A 'liquid-solid' phase transition in a simple model for flocking

Rupert L. Frank
Caltech / LMU Munich

Minisymposium 'Geometric-functional inequalities and related topics' 8ECM Portoroz, June 22, 2021

Joint work with Elliott Lieb (Princeton)

Self-assembly/aggregation in biology and physics

Simple model for flocking/swarming/herding behavior in biology based on a competition between short-range repulsion and long-range attraction

Phase transition as the total number of birds, etc. changes
Think of tightly packed emperor penguins huddling in an Antarctic winter...

[^0]
The model of Burchard-Choksi-Topaloglu

Fix parameters $0<\lambda<N$ and $\alpha>0$.
Energy of 'particle' configuration with density $\rho: \mathbb{R}^{N} \rightarrow[0,1]$

$$
\mathcal{E}[\rho]=\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x)\left(\frac{1}{|x-y|^{\lambda}}+|x-y|^{\alpha}\right) \rho(y) d x d y
$$

Ground state energy (at total 'particle' number $m>0$)

$$
E(m)=\inf \left\{\mathcal{E}[\rho]: 0 \leq \rho \leq 1, \int_{\mathbb{R}^{N}} \rho(x) d x=m\right\}
$$

Interaction kernel $k(|x-y|)$, here $k(r)=r^{-\lambda}+r^{\alpha}$ repulsive at short distances, attactive at long distances
$k(r) \rightarrow \infty$ as $r \rightarrow 0$ and $r \rightarrow \infty$, unique min in-between

Important feature: constraint $\rho \leq 1$ on maximal value of density
Goal: understand minimizers for $E(m)$. Today, mostly for $m \gg 1$.

The main result

$$
E(m)=\inf \left\{\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x)\left(\frac{1}{|x-y|^{\lambda}}+|x-y|^{\alpha}\right) \rho(y) d x d y: 0 \leq \rho \leq 1, \int_{\mathbb{R}^{N}} \rho d x=m\right\}
$$

Theorem (F.-Lieb)

Let $0<\lambda<N-1$ and $\alpha>0$. Then there is an $m_{*}<\infty$ (depending on N, α and λ) such that for all $m>m_{*}$ the only minimizers for $E(m)$ are characteristic fcns of balls.

- It is not hard to see that minimizers for large m are close, in a suitable sense, to characteristic functions of balls. The theorem says they are exactly balls!
- The assumption $\lambda<N-1$ (as opposed to $\lambda<N$) is necessary. For $N-1 \leq \lambda<N$, characteristic fcns of balls are not even critical points.
- Our proof is based on quantitative rearrangement inequalities, and fundamentally different from arguments by Burchard-Choksi-Topaloglu and Lopes.
- Open questions about long-time convergence and convergence rate for the corresponding Wasserstein gradient flow (Craig-Kim-Yao, Craig-Topaloglu, ...)

Competition between attraction and repulsion

$$
\mathcal{E}[\rho]=\mathcal{I}_{-\lambda}[\rho]+\mathcal{I}_{\alpha}[\rho]
$$

with

$$
\mathcal{I}_{-\lambda}[\rho]=\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{\rho(x) \rho(y)}{|x-y|^{\lambda}} d x d y, \quad \mathcal{I}_{\alpha}[\rho]=\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x)|x-y|^{\alpha} \rho(y) d x d y .
$$

Rescale $\rho(x)=\sigma\left(x / m^{1 / N}\right)$ with $0 \leq \sigma \leq 1, \int_{\mathbb{R}^{N}} \sigma(x) d x=1$,

$$
\mathcal{E}[\rho]=m^{\frac{\alpha}{N}}\left(\mathcal{I}_{\alpha}[\sigma]+m^{-\frac{\lambda+\alpha}{N}} \mathcal{I}_{-\lambda}[\sigma]\right) .
$$

For large m, the λ-term is a small perturbation of the α-term.

- One can show that

$$
\inf \left\{\mathcal{I}_{\alpha}[\sigma]: 0 \leq \sigma \leq 1, \int \sigma=1\right\}=\mathcal{I}_{\alpha}\left[\mathbb{1}_{\mathcal{B}}\right] \quad \text { with a ball } \mathcal{B} \text { of measure }|\mathcal{B}|=1
$$

The α-term wants ρ to be a ball (long range attraction).

- However, one can also show that
$\sup \left\{\mathcal{I}_{-\lambda}[\sigma]: 0 \leq \sigma \leq 1, \int \sigma=1\right\}=\mathcal{I}_{-\lambda}\left[\mathbb{1}_{\mathcal{B}}\right] \quad$ with a ball \mathcal{B} of measure $|\mathcal{B}|=1$.
The λ-term wants ρ not to be a ball (short range repulsion).
- The two terms compete!

Main result: For large m, the α-term wins over the λ-term and there is no compromise.

The three key ingredients

$$
\begin{aligned}
A[\rho] & =\inf \left\{\left(2\|\rho\|_{L^{1}}\right)^{-1}\left\|\rho-\mathbb{1}_{\mathcal{B}}\right\|_{L^{1}}: \text { ball } \mathcal{B} \text { of measure }|\mathcal{B}|=\|\rho\|_{L^{1}}\right\} \\
A_{H}[\rho] & =\inf \left\{\theta \in[0,1]: \mathbb{1}_{(1-\theta) \mathcal{B}} \leq \rho \leq \mathbb{1}_{(1+\theta) \mathcal{B}}, \text { ball } \mathcal{B} \text { of measure }|\mathcal{B}|=\|\rho\|_{L^{1}}\right\} .
\end{aligned}
$$

Ingredient I

Let $\alpha>0$. Then for all $\rho \in L^{1}\left(\mathbb{R}^{N}\right)$ with $0 \leq \rho \leq 1$,

$$
\mathcal{I}_{\alpha}[\rho]-\mathcal{I}_{\alpha}\left[\mathbb{1}_{\mathcal{B}}\right] \geq c\|\rho\|_{L^{1}}^{2+\frac{\alpha}{N}} A[\rho]^{2} \quad \text { with a ball } \mathcal{B} \text { of measure }|\mathcal{B}|=\|\rho\|_{L^{1}}
$$

Ingredient II

Let $0<\lambda<N-1$. Then for all $\rho \in L^{1}\left(\mathbb{R}^{N}\right)$ with $0 \leq \rho \leq 1$,

$$
\mathcal{I}_{-\lambda}[\rho]-\mathcal{I}_{-\lambda}\left[\mathbb{1}_{\mathcal{B}}\right] \geq-C\|\rho\|_{L^{1}}^{2-\frac{\lambda}{N}} A_{H}[\rho]^{2} \quad \text { with a ball } \mathcal{B} \text { of measure }|\mathcal{B}|=\|\rho\|_{L^{1}}
$$

Ingredient III

If ρ is a minimizer for $E(m)$ with $m \geq m_{*}$, then

$$
A_{\mathrm{H}}[\rho] \leq C A[\rho] .
$$

These propositions imply the main theorem since for all large m and a minimizer ρ,

$$
0 \geq \mathcal{E}[\rho]-\mathcal{E}\left[\mathbb{1}_{\mathcal{B}}\right] \geq c\left(\|\rho\|_{L^{1}}^{2+\frac{\alpha}{N}}-C\|\rho\|_{L^{1}}^{2-\frac{\lambda}{N}}\right) A_{H}[\rho]^{2} \geq \frac{c}{2}\|\rho\|_{L^{1}}^{2+\frac{\alpha}{N}} A_{H}[\rho]^{2}
$$

Rearrangement

For a measurable set $E \subset \mathbb{R}^{N}$ of finite measure, let

$$
E^{*}=\text { ball in } \mathbb{R}^{N} \text {, centered at the origin, of measure }\left|E^{*}\right|=|E|
$$

Riesz rearrangement inequality: for all $E, F, G \subset \mathbb{R}^{N}$ of finite measure,

$$
\iint_{E \times F} \mathbb{1}_{G}(x-y) d x d y \leq \iint_{E^{*} \times F^{*}} \mathbb{1}_{G^{*}}(x-y) d x d y
$$

Cases of equality: Burchard (1996), stability bound: Christ (2017) Here, we only need the special case $E=F$ and $G=b=$ ball centered at the origin:

$$
\iint_{E \times E} \mathbb{1}_{b}(x-y) d x d y \leq \iint_{E^{*} \times E^{*}} \mathbb{1}_{b}(x-y) d x d y
$$

(implies isoperimetric ineq!), but we allow $0 \leq \rho \leq 1$ with fixed measure instead of $\mathbb{1}_{E}$.

Theorem (Christ, F.-Lieb)

Let $0<\delta \leq \frac{1}{2}$. Then there is a $c_{N, \delta}>0$ such that for any $\rho \in L^{1}\left(\mathbb{R}^{N}\right)$ with $0 \leq \rho \leq 1$ and any ball $b \subset \mathbb{R}^{N}$ with

$$
\delta \leq|b|^{1 / N} /\left(2\|\rho\|_{L^{1}}^{1 / N}\right) \leq 1-\delta
$$

one has, with $\mathcal{B}=$ ball, concentric with b, of measure $|\mathcal{B}|=\|\rho\|_{L^{1}}$,

$$
\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_{b}(x-y) d x d y-\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x) \mathbb{1}_{b}(x-y) \rho(y) d x d y \geq c_{N, \delta}\|\rho\|_{L^{1}}^{2} A[\rho]^{2}
$$

Three consequences of the rearrangment theorem

The quantitative rearrangement theorem says

$$
\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_{b}(x-y) d x d y-\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x) \mathbb{1}_{b}(x-y) \rho(y) d x d y \geq c_{N, \delta}\|\rho\|_{L^{1}}^{2} A[\rho]^{2}
$$

provided that $\delta \leq|b|^{1 / N} /\left(2\|\rho\|_{L^{1}}^{1 / N}\right) \leq 1-\delta$.
First consequence of this is Key Ingredient I: For any $\alpha>0$,

$$
\mathcal{I}_{\alpha}[\rho]-\mathcal{I}_{\alpha}\left[\mathbb{1}_{\mathcal{B}}\right] \geq c_{N, \alpha}\|\rho\|_{L^{1}}^{2+\frac{\alpha}{N}} A[\rho]^{2}
$$

with a ball \mathcal{B} of measure $|\mathcal{B}|=\|\rho\|_{L^{1}}$.

Proof. Use

$$
|x|^{\alpha}=\alpha \int_{0}^{\infty}\left(1-\mathbb{1}_{b_{r}}(x)\right) r^{\alpha-1} d r
$$

to write
$\mathcal{I}_{\alpha}[\rho]-\mathcal{I}_{\alpha}\left[\mathbb{1}_{\mathcal{B}}\right]=\alpha \int_{0}^{\infty}\left(\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_{b_{r}}(x-y) d x d y-\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x) \mathbb{1}_{b_{r}}(x-y) \rho(y) d x d y\right) r^{\alpha-1} d r$
The integrand is ≥ 0 (by Riesz and the bathtub principle) and $\geq c_{N, \delta}\|\rho\|_{L^{1}}^{2} A[\rho]^{2}$ for $r \sim\|\rho\|_{L^{1}}^{1 / N}$ (by our rearrangement theorem).

Three consequences of the rearrangment theorem. Cont'd

The quantitative rearrangement theorem says

$$
\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_{b}(x-y) d x d y-\frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x) \mathbb{1}_{b}(x-y) \rho(y) d x d y \geq c_{N, \delta}\|\rho\|_{L^{1}}^{2} A[\rho]^{2}
$$

provided that $\delta \leq|b|^{1 / N} /\left(2\|\rho\|_{L^{1}}^{1 / N}\right) \leq 1-\delta$.
Second consequence (not needed here) is a quantitative rearrangement ineq for Riesz potentials: For any $0<\lambda<N$,

$$
\mathcal{I}_{-\lambda}\left[\mathbb{1}_{\mathcal{B}}\right]-\mathcal{I}_{-\lambda}[\rho] \geq c_{N, \lambda}\|\rho\|_{L^{1}}^{2-\frac{\lambda}{N}} A[\rho]^{2} \quad \text { with a ball } \mathcal{B} \text { of measure }|\mathcal{B}|=\|\rho\|_{L^{1}}
$$

Due to Burchard-Chambers for $\lambda=1, N=3$, Fusco-Pratelli for $0<\lambda<N-1$.
Third consequence (not needed here) is a quantitative fractional isoperimetric ineq: For any $0<s<1$,

$$
\operatorname{Per}_{s} E-\operatorname{Per}_{s} \mathcal{B} \geq c_{N, s}|E|^{1-\frac{s}{N}} A\left[\mathbb{1}_{E}\right]^{2}
$$

$$
\text { with a ball } \mathcal{B} \text { of measure }|\mathcal{B}|=|E|
$$

Weaker than Figalli-Fusco-Maggi-Millot-Morini, since we cannot let $s \rightarrow 1$. (Related to uncontrolled dependence of $c_{\delta, N}$ as $\delta \rightarrow 0$. Open problem!)

THANK YOU FOR YOUR ATTENTION!

https://tenor.com/view/penguins-bye-funny-animals-gif-14143308

[^0]: (C)Fred Olivier / naturepl.com; picture used by Rougerie and Yngvason to metaphorically describe their results on Laughlin's wave function in the FQHE

