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@ V and & are at most countable, and G4 is connected

@ Gy is locally finite (vertex degree: deg(v) < oo, v € V)
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Weighted Laplacians on Graphs

e The combinatorial Laplacian

(Leombf)(v) =D F(v) — f(u) = deg(v)f(v) = > f(u)

ur~v ur~v

Lecomb ~ the adjacency matrix (Spectral Graph Theory; @ECM:MS-46).
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Weighted Laplacians on Graphs

e The combinatorial Laplacian

(Leombf)( Z f(v = deg(v Z f(u

ur~v ur~v

Leomb ~ the adjacency matrix (Spectral Graph Theory; @ECM:MS-46).

e The normalized Laplacian (physical Laplacian or Markov operator)

1
(Lnormf)(v) = deg Zf =f(v) — deg(v);f(u).

Lhorm generates a simple random walk on Gy:

Definition

G a finitely generated group, S a finite generating set, S = S—!.
The Cayley graph C(G,S) is the graph with V =G and x ~ y < x" 1y € S.

[3 H. Kesten, Symmetric random walks on groups, Trans. AMS (1958).

WARNING: On Cayley graphs, deg = #5S and hence Lcombp = #S * Lnorm-
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Weighted Laplacians on Graphs

e The combinatorial Laplacian

(Leombf)( Z f(v = deg(v Z f(u

ur~v ur~v

Leomb ~ the adjacency matrix (Spectral Graph Theory; @ECM:MS-46).

e The normalized Laplacian (physical Laplacian or Markov operator)

1
(Lnormf)( deg Zf = f(v) - deg(v);f(u)'

Lhorm generates a simple random walk on Gg4.
e Discrete-time Markov chain: b: £ — R, set mp(v) = >, , b(ey). Then
(Lbf V) Z b €y, v - f( ))

generates a discrete time random walk: Prob(X,;; = u| X, = v) = %.
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Weighted Laplacians on Graphs

(V, m; b) with m: ¥V — (0,00) a vertex weight, and b: V x V — [0, c0) s.t.
@ symmetric, b(u, v) = b(v, u), and vanishing diagonal, b(v,v) = 0,
@ locally finite: #{u|b(v,u) > 0} < oo,

is called a weighted graph over (V, m).

The (formal) Laplacian L = Ly pp is

(LFY(v) = m(lv) S b, V)(F(v) — F(u),  veEV.
uey

WARNING! " formal” since L might be unbounded!

@ Combinatorial Laplacian:
Take L = Leomp, thatis, m =1 on V and b = adjacency matrix.

Lecomp is bounded exactly when G4 has bounded geometry (sup deg < o)
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Weighted Laplacians on Graphs

(V, m; b) with m: ¥V — (0,00) a vertex weight, and b: V x V — [0, c0) s.t.
@ symmetric, b(u, v) = b(v, u), and vanishing diagonal, b(v,v) = 0,
@ locally finite: #{u|b(v,u) > 0} < oo,

is called a weighted graph over (V, m).

The (formal) Laplacian L = Ly pp is

(LFY(v) = m(lv) S b, V)(F(v) — F(u),  veEV.
uey

Dirichlet forms on discrete measure spaces

In £2(V; m), the energy form (at least on f € C.(V))
alf] = (Lf. F)ewim) = 3 2, b(u, V)|F(v) — F(u).

Dirichlet form is a closed symmetric Markovian form on an L? space:
Beurling-Deny conditions: q[|f|] < q[f] and [0V f A 1] < q[f]
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Weighted Laplacians on Graphs

(V, m; b) with m: ¥V — (0,00) a vertex weight, and b: V x V — [0, c0) s.t.
@ symmetric, b(u, v) = b(v, u), and vanishing diagonal, b(v,v) = 0,
@ locally finite: #{u|b(v,u) > 0} < oo,

is called a weighted graph over (V, m).

The (formal) Laplacian L = Ly pp is

(LFY(v) = m(lv) S b, V)(F(v) — F(u),  veEV.
uey

Dirichlet forms on discrete measure spaces

In £2(V; m), the energy form (at least on f € C.(V))
alf] = (Lf, Fewim) = 3 2, b(u, V)|F(v) — F(u).

“Dirichlet forms on discrete measure spaces are weighted graphs”

@ M. Keller and D. Lenz// Crelle’s J. (2012).
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Ga = (V, &) is a connected, locally finite graph.
If every edge e € € is assigned with a positive finite length |e| € (0, c0), then
G=V,E&,||) is called a metric graph

Metric Graph as ...
@ a simplicial 1-complex,
@ a topological space, which looks locally like a star-graph

S

@ a length space when equipped with a natural (“geodesic”) path metric — a
distance between two points is the arc-length of “shortest” path,

@ a (real) 1D manifold with singularities: vertices of degree > 3 are
“branching” points; degree = 1 are “boundary” points,

@ a non-Archimedean analog of Riemann surfaces
a tropical curve or a degeneration of a smooth family of Riemann surfaces
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Ga = (V, &) is a connected, locally finite graph.
If every edge e € € is assigned with a positive finite length |e| € (0, c0), then
G=V,E&,||) is called a metric graph

Definition

Quantum graphs are Laplacians on (weighted) metric graphs.

Applications: “thin wire materials” in physics/biology/...

lungs = binary tree of 20-23 generations
approx. 2 x 10® — 1.6 x 107 vertices

Cast of human lungs (photo by E. Weibel)

[@ P. Joly, M. Kachanovska, and A. Semin, Netw. Heterog. Media (2019)
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Metric Graphs and Their Laplacians

Definition (a.k.a. “cable graphs” or “metrized graphs”)

Ga = (V, &) is a connected, locally finite graph.
If every edge e € € is assigned with a positive finite length |e| € (0, c0), then
G=V,E&,||) is called a metric graph

Definition

Quantum graphs are Laplacians on (weighted) metric graphs.

Further applications:

® Quantum ergodicity (Anantharaman, Berkolaiko, Colin de Verdiére, ...)

@ Counting spectral measures as 1D Fourier quasi-crystals
(Kurasov—Sarnak'2020)

@ ...@8ECM: MS-26, MS-29, MS-40, MS-48, ...

[@ G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer.
Math. Soc., 2013
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Laplacians on Metric Graphs

Given G = (V, &, ), identify each edge e € £ with Z, = [0, |e|]. Let
w,v: € — (0,00) be edge weights, (G, 11, ) is a weighted metric graph.

L2(G; ) = @ L2(e; pe), te(dx) := pedxe on e = Ze.
ec&

Kirchhoff Laplacian (weighted “Laplace—Beltrami” on G)

A acts as id%eued%e on the interior of G, and boundary conditions:

f is continuous at v

, cV.
Secs, vedef(V) =0

Kirchhoff conditions: {

@ deg(v) = 1: Kirchhoff = Neumann at v, d.f(v) =0,

@ deg(v) = 2: Kirchhoff = continuity of f and its (weighted) derivative at v
(“removable” singularity/inessential vertex)

v
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Laplacians on Metric Graphs

Given G = (V, &, ), identify each edge e € £ with Z, = [0, |e|]. Let
w,v: € — (0,00) be edge weights, (G, 11, ) is a weighted metric graph.

L2(G; ) = @ L2(e; pe), te(dx) := pedxe on e = Ze.
ec&

Kirchhoff Laplacian (weighted “Laplace—Beltrami” on G)

A acts as id%eued%e on the interior of G, and boundary conditions:

f is continuous at v
Yece, VeDef(v) =0

The maximal Kirchhoff Laplacian Ax;, is defined in L2(G; 1) on the domain
dom(Ak;r) = {f € H*(G \ V)| (Kirchhoff) on V}.
The minimal Kirchhoff Laplacian Ag;, g is the L2 closure of
A | dom(Aki) N L2(G).

Kirchhoff conditions: { , VEV.
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Harmonic Functions of Graphs

f is harmonic on (G, u,v) if Af =0on G, i.e., f is edgewise affine and Kirchhoff
conditions. By continuity, f can be identified with f|,, and its slopes at v € V

OGN

€u,v|
U~V | u,v

Definition: (g, , ) has finite intrinsic size if sup ¢ [e[, /5 < 0. J

Moreover, f € L2(G; i) if and only if f|y, € £2(V; m), where

:Z,Ue|e|'

er~v

Define a graph Laplacian L = L(g V)

(LF)(v Z 4 (F(u) ~ £(v))

|eu V|

L and A have the same harmonic functions
If (G, i, v) has finite intrinsic size, then ker (Ak;,) = ker (L(G, p, v))

Aleksey Kostenko Laplacians on Graphs



Connections between discrete and metric graphs

Theorem (discrete vs continuous)

The Laplacians Ak and L = L(G, p, v) share many basic
o Spectral properties (Exner-AK-Malamud-Neidhardt'18, AK—Nicolussi'21)

Self-adjoint uniqueness (N. Nicolussi @ECM)
Positive spectral gap
Ultracontractivity estimates

o Parabolic properties

Markovian uniqueness (AK—Nicolussi’21) (N. Nicolussi @ECM)
o Recurrence/transience (Haeseler'14, AK—Nicolussi'21)

o Stochastic completeness (Folz'14, ...,) (X. Huang @8ECM)

o

@ N. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. (1985)

@ P. Exner, A. Kostenko, M. Malamud, H. Neidhardt, Spectral theory of infinite
quantum graphs, Ann. Henri Poincaré (2018)
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Analysis on weighted graphs

A lot of parallels between analysis on manifolds and analysis on graphs.
However, what is the right choice of a metric on a graph?

ﬁ E.B. Davies, Analysis on graphs and noncommutative geometry, JFA (1993)
Combinatorial distance (a.k.a. word metric on groups) a lot of controversy!
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Analysis on weighted graphs

A lot of parallels between analysis on manifolds and analysis on graphs.
However, what is the right choice of a metric on a graph?

@ E.B. Davies, Analysis on graphs and noncommutative geometry, JFA (1993)
Combinatorial distance (a.k.a. word metric on groups) a lot of controversy!

Definition (FRANK, LENZ & WINGERT, J. Funct. Anal. (2014))

A metric o: V X V — [0, 00) is called intrinsic w.r.t. (V, m; b) if

Z b(u, v)o(u, v)* < m(v), ve.

v

b = the adjacency matrix, oo the combinatorial distance. Then:

Z b(u) V)Qcomb(uv V)2 = ZUNV 1= deg(v).

® Ocomb iS intrinsic for m = deg, i.e., for Lyorm-
e Not intrinsic for L.,,,! However, equivalent to intrinsic < supdeg < oco!
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Analysis on weighted graphs

A lot of parallels between analysis on manifolds and analysis on graphs.
However, what is the right choice of a metric on a graph?

@ E.B. Davies, Analysis on graphs and noncommutative geometry, JFA (1993)
Combinatorial distance (a.k.a. word metric on groups) a lot of controversy!

Definition (FRANK, LENZ & WINGERT, J. Funct. Anal. (2014))

A metric o: V X V — [0, 00) is called intrinsic w.r.t. (V, m; b) if

Z b(u, v)o(u, v)* < m(v), ve.
uey

Intrinsic metrics recover many results from manifolds for graphs!

@ M. Keller, D. Lenz, & R. Wojciechowski, Graphs and Discrete Dirichlet
Spaces, in print, Springer, 2021.

But: Each (V, m; b) has infinitely many intrinsic metrics! No “maximal” metric..

Another problem: how to construct an intrinsic metric?
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Intrinsic metric for Kirchhoff Laplacians

Quadratic form (Energy form/Dirichlet integral)

Q[f] == /g |V F|2v(dx) (: (Af, oy for f e dom(AKir’o))

It is a strongly local Dirichlet form in L2(G; 11).

@ Background: To each strongly local Dirichlet form, one can associate
its intrinsic metric = generalize results from Riemannian manifolds!

Definition (intrinsic metric for (G, p1, v))

ointr(x,y) = sup {f(x) = f(y)|f € Dioc}, X,y €G,
Dioe = {f € Hppo(G) ‘ v(x)|VF(x)> < p(x) forae. x€G}.

@ K.-T. Sturm, Analysis on local Dirichlet spaces | — 11, (1994-1996).
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Intrinsic metric for Kirchhoff Laplacians

Quadratic form (Energy form/Dirichlet integral)

Q[f] == /g |V F|2v(dx) (: (Af, oy for f e dom(AKir’o))

It is a strongly local Dirichlet form in L%(G; u).

Since both pu, v are edgewise constant,

ointr (X, ¥) = oy(x,y) == i%fén(dx):i%fﬁ\/zdx.

If (V, m; b) is the graph associated with (G, i, v), then the induced metric
QV(U7 V) = Qn(ua V)7 u,vey

is intrinsic w.r.t. (V, m; b)!

Manifolds — local Dirichlet forms — discrete measure spaces J
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From discrete graphs to metric graphs?

A cable system for (V, m; b) is a weighted metric graph (G, u, V) s.t.
Ly mb = LG, p,v),

i.e., the previous construction gives the discrete Laplacian Ly m p.

Theorem

(i) Every locally finite (V, m; b) has a cable system.

(ii) For every (V, m; b) equipped with a finite jump size intrinsic metric o there
is finite intrinsic size cable system such that o = gy = g,|vx V-
(Finite jump size = no arbitrarily long edge w.r.t. )

WARNING: Upon some normalization (e.g., canonical CS), (almost!) a
bijection between cable systems and intrinsic path metrics for (V, m; b)

To construct an intrinsic metric = To construct a cable system )

@ M.Folz, Volume growth and stochastic completeness of graphs, TAMS(2014)
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Quasi-isometries

Definition

A map ¢: Xi — Xo between two metric spaces (X1, 01) and (X, g2) is called a
quasi-isometry if there are a, b, R > 0 s.t.

a~ (e1(x,y) = b) < 2(é(x), 6(¥)) < a(r(x,y) + b),

for all x,y € X1 and, moreover, [, ., Br(¢(x); 02) = Xz.

Examples (The Svarc—Milnor Lemma)
e Cayley graph of m1(M) and the universal cover M of a compact manifold M,
e Cayley graph and the corresponding equilateral metric graph.
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Quasi-isometries

Definition

A map ¢: Xi — Xo between two metric spaces (X1, 01) and (X, g2) is called a
quasi-isometry if there are a, b, R > 0 s.t.

a~ (e1(x,y) = b) < 2(é(x), 6(¥)) < a(r(x,y) + b),

for all x,y € X1 and, moreover, [, ., Br(¢(x); 02) = Xz.

Examples (The Svarc—Milnor Lemma)
e Cayley graph of m1(M) and the universal cover M of a compact manifold M,
e Cayley graph and the corresponding equilateral metric graph.

Corollary

Let (G, u, V) be a cable system for (V, m; b). The metric spaces (G, o,,) and
(V, 0y) are quasi-isometric if and only if (G, i1, V) has finite intrinsic size.

For (V, m; b) with an intrinsic metric o, a cable system is a quasi-isometric
length space with the same combinatorial structure

= connections between their large scale/global properties!
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

I-ll2(g

On (G, p, v) we introduced Laplacians Ak, and Axkir o = Axir | Ce .
Ak, is self-adjoint & Akir o = Akir (& L2-uniqueness for Schrodinger/Wave eq.)

Problem: Do we need a boundary condition at “infinity”?

When AKir,O = AKir?
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

I-ll2(g

On (G, p, v) we introduced Laplacians Ak, and Axkir o = Axir | Ce .
Ak, is self-adjoint & Akir o = Akir (& L2-uniqueness for Schrodinger/Wave eq.)

Problem: Do we need a boundary condition at “infinity"?
When Ag;r 0 = Akir?

von Neumann formulas

dom(Axiy) = dom(Ap) + ker (Akir +A), A€ C\o(—Ap).

Ap is the Dirichlet Laplacian (the Friedrichs extension of Akir o)

Since ker (Akir — A) = L2 A-harmonic functions and o(—Ap) C [0, 00):
@ self-adjoint uniqueness < no L2 harmonic f-ns (A-harmonic with A > 0),

@ description of self-adjoint extns = description of L2 \-harmonic functions!

Graph Boundaries

Poisson = bounded harmonic; Martin = positive harmonic, ...
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs
If (G, 0y) is complete, then Akir o = Axir.

For manifolds: Cauchy boundary dcM = M\ M; completeness is dcM = ()
completeness = self-adjoint uniqueness (Gaffney'54; Roelcke'60; Chernoff'73).

Proof: Assume the converse: 3 u € L2(G; 1) such that u # 0 is A-harmonic,

A > 0. However, |u| > 0 is subharmonic.

By a version of Yau's LP-Liouville theorem for strongly local Dirichlet forms,

|ul = 0if (G, 0,) is complete. Contradiction. O

@ K.-T. Sturm, Analysis on local Dirichlet spaces I, Crelle’s J. (1994).

e Stability under semi-bounded perturbations
(“completeness w.r.t. intrinsic metric+semiboundedness = quantum compl.”)

WARNING: Self-adjointness is open for (Gq, | - |, i, ) even if Gg = Z2... J
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs
If (G, 0y) is complete, then Akir o = Axir.

For manifolds: Cauchy boundary dcM = M\ M; completeness is dcM = ()
completeness = self-adjoint uniqueness (Gaffney'54; Roelcke'60; Chernoff'73).

Corollary (Gaffney-type Theorem on graphs)

If o is a path metric, intrinsic w.r.t. (V, m; b), and (V, ¢) is complete, then
Ly m.p is self-adjoint in £2(V; m).

Proof: 3 cable system (G, i, v) s.t. o = o, on V; (G, 0,)) is complete if (V, ) is
complete (e.g., by the Hopf-Rinow Theorem for length spaces, then by

quasi-isometry to weighted graphs from metric graphs). O

v

@ X. Huang, M. Keller, J. Masamune and R. Wojciechowski, A note on self-adjoint
extensions of the Laplacian on weighted graphs, J. Funct. Anal. (2013)
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Applications: Self-adjointness (a.k.a. Quantum Completeness)

Gaffney-type Theorem on Metric graphs
If (G, 0y) is complete, then Akir o = Axir.

For manifolds: Cauchy boundary dcM = M\ M; completeness is dcM = ()
completeness = self-adjoint uniqueness (Gaffney'54; Roelcke'60; Chernoff'73).

Corollary (Gaffney-type Theorem on graphs)

If o is a path metric, intrinsic w.r.t. (V, m; b), and (V, ¢) is complete, then
Ly m.p is self-adjoint in £2(V; m).

v

Proof: 3 cable system (G, i, v) s.t. o = o, on V; (G, 0,)) is complete if (V, ) is
complete (e.g., by the Hopf-Rinow Theorem for length spaces, then by
quasi-isometry to weighted graphs from metric graphs). O

v

WARNING: The above result is not enough to show that L.omp, is self-adjoint! J
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2 J

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

Recurrence can be defined via:

e behavior of a heat kernel for large times, (in R, heat kernel ~ t~9/2)
e behavior of the Green’s function at zero energy
— in Quantum Mechanics = zero energy resonance/weak bound state/virtual pole

e every nonnegative superharmonic function is constant

e Recurrence on Riemann surfaces: for simply connected, the type problem.
e m1(M) is recurrent < the universal cover M of M is recurrent (Varopoulos'83)

e M is recurrent if “not enough volume” (Grigor'yan, Karp, Varopoulos'82-83)
— extension to strongly local Dirichlet forms by STURM (1994)
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

Recurrence can be defined via:

e behavior of a heat kernel for large times, (in R, heat kernel ~ t~9/2)
e behavior of the Green’s function at zero energy
— in Quantum Mechanics = zero energy resonance/weak bound state/virtual pole

e every nonnegative superharmonic function is constant

e Recurrence on Riemann surfaces: for simply connected, the type problem.
e m1(M) is recurrent < the universal cover M of M is recurrent (Varopoulos'83)

e M is recurrent if “not enough volume” (Grigor'yan, Karp, Varopoulos'82-83)
— extension to strongly local Dirichlet forms by STURM (1994)

Remark: As with the self-adjointness, from metric to weighted graphs, e.g.,
discrete recurrence volume test, Karp-type theorem etc.

@ B. Hua, M. Keller, Harmonic functions of general graph Laplacians, Calc.Var.(2014)
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2 J

S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

H. KESTEN (1967): Characterize recurrent groups? (Kesten’s conjecture)J
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2
S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

H. KESTEN (1967): Characterize recurrent groups? (Kesten’s conjecture)J

e M. GROMOV (Groups of polynomial growth), and
e N.TH. VAROPOULOS (decay of return probabilities via growth in groups)

Theorem (VAROPOULOS, 1985)

G is recurrent < G contains a finite index subgroup isomorphic either to Z or Z?
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Applications: Recurrence

G. PSLya (1921): A (simple) random walk on Z9 is recurrent < d <2
S.Kakutani: “A drunk man will find his way home, but a drunk bird may get lost forever”

H. KESTEN (1967): Characterize recurrent groups? (Kesten’s conjecture)J

e M. GROMOV (Groups of polynomial growth), and
e N.TH. VAROPOULOS (decay of return probabilities via growth in groups)

Theorem (VAROPOULOS, 1985)

G is recurrent < G contains a finite index subgroup isomorphic either to Z or Z?

Theorem (AK-NICOLUSSI'21)

Gc =C(G,S) a Cayley graph and (Gc, i1, V) a weighted metric graph. Then
(Ge, p,v) is recurrent < the discrete-time random walk on G generated by
b: £ — Rsg with b(e) := “) is recurrent.

le]

In particular, if G is recurrent and sup,c¢ %el) < 00, then (Gc, p, v) is recurrent.
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Applications: Ultracontractivity and CLR estimates

Let Ap be the Dirichlet Laplacian on (G¢, u, v) with = v = 1.
Theorem (AK-N1CcOLUSSI'21)

(i) If G is not recurrent and vg(n) < nV, then [[e22||; o S tN/2 VYt >0
whenever sup |e| < oo. Here ¢ is the growth function.

(ii) If G is not virtually nilpotent and sup |e| < oo, the above est. holds VYN > 0.

(iii) If G is recurrent and inf |e| > 0, then |[e*2?||; o > t~1.

~

Corollary (AK-Nicoruss1'21): Let Hy := —Ap — V(x), V: G —» R

(i) If Gis recurrent, inf |e] > 0, and 0 < V € C.(G), then Hy admits at least
one negative e.v.

(i) If G is not recurrent, vg(n) < n", and sup|e| < oo, then for V >0

dim (ran 1(_s,0)(Hv)) gg/V(x)N/zdx.
g

v

Thank you for your attention!
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