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Self-assembly/aggregation in biology and physics

Simple model for flocking/swarming/herding behavior in biology based on a competition
between short-range repulsion and long-range attraction

Phase transition as the total number of birds, etc. changes

Think of tightly packed emperor penguins huddling in an Antarctic winter...

c©Fred Olivier / naturepl.com; picture used by Rougerie and Yngvason to metaphorically describe their results on Laughlin’s wave function in the FQHE



The model of Burchard–Choksi–Topaloglu

Fix parameters 0 < λ < N and α > 0.

Energy of ‘particle’ configuration with density ρ : RN → [0, 1]

E[ρ] =
1

2

∫∫
RN×RN

ρ(x)

(
1

|x − y |λ + |x − y |α
)
ρ(y) dx dy

Ground state energy (at total ‘particle’ number m > 0)

E(m) = inf

{
E[ρ] : 0 ≤ ρ ≤ 1 ,

∫
RN

ρ(x) dx = m

}
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Interaction kernel k(|x − y |), here k(r) = r−λ + rα

repulsive at short distances, attactive at long
distances
k(r)→∞ as r→0 and r→∞, unique min in-between

Important feature: constraint ρ ≤ 1 on maximal value of density

Goal: understand minimizers for E(m). Today, mostly for m� 1.



The main result

E(m) = inf

{
1

2

∫∫
RN×RN

ρ(x)

(
1

|x − y |λ +|x − y |α
)
ρ(y) dx dy : 0 ≤ ρ ≤ 1,

∫
RN

ρ dx = m

}

Theorem (F.–Lieb)

Let 0 < λ < N − 1 and α > 0. Then there is an m∗ <∞ (depending on N, α and λ)
such that for all m > m∗ the only minimizers for E(m) are characteristic fcns of balls.

• It is not hard to see that minimizers for large m are close, in a suitable sense, to
characteristic functions of balls. The theorem says they are exactly balls!

• The assumption λ < N − 1 (as opposed to λ < N) is necessary. For
N − 1 ≤ λ < N, characteristic fcns of balls are not even critical points.

• Our proof is based on quantitative rearrangement inequalities, and fundamentally
different from arguments by Burchard–Choksi–Topaloglu and Lopes.

• Open questions about long-time convergence and convergence rate for the
corresponding Wasserstein gradient flow (Craig–Kim–Yao, Craig–Topaloglu, . . . )



Competition between attraction and repulsion

E[ρ] = I−λ[ρ] + Iα[ρ]
with

I−λ[ρ] =
1

2

∫∫
RN×RN

ρ(x) ρ(y)

|x − y |λ dx dy , Iα[ρ] =
1

2

∫∫
RN×RN

ρ(x)|x − y |αρ(y) dx dy .

Rescale ρ(x) = σ(x/m1/N) with 0 ≤ σ ≤ 1,
∫
RN σ(x) dx = 1,

E[ρ] = m
α
N

(
Iα[σ] + m−

λ+α
N I−λ[σ]

)
.

For large m, the λ-term is a small perturbation of the α-term.

• One can show that

inf

{
Iα[σ] : 0 ≤ σ ≤ 1,

∫
σ = 1

}
= Iα[1B] with a ball B of measure |B| = 1 .

The α-term wants ρ to be a ball (long range attraction).

• However, one can also show that

sup

{
I−λ[σ] : 0 ≤ σ ≤ 1,

∫
σ = 1

}
= I−λ[1B] with a ball B of measure |B| = 1 .

The λ-term wants ρ not to be a ball (short range repulsion).

• The two terms compete!

Main result: For large m, the α-term wins over the λ-term and there is no compromise.



The three key ingredients

A[ρ] = inf
{

(2‖ρ‖L1)−1 ‖ρ− 1B‖L1 : ball B of measure |B| = ‖ρ‖L1
}
,

AH[ρ] = inf
{
θ ∈ [0, 1] : 1(1−θ)B ≤ ρ ≤ 1(1+θ)B , ball B of measure |B| = ‖ρ‖L1

}
.

Ingredient I

Let α > 0. Then for all ρ ∈ L1(RN) with 0 ≤ ρ ≤ 1,

Iα[ρ]− Iα[1B] ≥ c ‖ρ‖2+
α
N

L1
A[ρ]2 with a ball B of measure |B| = ‖ρ‖L1 .

Ingredient II

Let 0 < λ < N − 1. Then for all ρ ∈ L1(RN) with 0 ≤ ρ ≤ 1,

I−λ[ρ]− I−λ[1B] ≥ −C ‖ρ‖2−
λ
N

L1
AH[ρ]2 with a ball B of measure |B| = ‖ρ‖L1 .

Ingredient III

If ρ is a minimizer for E(m) with m ≥ m∗, then

AH[ρ] ≤ C A[ρ] .

These propositions imply the main theorem since for all large m and a minimizer ρ,

0 ≥ E[ρ]− E[1B] ≥ c

(
‖ρ‖2+

α
N

L1
− C‖ρ‖2−

λ
N

L1

)
AH[ρ]2 ≥ c

2
‖ρ‖2+

α
N

L1
AH[ρ]2



Rearrangement

For a measurable set E ⊂ RN of finite measure, let

E∗ = ball in RN , centered at the origin, of measure |E∗| = |E | .
Riesz rearrangement inequality: for all E ,F ,G ⊂ RN of finite measure,∫∫

E×F

1G (x − y) dx dy ≤
∫∫

E∗×F∗
1G∗(x − y) dx dy

Cases of equality: Burchard (1996), stability bound: Christ (2017)
Here, we only need the special case E = F and G = b = ball centered at the origin:∫∫

E×E

1b(x − y) dx dy ≤
∫∫

E∗×E∗
1b(x − y) dx dy

(implies isoperimetric ineq!), but we allow 0 ≤ ρ ≤ 1 with fixed measure instead of 1E .

Theorem (Christ, F.–Lieb)

Let 0 < δ ≤ 1
2
. Then there is a cN,δ > 0 such that for any ρ ∈ L1(RN) with 0 ≤ ρ ≤ 1

and any ball b ⊂ RN with

δ ≤ |b|1/N/(2‖ρ‖1/N
L1

) ≤ 1− δ

one has, with B = ball, concentric with b, of measure |B| = ‖ρ‖L1 ,
1

2

∫∫
B×B

1b(x − y) dx dy − 1

2

∫∫
RN×RN

ρ(x)1b(x − y)ρ(y) dx dy ≥ cN,δ ‖ρ‖2L1 A[ρ]2 .



Three consequences of the rearrangment theorem

The quantitative rearrangement theorem says

1

2

∫∫
B×B

1b(x − y) dx dy − 1

2

∫∫
RN×RN

ρ(x)1b(x − y)ρ(y) dx dy ≥ cN,δ ‖ρ‖2L1 A[ρ]2

provided that δ ≤ |b|1/N/(2‖ρ‖1/N
L1

) ≤ 1− δ.

First consequence of this is Key Ingredient I: For any α > 0,

Iα[ρ]− Iα[1B] ≥ cN,α ‖ρ‖
2+α

N

L1
A[ρ]2 with a ball B of measure |B| = ‖ρ‖L1 .

Proof. Use
|x |α = α

∫ ∞
0

(1− 1br (x)) rα−1 dr

to write

Iα[ρ]−Iα[1B] =α

∫ ∞
0

(
1
2

∫∫
B×B

1br(x − y)dxdy − 1
2

∫∫
RN×RN

ρ(x)1br(x − y)ρ(y)dxdy

)
rα−1dr

The integrand is ≥ 0 (by Riesz and the bathtub principle) and ≥ cN,δ ‖ρ‖2L1 A[ρ]2 for

r ∼ ‖ρ‖1/N
L1

(by our rearrangement theorem).



Three consequences of the rearrangment theorem. Cont’d

The quantitative rearrangement theorem says

1

2

∫∫
B×B

1b(x − y) dx dy − 1

2

∫∫
RN×RN

ρ(x)1b(x − y)ρ(y) dx dy ≥ cN,δ ‖ρ‖2L1 A[ρ]2

provided that δ ≤ |b|1/N/(2‖ρ‖1/N
L1

) ≤ 1− δ.

Second consequence (not needed here) is a quantitative rearrangement ineq for Riesz
potentials: For any 0 < λ < N,

I−λ[1B]− I−λ[ρ] ≥ cN,λ ‖ρ‖
2−λ

N

L1
A[ρ]2 with a ball B of measure |B| = ‖ρ‖L1 .

Due to Burchard–Chambers for λ = 1, N = 3, Fusco–Pratelli for 0 < λ < N − 1.

Third consequence (not needed here) is a quantitative fractional isoperimetric ineq: For
any 0 < s < 1,

Pers E − Pers B ≥ cN,s |E |1−
s
N A[1E ]2 with a ball B of measure |B| = |E | .

Weaker than Figalli–Fusco–Maggi–Millot–Morini, since we cannot let s → 1. (Related to
uncontrolled dependence of cδ,N as δ → 0. Open problem!)



THANK YOU FOR YOUR ATTENTION!

https://tenor.com/view/penguins-bye-funny-animals-gif-14143308


