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Self-assembly/aggregation in biology and physics

Simple model for flocking/swarming/herding behavior in biology based on a competition
between short-range repulsion and long-range attraction

Phase transition as the total number of birds, etc. changes

Think of tightly packed emperor penguins huddling in an Antarctic winter...

(©Fred Olivier / naturepl.com; picture used by Rougerie and Yngvason to metaphorically describe their results on Laughlin's wave function in the FQHE



The model of Burchard—Choksi—Topaloglu

Fix parameters 0 < A < N and a > 0.
Energy of ‘particle’ configuration with density p : RY — [0, 1]

Elpl = //RNX]RN ( : i IX—y\a) p(y) dx dy

Ground state energy (at total ‘particle’ number m > 0)

Em) = inf {0 0<p<1, [ )ax=m]

Interaction kernel k(|x — y|), here k(r) = r > + r®
repulsive at short distances, attactive at long
distances

k(r)— o0 as r—0 and r — 0o, unique min in-between

Important feature: constraint p < 1 on maximal value of density

Goal: understand minimizers for E(m). Today, mostly for m > 1.



The main result

E(m —Inf{ // ( L A—l—|x—y|a>p(y)dxdy: nggl,/pdx:m}
]RNX]RN ‘ RN

Theorem (F.—Lieb)

Let0 < A< N —1 and a > 0. Then there is an m, < oo (depending on N, o and \)
such that for all m > m, the only minimizers for E(m) are characteristic fcns of balls.

® |t is not hard to see that minimizers for large m are close, in a suitable sense, to
characteristic functions of balls. The theorem says they are exactly balls!

® The assumption A < N — 1 (as opposed to A < N) is necessary. For
N —1 < X < N, characteristic fcns of balls are not even critical points.

® Qur proof is based on quantitative rearrangement inequalities, and fundamentally
different from arguments by Burchard—Choksi—Topaloglu and Lopes.

® Open questions about long-time convergence and convergence rate for the
corresponding Wasserstein gradient flow (Craig—Kim—Yao, Craig-Topaloglu, ...)



Competition between attraction and repulsion

Elp] = Z-xlpl + Zalp]
with

T[] = %// W dedy, Talo] = %// p(x)\x — y|* () dicdy

Rescale p(x) = o(x/m*"N) with 0 < o < 1, Janvo(x)dx =1,
Elpl = m* (Ia[a] + m_HTmI,A[U]) .

For large m, the A-term is a small perturbation of the a-term.

® One can show that
inf {Ia[a] :0<o< 1,/0 = 1} =Zo[15] with a ball Bof measure [B| =1.

The a-term wants p to be a ball (long range attraction).

® However, one can also show that
sup {Z_)\[O'] :0<0o< 1,/0 = 1} =7 ,[15] with a ball B of measure |[B| = 1.

The A-term wants p not to be a ball (short range repulsion).

® The two terms compete!

Main result: For large m, the a-term wins over the A-term and there is no compromise.



The three key ingredients

Alp] = inf { (2llplli1) ™ llp = La s : ball Bof measure [B] = |lpllu |,
Aulp] = inf {9 €1[0,1]: Ta—gs < p < Latoys, ball Bof measure |B| = HpHU}.

Ingredient |
Let a > 0. Then for all p € L*(R") with 0 < p <1,
Zalp] — Za[lB] > ¢ Hp||i1+%A[p]2 with a ball B of measure |B| = ||p]|.1 -

Ingredient Il
Let 0 <A < N —1. Then for all p € LY(RY) with 0 < p < 1,
_A
Z_x[p] —Z-A[1B] > —-C HpHi1 ¥ Au[p)? with a ball B of measure |B| = ||p||.1 -

Ingredient Il

If p is a minimizer for E(m) with m > m., then
Aulp] < CAlp].

These propositions imply the main theorem since for all large m and a minimizer p,

2+ 22 c 2+
0> £l) - £[1s) > < (ol ¥ — Clolls ) Aulol > £ 10175 ¥ AuloP



Rearrangement

For a measurable set E C R" of finite measure, let
E* = ball in R", centered at the origin, of measure |E*| = |E].

Riesz rearrangement inequality: for all E, F, G C RV of finite measure,

// ]lg(x—y)dxdyg// Lg+(x — y)dxdy
EXF *XF*

Cases of equality: Burchard (1996), stability bound: Christ (2017)
Here, we only need the special case E = F and G = b = ball centered at the origin:

// Jlb(x—y)dxdyg// 1p(x — y) dx dy
EXE *XE*

(implies isoperimetric ineq!), but we allow 0 < p < 1 with fixed measure instead of 1.

Theorem (Christ, F.—Lieb)

Let 0 < § < 1. Then there is a cn,s > 0 such that for any p € L'(R") with0 < p <1
and any ball b ¢ RN with

s <[/ @llpll ") <1 -6

one has, with B = ball, concentric with b, of measure |B| = ||p||.1,

1 1
o [ wste=yyaxdy =3 [ pLste = y)o(y) dxdy = s ol AL
BxB RN xRN




Three consequences of the rearrangment theorem

The quantitative rearrangement theorem says

1 1
5[] tsbeyyaxdr =5[] pttste = y)oty) dxdy = s lolf AL
BxB RN xRN

provided that ¢ < |b|1/N/(2||p||1/N) <1-o.

First consequence of this is Key Ingredient |: For any o > 0,

Zalp] — Za[15] > cnya Hp|\i;r%A[p]2 with a ball Bof measure |B| = ||p||,1 -

Proof. Use o
|x|* = a/ (1= 15,(x)) r“ldr
0

to write

I@[p]—Ia[]lB]:a/ <//B Lo(x — y dxdy——//IR O )p(y)dxdy> a1y

The integrand is > 0 (by Riesz and the bathtub principle) and > cn,s ||p||?: Alp]? for

re~ Hle/N (by our rearrangement theorem). O



Three consequences of the rearrangment theorem. Cont'd

The quantitative rearrangement theorem says

1 1
S [ etx-yyaxay =5[] pnste - y)oty) dxdy = el AP
BxB RN xRN

provided that § < [b]*/"/(2]p|[}{") <1 - 4.

Second consequence (not needed here) is a quantitative rearrangement ineq for Riesz
potentials: For any 0 < A < N,

A
Z_x[1g] — Z-A[p] > cn,a HpHil ¥ Alpl? with a ball Bof measure |B| = ||p||,1 -

Due to Burchard—Chambers for A = 1, N = 3, Fusco—Pratelli for 0 < A < N — 1.

Third consequence (not needed here) is a quantitative fractional isoperimetric ineq: For
any 0 <s <1,

Pers E — Pers B> cns |[E|* 7 A[lg]? with a ball Bof measure |[B| = |E|.

Weaker than Figalli-Fusco-Maggi—Millot—Morini, since we cannot let s — 1. (Related to
uncontrolled dependence of ¢s,n as § — 0. Open problem!)



THANK YOU FOR YOUR ATTENTION!

https:/ /tenor.com /view/penguins-bye-funny-animals-gif-14143308



