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Introduction

� Autonomously guided vehicles (AGVs) are widely

used in modern manufacturing systems and they are

the source of several research problems as well

� Avoiding physical collisions is not too difficult today

by appropriate sensors and hardware

� Excluding the possibility of different conflict situa-

tions among vehicles is a challenging task

� Our goal is to ensure conflict-free operation of ve-

hicles while serving transportation requests arriving

over time
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What is deadlock?

”Each vehicle of a group is waiting for another member to take an action”

+

Idle vehicles...

(a) Deadlock in a narrow corridor

(b) Deadlock caused by an idle vehicle
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What to do with deadlock?

� Resolve existing situation

� recalculating

� last resort: manual intervention

Real Life Adventures by Gary Wise and Lance Aldrich

� Resolve future situation (recognize deadlock in advance)

� recalculating

� segment reservation, . . .

� Avoid deadlock by restrictions

� simple network (e.g., grid, one-way edges, . . . )

� splitting workspace into zones; few number of vehicles

� . . .

� Avoid deadlock inherently by planning
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Pick-up and delivery problem with online requests

� Given a fleet of AGVs

� Given a mixed graph G = (N,A) which describes the layout

� nodes in N represent the docking stations, the intersections of the lanes, and the

parking places

� undirected arcs in A correspond to lanes with bidirectional traffic, while directed arcs

model one-way lanes

� Requests arrive in an online fashion

� each request prescribes the transportation of a single item (part or pallet) from one

station to another, that is, from its pick-up station to its delivery station

� each request has a due date

� Goal: satisfy the requests minimizing the total tardiness
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An example of conflict-free control

Method of Malopolski1:

� Each vehicle has a dedicated depot node which cannot block the route of any other vehicle

� vehicles always start and end their routes at their dedicated depot nodes

� If a request is assigned to a vehicle, a route of three paths is generated:

depot node → pick-up node → delivery node → depot node

� the vehicle is pushed back to the traversing orders of the visited nodes

� Precedence constraints: a vehicle can go through a node only if it is the first vehicle in the

traversing order of the node

1Ma lopolski, W. (2018). A sustainable and conflict-free operation of AGVs in a square topology. Computers &

Industrial Engineering, 126, 472-481.
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A schedule-based approach to avoid deadlock



Schedule of the vehicles

� Avoid deadlock inherently by maintaining a feasible schedule

� resources: nodes and edges (with capacities)

� jobs: vehicle operations (’no-wait’ criteria)

(WoN: Wait-on-Node; EtN: Edge-to-Node; NtE: Node-through-Edge)
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Figure: A network and the corresponding resources
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Figure: WoN(A) → NtE(AB) → EtN(B) → NtE(BC) → EtN(C) → WoN(C)
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Figure: WoN(D) → NtE(BD) → EtN(B) → NtE(AB) → EtN(A) → WoN(A)
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Schedule of the vehicles

� Avoid deadlock inherently by maintaining a feasible schedule
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Figure: Schedule is infeasible due to ’crossing’
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� What matters: sequence

� lower bounds on the processing time of operations

� if there are no crossings (i.e., schedule is feasible) then start and completion times can

be calculated from the sequence of operations
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Schedule of the vehicles

Figure: Screenshot of our Schedule Viewer
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Creating and maintaining a feasible schedule

How to create a feasible schedule?

� In the beginning each vehicle stands in a (maybe fictive) node

How to maintain a feasible schedule?

� We insert routes (i.e., a sequence of operations) into the schedule one-by-one

� How to determine pull-of routes?

How to insert a sequence of operations into the schedule?

� Mixed integer linear program

� constraints: feasible insertion of operations

� constraints: determine start and completion times

� objective: minimize the maximum tardiness

� Improve schedule: Local search, loop elimination
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How to determine pull-off routes for the blocking vehicles?

Figure: Orange and Purple vehicles block Blue vehicle: do pull-off routes!
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How to determine pull-off routes for the blocking vehicles?

Figure: The way is free for Orange vehicle
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How to determine pull-off routes for the blocking vehicles?

Figure: Blue vehicle blocks Purple vehicle: do pull-off route!
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How to determine pull-off routes for the blocking vehicles?

Figure: The way is free for Blue vehicle (pull-off route)
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How to determine pull-off routes for the blocking vehicles?

Figure: The way is free for Purple vehicle
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How to determine pull-off routes for the blocking vehicles?

Figure: The way is free for Blue vehicle (original route)
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How to determine pull-off routes for the blocking vehicles?

Figure: Blue vehicle reached its destination
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How to determine pull-off routes for the blocking vehicles?

Figure: 15-puzzle
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Sketch of solution process

Schedule 
requests

Schedule 
routings

Transportation 
requests

Assign requests
to vehicles

Determine routings

Improve schedule

Determine
pull-off routes

Schedule routes

Figure: Very sketchy flowchart of our solution process
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Computational experiments

� Compare different methods

� (Our) Our plain solution approach

� (Our + LS) Our plain solution approach + Local search

� (Our + Impr) Our plain solution approach + Local search + Loop elimination

� (Malopolski) Malopolski’s method

� (Malopolski + Impr) Malopolski’s method + Local search + Loop elimination

� 3 different layouts
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Computational experiments

Figure: An example layout with 6 vehicles
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Computational experiments

(a) Average results with 79 requests (b) Average results with 119 requests

Figure: Total empty and loaded travel times
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Computational experiments

(a) Average results with 79 requests (b) Average results with 119 requests

Figure: Average lateness
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Summary of our solution approach

� The created plans are conflict-free (guaranteed by their structure)

� Our method does not require the identification or classification of possible conflict situations

� We can handle idle blocking vehicles and vehicles with common target locations, without

creating any further conflicts

� Our approach supports the optimization of plans, and we describe a method based on local

search

� We have only very mild assumptions on the layout

� Our approach requires only low computational time (thus it avoids the main drawback of

centralized methods), and it scales up well with the number of AGVs, and the size of the

network

� It outperforms the method of Malopolski (2018) with respect to average tardiness of the

requests
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Thank you for your attention!

B marko.horvath@sztaki.hu
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