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Fuglede’s conjecture in Rn

Let Ω ⊂ Rn be a bounded measurable set with λ(Ω) > 0.
We say that

I Ω is a tile, if ∃T ⊂ Rn s. t. λ-a.a. x can be uniquely written
as the sum of an element of Ω and an element of T .
T is a tiling complement of Ω.

I Ω is spectral, if there is a base of L2(Ω) consisting only of
exponential functions {f (x) = e2πi<x ,λ>|λ ∈ Λ}.
Λ is called a spectrum for Ω.

Conjecture (Fuglede’s conjecture (1974))

The spectral sets are the tiles in Rn.



Historical background

Theorem (Fuglede ’74)

If Ω is a tile with a tiling complement, which is a lattice, then Ω is
spectral.

After some positive results T. Tao [10] disproved the conjecture.

Theorem (Tao ’04)

Fuglede’s conjecture fails in Rn if n ≥ 5. There exists a spectral
set that is not a tile.

This was improved in two ways.

I There were found some non-tiling spectral sets in Rn for
n ≥ 3 by M. Kolountzakis and M. Matolcsi [6].

I There were shown non-spectral tiles in Rn for n ≥ 3 by B.
Farkas, M. Matolcsi and P. Móra [2].

Both directions of the conjecture are still open in R and R2.



Spectral sets and tiles in finite Abelian groups

Let G be a finite Abelian group and Ĝ the set of irreducible
representations of G . Well-known that G ' Ĝ .
The elements of Ĝ can be indexed by the elements of G .

I S ⊂ G is spectral if there exists a Λ ⊂ G such that (χl)l∈Λ is
an orthogonal base of complex valued functions defined on S .

I If Λ is a spectrum for S , then S is a spectrum for Λ. We say
that (S ,Λ) is a spectral pair and |S | = |Λ|.

I S ⊂ G is a tile of G if there is a T ⊂ G such that S + T = G
and |S | · |T | = |G |. We denote this by S

⊕
T .



Fuglede’s conjecture on finite Abelian groups

Conjecture (Discrete Fuglede’s conjecture)

Let G be an Abelian group. Then the spectral sets and the tiles
coincide.

All counterexamples Rn are based on counterexamples for the
discrete version of Fuglede’s conjecture.

I Tao [10] proved that in (Z2)11 and in (Z3)5 there is a
non-tiling spectral set.

I Kolounztakis and Matolcsi [6] showed a non-tiling spectral set
in (Z8)3.

I Farkas, Matolcsi, Móra [2] showed a non-spectral tile in
(Z24)3.

Question
For which groups does Fuglede’s conjecture hold?



Connections of cyclic groups and one dimension

T − S(G ): Tile ⇒ spectral direction holds on G
S − T (G ): Spectral ⇒tile direction holds on G .
Dutkay and Lai [1] proved the following:

T − S(R)⇔ T − S(Z)⇔ T − S(ZN),

S − T (R)⇒ S − T (Z)⇒ S − T (ZN),

where T − S(ZN) means that T − S(Zn) holds for every n ∈ N.



Positive results for cyclic groups

The conjecture holds for

I Zpn , where p is a prime and n ∈ N,

I Zpnqk , where p, q are primes, n, k ∈ N and min(n, k) ≤ 6 by
[8],

I Zpqr ,Zp2qr , where p, q, r are primes.

Theorem (K.-Malikiosis-Somlai-Vizer, [5])

Fuglede’s conjecture holds for Zpqrs , where p, q, r , s are primes.

Conjecture

Fuglede’s conjecture holds for every cyclic group.



Tiles of cyclic groups

Lemma (Tijdeman’s dilation lemma)

Let A
⊕

B = ZN .

I If p is a prime such that p - |A|, then pA
⊕

B = ZN .

I If (k , |A|) = 1, then kA
⊕

B = ZN .

Lemma (Sand)

A
⊕

B = ZN if and only if N = |A||B| and the subsets A− A and
B − B contain no non-zero elements of the same order.



Cowen-Meyerowitz: Property (T1) and (T2)

To a set S ⊆ ZN one can associate a polynomial mS(x), called the
mask polynomial of S , defined as mS(x) =

∑
s∈S x

s . Let HS be
the set of prime powers ra dividing N such that Φra(x) | mS(x).

(T1) mS(1) =
∏

d∈HS
Φd(1).

(T2) For pairwise relative prime elements si of HS , Φ∏
si | mS(x).

Theorem
Let S ⊆ ZN . Then the following statements hold.

1. If S satisfies (T1) and (T2), then S tiles ZN .

2. If S tiles the ZN , then S satisfies (T1).

3. If S satisfies (T1) and (T2), then S is a spectral set.



Spectral sets in ZN

Let S ⊆ ZN be a spectral set with spectrum Λ. (i.e. (S ,Λ) is a
spectral pair.)
Reformulation of spectrality: |S | = |Λ| and

1. Λ− Λ ⊆ {0} ∪ {x ∈ ZN : 1̂S(x) = 0}, where 1S is the
characteristic function of S , and f̂ (x) =

∑
y∈ZN

f (y)ξ−xyN is
the (discrete) Fourier transform of f : G → C.

1’. Λ− Λ ⊆ {0} ∪ {d | N ∈ N : mS(ξd) = 0}.
Note that : if g ∈ Z?N , then mS(ξd) = 0⇒ mS(ξgd ) = 0.
Thus

mS(ξd) = 0⇐⇒ Φd | mS .



Equidistributivity property

Let mS(ξp) = 0 (⇔ Φp | mS).

The minimal polynomial of ξp = e
2πi
p over Q is

∑p−1
j=0 x j . It implies

that the sets Sk := {u ∈ S : u ≡ k (mod p)} satisfies

|Sk | =
|S |
p

for each k = 0, . . . , p − 1.

Corollary

If d ∈ Λ− Λ with o(d) = p, then p | |S | = |Λ|.



Cube rule I.

Let mS(ξn) = 0 for some n = p1 · · · pk | N (⇔ Φn | mS).
Then Zn

∼= Zp1

⊕
· · ·

⊕
Zpk ≤ ZN can be taken as a subset of the

k-dimensional integer grid and SZn denote the projection of S to
Zn. A subset C of Zn an k-dimensional cube, if C =

⊕k
i=1 Ai ,

where Ai ⊂ Zpi with |Ai | = 2.

Lemma (Cube rule, [4])

Let n and N as above and mS(ξn) = 0. Then for every
k-dimensional cube C and c0 ∈ C the following hold∑

c∈C
(−1)dH(c0,c)SZn(c) = 0.

Equivalently, if mS(ξn) = 0 then SZn is the weighted sum of
Zp1-,. . . , Zpk -cosets with rational coefficients.



Cube rule II.

I Cube rule implies equidistributivity for n = p.

I For n = p1 · p2 we can more specific:

Lemma (Lam and Leung [7])

If n = p1 · p2 then mS(ξn) = 0 implies that the multiset SZn is the
weighted sum of Zp1- and Zp2-cosets with nonnegative integer
coefficients.



Tile-spectral direction on ZN for squarefree N

The following result was realized by I.  Laba and A. Meyerowitz,
and rediscovered by R. Shi [9].

Lemma
Let N be squarefree and A,B sets such that A

⊕
B = ZN , where

|A| = k . Then A
⊕

kB = ZN and kB is a subgroup.

The proof is based on Tijdeman’s result: if (p, |B|) = 1, then
A
⊕

pB = ZN and pB is the set where we forgot the p-th
coordinate of B.
It simply follows from this lemma that conditions (T1) and (T2)
holds for B, which implies that B is spectral. Similarly, A is
spectral.



Spectral-tile direction on ZN for squarefree N

Lemma
Let (S ,Λ) be a spectral pair in ZN . If S or Λ is the union of
Zp-cosets, then S is a tile.

In some cases we show that if S ⊂ ZN is spectral, then it is a tile:

I If |S | = 1 or |S | = N, then it is trivial.

I If N = p and |S | > 1, then Φp | mS hence p | |S |. Thus
p = |S |.

I If N = p1p2 and |S | > 1, then we have the following cases:

1. Φp1 Φp2 | mS =⇒ |S | = p1p2

2. Φp1p2 | mS , then by the cube rule S is the union of Zp1 -cosets
(or Zp2 -cosets.)

3. Φp1 - mS and Φp1p2 - mS , then Φp2 | mS (i.e. p2 | |S | and S is
equidistributed) and every nonzero element of Λ− Λ is of order
p2, hence |S | = p2 and S is a tile.



Spectral-tile direction on ZN for squarefree N

If N = p1p2p3 and |S | > 1, then we distinguish two cases.

I If Φp1p2p3 - mS then either |S | = pi and S is equidistributed or
we can apply the 2-dimensional cube rule, which reduce the
problem to the previous case.

I If Φp1p2p3 | mS , then we apply 3-dimensional cube rule.

1. If dH(x , y) = 1 for all x , y ∈ S , then S is a Zpi -coset.
2. If dH(x , y) = 3 for all x , y ∈ S , then by 3d cube rule we get a

contradiction.
3. If dH(x , y) = 2 for some x , y ∈ S , then by 3d cube rule we get

that S is the union of Zpi -cosets.

The result for N = p1p2p3p4 is similar case-by-case argument, but
much more complicated.



Some particular open problem

Question
Does Fuglede’s conjecture hold for

1. ZN , where N is squarefree (e.g. N = p1 · · · p5)?

2. Zpnqk , where p, q are different primes and n, k ∈ N?
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