Spanning bipartite subgraphs of triangulations of a surface

Kenta Noguchi (野口 健太)
Tokyo University of Science (東京理科大学)

Our papers (Atsuhiro Nakamoto, <u>Kenta Noguchi</u>, Kenta Ozeki)

- [2] Extension to even triangulations, SIAM J. Discrete Math. 29 (2015), 2075-2087.
- [3] Spanning bipartite quadrangulations of even triangulations, *J. Graph Theory* **90** (2019), 267-287.
- [4] Extension to 3-colorable triangulations, SIAM J. Discrete Math. **33** (2019), 1390-1414.

Surfaces: compact connected 2-manifolds without boundary

 \mathbb{S}_k : orientable surface of genus k

 \mathbb{N}_k : nonorientable surface of crosscap number k

Graphs on surfaces

Triangulation (tri.)

Quadrangulation (quad.)

Graphs on surfaces

Eulerian (even) triangulation

Quadrangulation

Every vertex has even degree

Quad. ↔ Tri.

For a given quad., we can extend it to a triangulation by adding a diagonal in each face.

Quad. ↔ Tri.

For a given triangulation, we often find a quad. as a spanning subgraph.

Additional requirements

For a given quad., can we extend it to

- Eulerian tri.?
- 3-colorable tri.?
- 4-connected tri.?

For a given tri., does it have

- bipartite quad.?
- 3-connected quad.?

Additional requirements

For a given quad., can we extend it to

- [2] Eulerian tri.? Yes
- [4] 3-colorable tri.? \exists iff condition
 - 4-connected tri.? Yes if it is simple

For a given tri., does it have

- - 3-connected quad.? Yes if it is 5-connected

A spanning quad. subgraph

Spanning quad.

Proposition A

Let *T* be a loopless triangulation on a surface.

Then *T* has a spanning quad.

Problem

Let *T* be a loopless triangulation of a surface. Does *T* have a spanning bipartite quad.?

Remark

- Every plane quad. is bipartite.
- 4-colorability of *T* is a sufficient condition.

Bipartiteness

Proposition B

If *T* is a 4-colorable tri. on a surface, then *T* has a spanning bipartite quad.

[3] Proof

Proposition B

If *T* is a 4-colorable tri. on a surface, then *T* has a spanning bipartite quad.

[3] Proof

Proposition B

If *T* is a 4-colorable tri. on a surface, then *T* has a spanning bipartite quad.

On the projective plane

Theorem 1 (Kündgen, Thomassen, 2017; Nakamoto, N., Ozeki, 2019)
Let T be an Eulerian tri. of the projective plane.
If T is 3-colorable, then every spanning quad. of T is bipartite. If T is not 3-colorable, then T has both bipartite and non-bipartite spanning quads.

On the torus

Fact

Even tri. K_7 of the torus has no spanning bipartite quad.

A known theorem

Theorem C (Kündgen, Thomassen, 2017)
Let *T* be a loopless Eulerian tri. of the torus.
Then *T* has a spanning non-bipartite quad.
Furthermore, if *T* has sufficiently large edge width, then *T* has a spanning bipartite quad.

Main theorem

Theorem 2 (Nakamoto, N., Ozeki, 2019)

Let *T* be a loopless Eulerian tri. of the torus.

T has a spanning bipartite quad. if and only if

T does not have K_7 as a subgraph.

Outline of the Proof of Thm 2

Theorem 2 (Nakamoto, N., Ozeki, 2019)

Let *T* be a <u>loopless</u> <u>Eulerian</u> tri. of the torus.

T has a spanning bipartite quad. if and only if

T does not have K_7 as a subgraph.

We use a "generating" theorem.

Theorem D (Matsumoto, Nakamoto, Yamaguchi, 2018)

Every loopless Eulerian tri. of the torus is generated

from one of 27 minimal graphs and 6-regular tris.

by using 4-splittings and 2-vertex additions.

Generating Eulerian tris.

• : Minimal graph

: 4-splitting

: 2-vertex addition

27 minimal graphs

Two operations for the generating theorem

2-vertex addition

Outline of the Proof of Thm 2

Theorem 2 (Nakamoto, N., Ozeki, 2019)
Let *T* be a loopless Eulerian tri. of the torus. *T* has a spanning bipartite quad. if and only if

T does not have K_7 as a subgraph.

We use the generating theorem.

- (i) Confirming that all minimal graphs other than K_7 have a spanning bipartite quad.
- (ii) Showing that the bipartiteness of a spanning quad. is preserved under the two operations.

Spanning bipartite quads.

8ECM

Conclusion

For a given quad., can we extend it to

[2] • Eulerian tri.? Yes

[4] • 3-colorable tri.? \exists iff condition

• 4-connected tri.? Yes if it is simple

For a given tri., does it have

• 3-connected quad.? Yes if it is 5-connected

Thank you!