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Surfaces: 
compact connected 2-manifolds without boundary

: orientable surface of genus 𝑘

: nonorientable surface of crosscap number 𝑘
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Graphs on surfaces

Triangulation (tri.)            Quadrangulation (quad.)
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Graphs on surfaces

Eulerian (even) triangulation         Quadrangulation 
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Every vertex has even degree
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Quad.     ↔ Tri.
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For a given quad., we can 
extend it to a triangulation by 
adding a diagonal in each face.
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Quad.     ↔ Tri.
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For a given triangulation,
we often find a quad. as a 
spanning subgraph.
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Additional requirements

For a given quad., can we extend it to 

• Eulerian tri.?

• 3-colorable tri.?

• 4-connected tri.?

For a given tri., does it have

• bipartite quad.?

• 3-connected quad.?
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Additional requirements

For a given quad., can we extend it to 

• Eulerian tri.?                        Yes

• 3-colorable tri.?                  ∃ iff condition

• 4-connected tri.?                Yes if it is simple

For a given tri., does it have

• bipartite quad.?                  ∃ iff condition for toroidal Eulerian tri.

• 3-connected quad.?           Yes if it is 5-connected
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A spanning quad. subgraph
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Proposition A

Let 𝑇 be a loopless triangulation on a surface. 

Then 𝑇 has a spanning quad.
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Spanning quad.
[3]



Proof
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[3]
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Let 𝑇 be a loopless triangulation of a surface. 

Does 𝑇 have a spanning bipartite quad.?

Remark

 Every plane quad. is bipartite.

 4-colorability of 𝑇 is a sufficient condition.

2021/6/22 138ECM

Problem
[3]



Proposition B

If 𝑇 is a 4-colorable tri. on a surface, then 𝑇 has a

spanning bipartite quad.
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Bipartiteness
[3]



Proof
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[3]

𝑇



Proof
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[3]

𝑇



On the projective plane

Theorem 1 (Kündgen, Thomassen, 2017; Nakamoto, N., Ozeki, 2019)

Let 𝑇 be an Eulerian tri. of the projective plane.

If 𝑇 is 3-colorable, then every spanning quad. of 𝑇 is 

bipartite. If 𝑇 is not 3-colorable, then 𝑇 has both bipartite 

and non-bipartite spanning quads.
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On the torus

Fact

Even tri. 𝐾7 of the torus has no spanning bipartite quad.
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A known theorem

Theorem C (Kündgen, Thomassen, 2017)

Let 𝑇 be a loopless Eulerian tri. of the torus.

Then 𝑇 has a spanning non-bipartite quad.

Furthermore, if 𝑇 has sufficiently large edge 

width, then 𝑇 has a spanning bipartite quad.
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Main theorem

Theorem 2 (Nakamoto, N., Ozeki, 2019)

Let 𝑇 be a loopless Eulerian tri. of the torus.

𝑇 has a spanning bipartite quad. if and only if

𝑇 does not have 𝐾7 as a subgraph.
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We use a “generating” theorem.

Theorem D (Matsumoto, Nakamoto, Yamaguchi, 2018)

Every loopless Eulerian tri. of the torus is generated 

from one of 27 minimal graphs and 6-regular tris. 

by using 4-splittings and 2-vertex additions.
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[3]
Outline of the
Proof of Thm 2



: 4-splitting

Eulerian tris. on the torus

: Minimal graph

: 2-vertex addition

Generating Eulerian tris.
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27 minimal graphs
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[3]
Two operations for the generating theorem



2-vertex addition
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𝑇

𝑇′

𝑇′′



4-splitting
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[3]

𝑇

𝑇′

𝑇′′



Outline of the
Proof of Thm 2

We use the generating theorem.

(i) Confirming that all minimal graphs other than 𝐾7
have a spanning bipartite quad.

(ii) Showing that the bipartiteness of a spanning quad. 
is preserved under the two operations.
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Spanning bipartite quads.
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Conclusion

For a given quad., can we extend it to 

• Eulerian tri.?                        Yes

• 3-colorable tri.?                  ∃ iff condition

• 4-connected tri.?                Yes if it is simple

For a given tri., does it have

• bipartite quad.?                  ∃ iff condition for toroidal Eulerian tri.

• 3-connected quad.?           Yes if it is 5-connected
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Thank you!
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