =
b(eu,v )∑
u∼v b(eu,v ) .
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Weighted Laplacians on Graphs

(V,m; b) with m : V → (0,∞) a vertex weight, and b : V × V → [0,∞) s.t.

symmetric, b(u, v) = b(v , u), and vanishing diagonal, b(v , v) = 0,

locally finite: #{u | b(v , u) > 0} <∞,

is called a weighted graph over (V,m).

The (formal) Laplacian L = LV,m,b is

(Lf )(v) =
1

m(v)

∑
u∈V

b(u, v)(f (v)− f (u)), v ∈ V.

WARNING! ”formal” since L might be unbounded!

Combinatorial Laplacian:

Take L = Lcomb, that is, m ≡ 1 on V and b = adjacency matrix.

Lcomb is bounded exactly when Gd has bounded geometry (sup deg <∞)
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Weighted Laplacians on Graphs

(V,m; b) with m : V → (0,∞) a vertex weight, and b : V × V → [0,∞) s.t.

symmetric, b(u, v) = b(v , u), and vanishing diagonal, b(v , v) = 0,

locally finite: #{u | b(v , u) > 0} <∞,

is called a weighted graph over (V,m).

The (formal) Laplacian L = LV,m,b is

(Lf )(v) =
1

m(v)

∑
u∈V

b(u, v)(f (v)− f (u)), v ∈ V.

Dirichlet forms on discrete measure spaces

In `2(V;m), the energy form (at least on f ∈ Cc(V))

q[f ] = 〈Lf , f 〉`2(V;m) = 1
2

∑
u,v b(u, v)|f (v)− f (u)|2.

Dirichlet form is a closed symmetric Markovian form on an L2 space:

Beurling–Deny conditions: q[|f |] ≤ q[f ] and q[0 ∨ f ∧ 1] ≤ q[f ]
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Weighted Laplacians on Graphs

(V,m; b) with m : V → (0,∞) a vertex weight, and b : V × V → [0,∞) s.t.

symmetric, b(u, v) = b(v , u), and vanishing diagonal, b(v , v) = 0,

locally finite: #{u | b(v , u) > 0} <∞,

is called a weighted graph over (V,m).

The (formal) Laplacian L = LV,m,b is

(Lf )(v) =
1

m(v)

∑
u∈V

b(u, v)(f (v)− f (u)), v ∈ V.

Dirichlet forms on discrete measure spaces

In `2(V;m), the energy form (at least on f ∈ Cc(V))

q[f ] = 〈Lf , f 〉`2(V;m) = 1
2

∑
u,v b(u, v)|f (v)− f (u)|2.

“Dirichlet forms on discrete measure spaces are weighted graphs”

M. Keller and D. Lenz// Crelle’s J. (2012).
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Gd = (V, E) is a connected, locally finite graph.

If every edge e ∈ E is assigned with a positive finite length |e| ∈ (0,∞), then

G = (V, E , | · |) is called a metric graph

Metric Graph as ...
a simplicial 1-complex,

a topological space, which looks locally like a star-graph

a length space when equipped with a natural (“geodesic”) path metric – a
distance between two points is the arc-length of “shortest” path,
a (real) 1D manifold with singularities: vertices of degree ≥ 3 are
“branching” points; degree = 1 are “boundary” points,
a non-Archimedean analog of Riemann surfaces

a tropical curve or a degeneration of a smooth family of Riemann surfaces
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Gd = (V, E) is a connected, locally finite graph.

If every edge e ∈ E is assigned with a positive finite length |e| ∈ (0,∞), then

G = (V, E , | · |) is called a metric graph

Definition

Quantum graphs are Laplacians on (weighted) metric graphs.

Applications: “thin wire materials” in physics/biology/...

lungs ≈ binary tree of 20-23 generations
approx. 2× 106 − 1.6× 107 vertices

Cast of human lungs (photo by E. Weibel)

P. Joly, M. Kachanovska, and A. Semin, Netw. Heterog. Media (2019)
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Gd = (V, E) is a connected, locally finite graph.

If every edge e ∈ E is assigned with a positive finite length |e| ∈ (0,∞), then

G = (V, E , | · |) is called a metric graph

Definition

Quantum graphs are Laplacians on (weighted) metric graphs.

Further applications:

Quantum ergodicity (Anantharaman, Berkolaiko, Colin de Verdière, . . . )

Counting spectral measures as 1D Fourier quasi-crystals
(Kurasov–Sarnak’2020)

. . . @8ECM: MS-26, MS-29, MS-40, MS-48, . . .

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer.
Math. Soc., 2013
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Laplacians on Metric Graphs

Given G = (V, E , | · |), identify each edge e ∈ E with Ie = [0, |e|]. Let

µ, ν : E → (0,∞) be edge weights, (G, µ, ν) is a weighted metric graph.

L2(G;µ) ∼=
⊕
e∈E

L2(e;µe), µe(dx) := µedxe on e = Ie .

Kirchhoff Laplacian (weighted “Laplace–Beltrami” on G)

∆ acts as 1
µe

d
dxe
νe

d
dxe

on the interior of G, and boundary conditions:

Kirchhoff conditions:

{
f is continuous at v∑

e∈Ev νe∂e f (v) = 0
, v ∈ V.

deg(v) = 1: Kirchhoff = Neumann at v , ∂e f (v) = 0,

deg(v) = 2: Kirchhoff = continuity of f and its (weighted) derivative at v
(“removable” singularity/inessential vertex)
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Laplacians on Metric Graphs

Given G = (V, E , | · |), identify each edge e ∈ E with Ie = [0, |e|]. Let

µ, ν : E → (0,∞) be edge weights, (G, µ, ν) is a weighted metric graph.

L2(G;µ) ∼=
⊕
e∈E

L2(e;µe), µe(dx) := µedxe on e = Ie .

Kirchhoff Laplacian (weighted “Laplace–Beltrami” on G)

∆ acts as 1
µe

d
dxe
νe

d
dxe

on the interior of G, and boundary conditions:

Kirchhoff conditions:

{
f is continuous at v∑

e∈Ev νe∂e f (v) = 0
, v ∈ V.

The maximal Kirchhoff Laplacian ∆Kir is defined in L2(G;µ) on the domain

dom(∆Kir) =
{
f ∈ H2(G \ V)| (Kirchhoff) on V

}
.

The minimal Kirchhoff Laplacian ∆Kir,0 is the L2 closure of

∆ � dom(∆Kir) ∩ L2
c(G).
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Harmonic Functions of Graphs

f is harmonic on (G, µ, ν) if ∆f = 0 on G, i.e., f is edgewise affine and Kirchhoff
conditions. By continuity, f can be identified with f |V and its slopes at v ∈ V∑

u∼v
νeu,v

f (u)− f (v)

|eu,v |
= 0.

Definition: (G, µ, ν) has finite intrinsic size if supe∈E |e|
√

µe

νe
<∞.

Moreover, f ∈ L2(G;µ) if and only if f |V ∈ `2(V;m), where

m(v) =
∑
e∼v

µe |e|.

Define a graph Laplacian L = L(G, µ, ν)

(Lf )(v) =
1

m(v)

∑
u∼v

νeu,v
|eu,v |

(f (u)− f (v))

L and ∆ have the same harmonic functions
If (G, µ, ν) has finite intrinsic size, then ker (∆Kir) ∼= ker (L(G, µ, ν))
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Connections between discrete and metric graphs

Theorem (discrete vs continuous)

The Laplacians ∆Kir and L = L(G, µ, ν) share many basic

Spectral properties (Exner-AK-Malamud-Neidhardt’18, AK–Nicolussi’21)

Self-adjoint uniqueness (N. Nicolussi @8ECM)
Positive spectral gap
Ultracontractivity estimates
. . .

Parabolic properties
Markovian uniqueness (AK–Nicolussi’21) (N. Nicolussi @8ECM)
Recurrence/transience (Haeseler’14, AK–Nicolussi’21)
Stochastic completeness (Folz’14, . . . ,) (X. Huang @8ECM)
...

N. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. (1985)

P. Exner, A. Kostenko, M. Malamud, H. Neidhardt, Spectral theory of infinite
quantum graphs, Ann. Henri Poincaré (2018)
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Analysis on weighted graphs

A lot of parallels between analysis on manifolds and analysis on graphs.

However, what is the right choice of a metric on a graph?

E.B. Davies, Analysis on graphs and noncommutative geometry, JFA (1993)

Combinatorial distance (a.k.a. word metric on groups) a lot of controversy!

Definition (Frank, Lenz & Wingert, J. Funct. Anal. (2014))

A metric % : V × V → [0,∞) is called intrinsic w.r.t. (V,m; b) if∑
u∈V

b(u, v)%(u, v)2 ≤ m(v), v ∈ V.

Examples

b = the adjacency matrix, %comb the combinatorial distance. Then:∑
b(u, v)%comb(u, v)2 =

∑
u∼v 1 = deg(v).

• %comb is intrinsic for m = deg, i.e., for Lnorm.

• Not intrinsic for Lcomb! However, equivalent to intrinsic ⇔ sup deg <∞!
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Analysis on weighted graphs

A lot of parallels between analysis on manifolds and analysis on graphs.

However, what is the right choice of a metric on a graph?

E.B. Davies, Analysis on graphs and noncommutative geometry, JFA (1993)

Combinatorial distance (a.k.a. word metric on groups) a lot of controversy!

Definition (Frank, Lenz & Wingert, J. Funct. Anal. (2014))

A metric % : V × V → [0,∞) is called intrinsic w.r.t. (V,m; b) if∑
u∈V

b(u, v)%(u, v)2 ≤ m(v), v ∈ V.

Intrinsic metrics recover many results from manifolds for graphs!

M. Keller, D. Lenz, & R. Wojciechowski, Graphs and Discrete Dirichlet
Spaces, in print, Springer, 2021.

But: Each (V,m; b) has infinitely many intrinsic metrics! No “maximal” metric..

Another problem: how to construct an intrinsic metric?
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Intrinsic metric for Kirchhoff Laplacians

Quadratic form (Energy form/Dirichlet integral)

Q[f ] :=

∫
G
|∇f |2ν(dx)

(
= 〈∆f , f 〉L2(µ) for f ∈ dom(∆Kir,0)

)
It is a strongly local Dirichlet form in L2(G;µ).

Background: To each strongly local Dirichlet form, one can associate
its intrinsic metric ⇒ generalize results from Riemannian manifolds!

Definition (intrinsic metric for (G, µ, ν))

%intr(x , y) = sup
{
f (x)− f (y) | f ∈ Dloc

}
, x , y ∈ G,

Dloc =
{
f ∈ H1

loc(G)
∣∣ ν(x)|∇f (x)|2 ≤ µ(x) for a.e. x ∈ G

}
.

K.-T. Sturm, Analysis on local Dirichlet spaces I – III, (1994–1996).
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Intrinsic metric for Kirchhoff Laplacians

Quadratic form (Energy form/Dirichlet integral)

Q[f ] :=

∫
G
|∇f |2ν(dx)

(
= 〈∆f , f 〉L2(µ) for f ∈ dom(∆Kir,0)

)
It is a strongly local Dirichlet form in L2(G;µ).

Since both µ, ν are edgewise constant,

%intr(x , y) = %η(x , y) := inf
P

∫
P
η(dx) = inf

P

∫
P

√
µ

ν
dx .

If (V,m; b) is the graph associated with (G, µ, ν), then the induced metric

%V(u, v) := %η(u, v), u, v ∈ V
is intrinsic w.r.t. (V,m; b)!

Manifolds → local Dirichlet forms → discrete measure spaces
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From discrete graphs to metric graphs?

A cable system for (V,m; b) is a weighted metric graph (G, µ, ν) s.t.

LV,m,b = L(G, µ, ν),

i.e., the previous construction gives the discrete Laplacian LV,m,b.

Theorem

(i) Every locally finite (V,m; b) has a cable system.

(ii) For every (V,m; b) equipped with a finite jump size intrinsic metric % there

is finite intrinsic size cable system such that % = %V = %η|V×V .

(Finite jump size = no arbitrarily long edge w.r.t. %)

WARNING: Upon some normalization (e.g., canonical CS), (almost!) a

bijection between cable systems and intrinsic path metrics for (V,m; b)

To construct an intrinsic metric ∼= To construct a cable system

M.Folz, Volume growth and stochastic completeness of graphs, TAMS(2014)
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Quasi-isometries

Definition

A map φ : X1 → X2 between two metric spaces (X1, %1) and (X2, %2) is called a
quasi-isometry if there are a, b,R > 0 s.t.

a−1(%1(x , y)− b) ≤ %2(φ(x), φ(y)) ≤ a(%1(x , y) + b),

for all x , y ∈ X1 and, moreover,
⋃

x∈X1
BR(φ(x); %2) = X2.

Examples (The Švarc–Milnor Lemma)

• Cayley graph of π1(M) and the universal cover M̃ of a compact manifold M,

• Cayley graph and the corresponding equilateral metric graph.

Corollary

Let (G, µ, ν) be a cable system for (V,m; b). The metric spaces (G, %η) and

(V, %V) are quasi-isometric if and only if (G, µ, ν) has finite intrinsic size.

For (V,m; b) with an intrinsic metric %, a cable system is a quasi-isometric
length space with the same combinatorial structure

⇒ connections between their large scale/global properties!
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

On (G, µ, ν) we introduced Laplacians ∆Kir and ∆Kir,0 = ∆Kir � Cc
‖·‖L2(G;µ) .

∆Kir is self-adjoint ⇔ ∆Kir,0 = ∆Kir (⇔ L2-uniqueness for Schrödinger/Wave eq.)

Problem: Do we need a boundary condition at “infinity”?

When ∆Kir,0 = ∆Kir?

von Neumann formulas

dom(∆Kir) = dom(∆D)u ker (∆Kir + λ), λ ∈ C \ σ(−∆D).

∆D is the Dirichlet Laplacian (the Friedrichs extension of ∆Kir,0)

Since ker (∆Kir − λ) = L2 λ-harmonic functions and σ(−∆D) ⊆ [0,∞):

self-adjoint uniqueness ⇔ no L2 harmonic f-ns (λ-harmonic with λ > 0),

description of self-adjoint extns = description of L2 λ-harmonic functions!

Graph Boundaries

Poisson = bounded harmonic; Martin = positive harmonic, . . .
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs

If (G, %η) is complete, then ∆Kir,0 = ∆Kir.

For manifolds: Cauchy boundary ∂CM = M \M; completeness is ∂CM = ∅
completeness ⇒ self-adjoint uniqueness (Gaffney’54; Roelcke’60; Chernoff’73).

Proof: Assume the converse: ∃ u ∈ L2(G;µ) such that u 6= 0 is λ-harmonic,
λ > 0. However, |u| ≥ 0 is subharmonic.

By a version of Yau’s Lp-Liouville theorem for strongly local Dirichlet forms,

|u| ≡ 0 if (G, %η) is complete. Contradiction. �

K.-T. Sturm, Analysis on local Dirichlet spaces I, Crelle’s J. (1994).

• Stability under semi-bounded perturbations

(“completeness w.r.t. intrinsic metric+semiboundedness ⇒ quantum compl.”)

WARNING: Self-adjointness is open for (Gd , | · |, µ, ν) even if Gd = Z2...
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs

If (G, %η) is complete, then ∆Kir,0 = ∆Kir.

For manifolds: Cauchy boundary ∂CM = M \M; completeness is ∂CM = ∅
completeness ⇒ self-adjoint uniqueness (Gaffney’54; Roelcke’60; Chernoff’73).

Corollary (Gaffney-type Theorem on graphs)

If % is a path metric, intrinsic w.r.t. (V,m; b), and (V, %) is complete, then
LV,m,b is self-adjoint in `2(V;m).

Proof: ∃ cable system (G, µ, ν) s.t. % = %η on V; (G, %η) is complete if (V, %) is

complete (e.g., by the Hopf–Rinow Theorem for length spaces, then by

quasi-isometry to weighted graphs from metric graphs). �

X. Huang, M. Keller, J. Masamune and R. Wojciechowski, A note on self-adjoint

extensions of the Laplacian on weighted graphs, J. Funct. Anal. (2013)
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs

If (G, %η) is complete, then ∆Kir,0 = ∆Kir.

For manifolds: Cauchy boundary ∂CM = M \M; completeness is ∂CM = ∅
completeness ⇒ self-adjoint uniqueness (Gaffney’54; Roelcke’60; Chernoff’73).

Corollary (Gaffney-type Theorem on graphs)

If % is a path metric, intrinsic w.r.t. (V,m; b), and (V, %) is complete, then
LV,m,b is self-adjoint in `2(V;m).

Proof: ∃ cable system (G, µ, ν) s.t. % = %η on V; (G, %η) is complete if (V, %) is

complete (e.g., by the Hopf–Rinow Theorem for length spaces, then by

quasi-isometry to weighted graphs from metric graphs). �

WARNING: The above result is not enough to show that Lcomb is self-adjoint!
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Applications: Recurrence

G. Pólya (1921): A (simple) random walk on Zd is recurrent ⇔ d ≤ 2

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

Recurrence can be defined via:

• behavior of a heat kernel for large times, (in Rd , heat kernel ≈ t−d/2)
• behavior of the Green’s function at zero energy
— in Quantum Mechanics = zero energy resonance/weak bound state/virtual pole

• every nonnegative superharmonic function is constant

• Recurrence on Riemann surfaces: for simply connected, the type problem.
• π1(M) is recurrent ⇔ the universal cover M̃ of M is recurrent (Varopoulos’83)

• M is recurrent if “not enough volume” (Grigor’yan, Karp, Varopoulos’82-83)

— extension to strongly local Dirichlet forms by Sturm (1994)

Remark: As with the self-adjointness, from metric to weighted graphs, e.g.,

discrete recurrence volume test, Karp-type theorem etc.

B. Hua, M. Keller, Harmonic functions of general graph Laplacians, Calc.Var.(2014)
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Applications: Recurrence

G. Pólya (1921): A (simple) random walk on Zd is recurrent ⇔ d ≤ 2

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

H. Kesten (1967): Characterize recurrent groups? (Kesten’s conjecture)

• M. Gromov (Groups of polynomial growth), and

• N.Th. Varopoulos (decay of return probabilities via growth in groups)

Theorem (Varopoulos, 1985)

G is recurrent ⇔ G contains a finite index subgroup isomorphic either to Z or Z2

Theorem (AK–Nicolussi’21)

GC = C(G,S) a Cayley graph and (GC , µ, ν) a weighted metric graph. Then
(GC , µ, ν) is recurrent ⇔ the discrete-time random walk on GC generated by

b : EC → R>0 with b(e) := ν(e)
|e| is recurrent.

In particular, if G is recurrent and supe∈E
ν(e)
|e| <∞, then (GC , µ, ν) is recurrent.
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Applications: Ultracontractivity and CLR estimates

Let ∆D be the Dirichlet Laplacian on (GC , µ, ν) with µ = ν ≡ 1.

Theorem (AK–Nicolussi’21)

(i) If G is not recurrent and γG(n) � nN , then ‖et∆D‖1→∞ . t−N/2 ∀t > 0
whenever sup |e| <∞. Here γG is the growth function.

(ii) If G is not virtually nilpotent and sup |e| <∞, the above est. holds ∀N > 0.

(iii) If G is recurrent and inf |e| > 0, then ‖et∆D‖1→∞ & t−1.

Corollary (AK–Nicolussi’21): Let HV := −∆D − V (x), V : G → R

(i) If G is recurrent, inf |e| > 0, and 0 ≤ V ∈ Cc(G), then HV admits at least
one negative e.v.

(ii) If G is not recurrent, γG(n) � nN , and sup |e| <∞, then for V ≥ 0

dim (ran 1(−∞,0)(HV )) .G

∫
G
V (x)N/2dx .

Thank you for your attention!
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