A 'liquid-solid' phase transition in a simple model for flocking

Rupert L. Frank

Caltech / LMU Munich

Minisymposium 'Geometric-functional inequalities and related topics' 8ECM Portoroz, June 22, 2021

Joint work with Elliott Lieb (Princeton)

Self-assembly/aggregation in biology and physics

Simple model for flocking/swarming/herding behavior in biology based on a competition between short-range repulsion and long-range attraction

Phase transition as the total number of birds, etc. changes

Think of tightly packed emperor penguins huddling in an Antarctic winter...

© Fred Olivier / naturepl.com; picture used by Rougerie and Yngvason to metaphorically describe their results on Laughlin's wave function in the FQHE

The model of Burchard-Choksi-Topaloglu

Fix parameters $0 < \lambda < N$ and $\alpha > 0$.

Energy of 'particle' configuration with density $\rho: \mathbb{R}^N o [0,1]$

$$\mathcal{E}[\rho] = \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \rho(x) \left(\frac{1}{|x - y|^{\lambda}} + |x - y|^{\alpha} \right) \rho(y) \, dx \, dy$$

Ground state energy (at total 'particle' number m > 0)

$$E(m) = \inf \left\{ \mathcal{E}[\rho] : \ 0 \le \rho \le 1, \ \int_{\mathbb{R}^N} \rho(x) \, dx = m \right\}$$

Interaction kernel k(|x-y|), here $k(r) = r^{-\lambda} + r^{\alpha}$ repulsive at short distances, attactive at long distances

 $k(r) \rightarrow \infty$ as $r \rightarrow 0$ and $r \rightarrow \infty$, unique min in-between

Important feature: constraint $\rho \leq 1$ on maximal value of density

Goal: understand minimizers for E(m). Today, mostly for $m \gg 1$.

The main result

$$E(m) = \inf \left\{ \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \rho(x) \left(\frac{1}{|x - y|^{\lambda}} + |x - y|^{\alpha} \right) \rho(y) \, dx \, dy : \, 0 \le \rho \le 1, \, \int_{\mathbb{R}^N} \rho \, dx = m \right\}$$

Theorem (F.-Lieb)

Let $0 < \lambda < N-1$ and $\alpha > 0$. Then there is an $m_* < \infty$ (depending on N, α and λ) such that for all $m > m_*$ the only minimizers for E(m) are characteristic fcns of balls.

- It is not hard to see that minimizers for large m are close, in a suitable sense, to characteristic functions of balls. The theorem says they are exactly balls!
- The assumption $\lambda < N-1$ (as opposed to $\lambda < N$) is necessary. For $N-1 \le \lambda < N$, characteristic fcns of balls are not even critical points.
- Our proof is based on quantitative rearrangement inequalities, and fundamentally different from arguments by Burchard-Choksi-Topaloglu and Lopes.
- Open questions about long-time convergence and convergence rate for the corresponding Wasserstein gradient flow (Craig-Kim-Yao, Craig-Topaloglu, . . .)

Competition between attraction and repulsion

$$\mathcal{E}[\rho] = \mathcal{I}_{-\lambda}[\rho] + \mathcal{I}_{\alpha}[\rho]$$

with

$$\mathcal{I}_{-\lambda}[\rho] = \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\rho(x) \, \rho(y)}{|x - y|^{\lambda}} \, dx \, dy \,, \quad \mathcal{I}_{\alpha}[\rho] = \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \rho(x) |x - y|^{\alpha} \rho(y) \, dx \, dy \,.$$

Rescale $\rho(x) = \sigma(x/m^{1/N})$ with $0 \le \sigma \le 1$, $\int_{\mathbb{D}^N} \sigma(x) dx = 1$,

$$\mathcal{E}[\rho] = m^{\frac{\alpha}{N}} \left(\mathcal{I}_{\alpha}[\sigma] + m^{-\frac{\lambda + \alpha}{N}} \mathcal{I}_{-\lambda}[\sigma] \right).$$

For large m, the λ -term is a small perturbation of the α -term.

- One can show that
 - $\inf\left\{\mathcal{I}_{\alpha}[\sigma]:\ 0\leq\sigma\leq1,\int\sigma=1\right\}=\mathcal{I}_{\alpha}[\mathbb{1}_{\mathcal{B}}]\qquad\text{with a ball \mathcal{B} of measure }|\mathcal{B}|=1\,.$

The α -term wants ρ to be a ball (long range attraction).

• However, one can also show that

$$\sup\left\{\mathcal{I}_{-\lambda}[\sigma]:\ 0\leq\sigma\leq1,\int\sigma=1\right\}=\mathcal{I}_{-\lambda}[\mathbb{1}_{\mathcal{B}}]\qquad\text{with a ball \mathcal{B} of measure }|\mathcal{B}|=1\,.$$

The λ -term wants ρ not to be a ball (short range repulsion).

• The two terms compete!

Main result: For large m, the α -term wins over the λ -term and there is no compromise.

The three key ingredients

$$\begin{split} A[\rho] &= \inf \left\{ \left(2\|\rho\|_{L^1} \right)^{-1} \, \|\rho - \mathbb{1}_{\mathcal{B}}\|_{L^1} : \text{ ball } \mathcal{B} \text{ of measure } |\mathcal{B}| = \|\rho\|_{L^1} \right\}, \\ A_{\mathrm{H}}[\rho] &= \inf \left\{ \theta \in [0,1] : \, \mathbb{1}_{(1-\theta)\mathcal{B}} \leq \rho \leq \mathbb{1}_{(1+\theta)\mathcal{B}}, \text{ ball } \mathcal{B} \text{ of measure } |\mathcal{B}| = \|\rho\|_{L^1} \right\}. \end{split}$$

Ingredient I

Let $\alpha>0$. Then for all $\rho\in L^1(\mathbb{R}^N)$ with $0\leq\rho\leq 1$, $\mathcal{I}_{\alpha}[\rho]-\mathcal{I}_{\alpha}[\mathbb{1}_{\mathcal{B}}]\geq c\;\|\rho\|_{L^1}^{2+\frac{\alpha}{N}}A[\rho]^2\qquad\text{with a ball \mathcal{B} of measure }|\mathcal{B}|=\|\rho\|_{L^1}\,.$

Ingredient II

Let $0 < \lambda < \mathit{N} - 1$. Then for all $\rho \in \mathit{L}^1(\mathbb{R}^{\mathit{N}})$ with $0 \leq \rho \leq 1$,

$$\mathcal{I}_{-\lambda}[\rho] - \mathcal{I}_{-\lambda}[\mathbb{1}_{\mathcal{B}}] \ge -C \|\rho\|_{L^1}^{2-\frac{\lambda}{N}} A_{\mathrm{H}}[\rho]^2 \qquad \text{with a ball } \mathcal{B} \text{ of measure } |\mathcal{B}| = \|\rho\|_{L^1}.$$

Ingredient III

If ho is a minimizer for E(m) with $m \geq m_*$, then $A_{
m H}[
ho] < C A[
ho]$.

These propositions imply the main theorem since for all large m and a minimizer ρ , $0 \geq \mathcal{E}[\rho] - \mathcal{E}[\mathbb{1}_{\mathcal{B}}] \geq c \left(\|\rho\|_{L^1}^{2+\frac{\alpha}{N}} - C\|\rho\|_{L^1}^{2-\frac{\lambda}{N}} \right) A_{\mathrm{H}}[\rho]^2 \geq \frac{c}{2} \|\rho\|_{L^1}^{2+\frac{\alpha}{N}} A_{\mathrm{H}}[\rho]^2$

Rearrangement

For a measurable set $E \subset \mathbb{R}^N$ of finite measure, let

$$E^* = \text{ball in } \mathbb{R}^N$$
, centered at the origin, of measure $|E^*| = |E|$.

Riesz rearrangement inequality: for all $E, F, G \subset \mathbb{R}^N$ of finite measure,

$$\iint_{E\times F} \mathbb{1}_G(x-y)\,dx\,dy \leq \iint_{E^*\times F^*} \mathbb{1}_{G^*}(x-y)\,dx\,dy$$

Cases of equality: Burchard (1996), stability bound: Christ (2017)

Here, we only need the special case E = F and G = b = ball centered at the origin:

$$\iint_{E\times E} \mathbb{1}_b(x-y) \, dx \, dy \leq \iint_{E^*\times E^*} \mathbb{1}_b(x-y) \, dx \, dy$$

(implies isoperimetric ineq!), but we allow $0 \le \rho \le 1$ with fixed measure instead of $\mathbb{1}_E$.

Theorem (Christ, F.-Lieb)

Let $0 < \delta \le \frac{1}{2}$. Then there is a $c_{N,\delta} > 0$ such that for any $\rho \in L^1(\mathbb{R}^N)$ with $0 \le \rho \le 1$ and any ball $b \subset \mathbb{R}^N$ with

$$\delta \leq |b|^{1/N}/(2\|\rho\|_{L^{1}}^{1/N}) \leq 1-\delta$$

one has, with $\mathcal{B}=$ ball, concentric with b, of measure $|\mathcal{B}|=\|\rho\|_{l^1}$,

$$\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_b(x-y) \, dx \, dy - \frac{1}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} \rho(x) \mathbb{1}_b(x-y) \rho(y) \, dx \, dy \geq c_{N,\delta} \left\|\rho\right\|_{L^1}^2 A[\rho]^2 \, .$$

Three consequences of the rearrangment theorem

The quantitative rearrangement theorem says

$$\boxed{\frac{1}{2}\iint_{\mathcal{B}\times\mathcal{B}}\mathbb{1}_b(x-y)\,dx\,dy-\frac{1}{2}\iint_{\mathbb{R}^N\times\mathbb{R}^N}\rho(x)\mathbb{1}_b(x-y)\rho(y)\,dx\,dy\geq c_{N,\delta}\,\|\rho\|_{L^1}^2\,\textbf{A}[\rho]^2}$$

provided that $\delta \leq |b|^{1/N}/(2\|\rho\|_{L^{1}}^{1/N}) \leq 1 - \delta$.

First consequence of this is Key Ingredient I: For any $\alpha > 0$,

$$\mathcal{I}_{\alpha}[\rho] - \mathcal{I}_{\alpha}[\mathbb{1}_{\mathcal{B}}] \geq c_{\mathsf{N},\alpha} \left\|\rho\right\|_{L^{1}}^{2+\frac{\alpha}{N}} \mathsf{A}[\rho]^{2}$$

with a ball ${\mathcal B}$ of measure $|{\mathcal B}| = \|
ho\|_{L^1}$.

Proof. Use

$$|x|^{\alpha} = \alpha \int_{-\infty}^{\infty} (1 - \mathbb{1}_{b_r}(x)) r^{\alpha - 1} dr$$

to write

$$\mathcal{I}_{\alpha}[\rho] - \mathcal{I}_{\alpha}[\mathbb{1}_{\mathcal{B}}] = \alpha \int_{0}^{\infty} \left(\frac{1}{2} \iint_{\mathcal{B} \times \mathcal{B}} \mathbb{1}_{b_{r}}(x - y) dx dy - \frac{1}{2} \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \rho(x) \mathbb{1}_{b_{r}}(x - y) \rho(y) dx dy\right) r^{\alpha - 1} dr$$

The integrand is ≥ 0 (by Riesz and the bathtub principle) and $\geq c_{N,\delta} \|\rho\|_{L^1}^2 A[\rho]^2$ for $r \sim \|\rho\|_{L^1}^{1/N}$ (by our rearrangement theorem).

Three consequences of the rearrangment theorem. Cont'd

The quantitative rearrangement theorem says

$$\boxed{\frac{1}{2}\iint_{\mathcal{B}\times\mathcal{B}}\mathbb{1}_b(x-y)\,dx\,dy-\frac{1}{2}\iint_{\mathbb{R}^N\times\mathbb{R}^N}\rho(x)\mathbb{1}_b(x-y)\rho(y)\,dx\,dy\geq c_{N,\delta}\left\|\rho\right\|_{L^1}^2\boldsymbol{A}\!\left[\rho\right]^2}$$

provided that $\delta \leq |b|^{1/N}/(2\|\rho\|_{L^{1}}^{1/N}) \leq 1 - \delta$.

Second consequence (not needed here) is a quantitative rearrangement ineq for Riesz potentials: For any $0 < \lambda < N$,

$$\mathcal{I}_{-\lambda}[\mathbb{1}_{\mathcal{B}}] - \mathcal{I}_{-\lambda}[\rho] \geq c_{\mathsf{N},\lambda} \, \|\rho\|_{L^1}^{2-\frac{\lambda}{N}} \mathbf{A}[\rho]^2 \qquad \text{with a ball \mathcal{B} of measure } |\mathcal{B}| = \|\rho\|_{L^1} \, .$$

Due to Burchard–Chambers for $\lambda = 1$, N = 3, Fusco–Pratelli for $0 < \lambda < N - 1$.

Third consequence (not needed here) is a quantitative fractional isoperimetric ineq: For any 0 < s < 1,

$$\mathsf{Per}_{\mathsf{s}}\,E - \mathsf{Per}_{\mathsf{s}}\,\mathcal{B} \geq c_{\mathsf{N},\mathsf{s}}\,|E|^{1-\frac{\mathsf{s}}{N}}\,\mathsf{A}[\mathbbm{1}_E]^2$$
 with a ball \mathcal{B} of measure $|\mathcal{B}| = |E|$.

Weaker than Figalli–Fusco–Maggi–Millot–Morini, since we cannot let $s \to 1$. (Related to uncontrolled dependence of $c_{\delta,N}$ as $\delta \to 0$. Open problem!)

THANK YOU FOR YOUR ATTENTION!

https://tenor.com/view/penguins-bye-funny-animals-gif-14143308