Discrete Fuglede conjecture on cyclic groups

Gergely Kiss
Alfréd Rényi Institute of Mathematics
（joint work with Romanos D．Malikiosis， Gábor Somlai and Máté Vizer）

$8^{\text {th }}$ European Congress of Mathematics
Portorož，Slovenia

Fuglede's conjecture in \mathbb{R}^{n}

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded measurable set with $\lambda(\Omega)>0$.
We say that

- Ω is a tile, if $\exists T \subset \mathbb{R}^{n}$ s. t. λ-a.a. x can be uniquely written as the sum of an element of Ω and an element of T. T is a tiling complement of Ω.
- Ω is spectral, if there is a base of $L^{2}(\Omega)$ consisting only of exponential functions $\left\{f(x)=e^{2 \pi i<x, \lambda>} \mid \lambda \in \Lambda\right\}$.
Λ is called a spectrum for Ω.
Conjecture (Fuglede's conjecture (1974))
The spectral sets are the tiles in \mathbb{R}^{n}.

Historical background

Theorem (Fuglede '74)
If Ω is a tile with a tiling complement, which is a lattice, then Ω is spectral.
After some positive results T. Tao [10] disproved the conjecture.
Theorem (Tao '04)
Fuglede's conjecture fails in \mathbb{R}^{n} if $n \geq 5$. There exists a spectral set that is not a tile.
This was improved in two ways.

- There were found some non-tiling spectral sets in \mathbb{R}^{n} for $n \geq 3$ by M. Kolountzakis and M. Matolcsi [6].
- There were shown non-spectral tiles in \mathbb{R}^{n} for $n \geq 3$ by B. Farkas, M. Matolcsi and P. Móra [2].
Both directions of the conjecture are still open in \mathbb{R} and \mathbb{R}^{2}.

Spectral sets and tiles in finite Abelian groups

Let G be a finite Abelian group and \widehat{G} the set of irreducible representations of G. Well-known that $G \simeq \widehat{G}$.
The elements of \widehat{G} can be indexed by the elements of G.
$-S \subset G$ is spectral if there exists a $\Lambda \subset G$ such that $\left(\chi_{l}\right)_{I \in \Lambda}$ is an orthogonal base of complex valued functions defined on S.

- If Λ is a spectrum for S, then S is a spectrum for Λ. We say that (S, Λ) is a spectral pair and $|S|=|\Lambda|$.
- $S \subset G$ is a tile of G if there is a $T \subset G$ such that $S+T=G$ and $|S| \cdot|T|=|G|$. We denote this by $S \bigoplus T$.

Fuglede's conjecture on finite Abelian groups

Conjecture (Discrete Fuglede's conjecture)

Let G be an Abelian group. Then the spectral sets and the tiles coincide.
All counterexamples \mathbb{R}^{n} are based on counterexamples for the discrete version of Fuglede's conjecture.

- Tao [10] proved that in $\left(\mathbb{Z}_{2}\right)^{11}$ and in $\left(\mathbb{Z}_{3}\right)^{5}$ there is a non-tiling spectral set.
- Kolounztakis and Matolcsi [6] showed a non-tiling spectral set in $\left(\mathbb{Z}_{8}\right)^{3}$.
- Farkas, Matolcsi, Móra [2] showed a non-spectral tile in $\left(\mathbb{Z}_{24}\right)^{3}$.

Question

For which groups does Fuglede's conjecture hold?

Connections of cyclic groups and one dimension

$T-S(G)$: Tile \Rightarrow spectral direction holds on G
$S-T(G)$: Spectral \Rightarrow tile direction holds on G.
Dutkay and Lai [1] proved the following:

$$
\begin{aligned}
& T-S(\mathbb{R}) \Leftrightarrow T-S(\mathbb{Z}) \Leftrightarrow T-S\left(\mathbb{Z}_{\mathbb{N}}\right) \\
& S-T(\mathbb{R}) \Rightarrow S-T(\mathbb{Z}) \Rightarrow S-T\left(\mathbb{Z}_{\mathbb{N}}\right)
\end{aligned}
$$

where $T-S\left(\mathbb{Z}_{\mathbb{N}}\right)$ means that $T-S\left(\mathbb{Z}_{n}\right)$ holds for every $n \in \mathbb{N}$.

Positive results for cyclic groups

The conjecture holds for

- $\mathbb{Z}_{p^{n}}$, where p is a prime and $n \in \mathbb{N}$,
$-\mathbb{Z}_{p^{n} q^{k}}$, where p, q are primes, $n, k \in \mathbb{N}$ and $\min (n, k) \leq 6$ by [8],
- $\mathbb{Z}_{p q r}, \mathbb{Z}_{p^{2} q r}$, where p, q, r are primes.

Theorem (K.-Malikiosis-Somlai-Vizer, [5])
Fuglede's conjecture holds for $\mathbb{Z}_{p q r s}$, where p, q, r, s are primes.

Conjecture

Fuglede's conjecture holds for every cyclic group.

Tiles of cyclic groups

Lemma (Tijdeman's dilation lemma)
Let $A \bigoplus B=\mathbb{Z}_{N}$.

- If p is a prime such that $p \nmid|A|$, then $p A \bigoplus B=\mathbb{Z}_{N}$.
- If $(k,|A|)=1$, then $k A \bigoplus B=\mathbb{Z}_{N}$.

Lemma (Sand)
$A \bigoplus B=\mathbb{Z}_{N}$ if and only if $N=|A||B|$ and the subsets $A-A$ and
$B-B$ contain no non-zero elements of the same order.

Cowen-Meyerowitz: Property (T1) and (T2)

To a set $S \subseteq \mathbb{Z}_{N}$ one can associate a polynomial $m_{S}(x)$, called the mask polynomial of S, defined as $m_{S}(x)=\sum_{s \in S} x^{s}$. Let H_{S} be the set of prime powers r^{a} dividing N such that $\Phi_{r^{a}}(x) \mid m_{S}(x)$.
(T1) $m_{S}(1)=\prod_{d \in H_{S}} \Phi_{d}(1)$.
(T2) For pairwise relative prime elements s_{i} of $H_{S}, \Phi_{\prod s_{i}} \mid m_{S}(x)$.

Theorem

Let $S \subseteq \mathbb{Z}_{N}$. Then the following statements hold.

1. If S satisfies ($T 1$) and (T2), then S tiles \mathbb{Z}_{N}.
2. If S tiles the \mathbb{Z}_{N}, then S satisfies ($T 1$).
3. If S satisfies (T1) and (T2), then S is a spectral set.

Spectral sets in \mathbb{Z}_{N}

Let $S \subseteq \mathbb{Z}_{N}$ be a spectral set with spectrum Λ. (i.e. (S, Λ) is a spectral pair.)
Reformulation of spectrality: $|S|=|\Lambda|$ and

1. $\Lambda-\Lambda \subseteq\{0\} \cup\left\{x \in \mathbb{Z}_{N}: \hat{1}_{S}(x)=0\right\}$, where 1_{S} is the characteristic function of S, and $\hat{f}(x)=\sum_{y \in \mathbb{Z}_{N}} f(y) \xi_{N}^{-x y}$ is the (discrete) Fourier transform of $f: G \rightarrow \mathbb{C}$.

$$
1^{\prime} . \Lambda-\Lambda \subseteq\{0\} \cup\left\{d \mid N \in \mathbb{N}: m_{S}\left(\xi_{d}\right)=0\right\}
$$

Note that: if $g \in \mathbb{Z}_{N}^{\star}$, then $m_{S}\left(\xi_{d}\right)=0 \Rightarrow m_{S}\left(\xi_{d}^{g}\right)=0$. Thus

$$
m_{S}\left(\xi_{d}\right)=0 \Longleftrightarrow \Phi_{d} \mid m_{S}
$$

Equidistributivity property

Let $m_{S}\left(\xi_{p}\right)=0\left(\Leftrightarrow \Phi_{p} \mid m_{S}\right)$.
The minimal polynomial of $\xi_{p}=e^{\frac{2 \pi i}{p}}$ over \mathbb{Q} is $\sum_{j=0}^{p-1} x^{j}$. It implies that the sets $S_{k}:=\{u \in S: u \equiv k(\bmod p)\}$ satisfies

$$
\left|S_{k}\right|=\frac{|S|}{p}
$$

for each $k=0, \ldots, p-1$.
Corollary
If $d \in \Lambda-\Lambda$ with $o(d)=p$, then $p||S|=|\Lambda|$.

Cube rule I.

Let $m_{S}\left(\xi_{n}\right)=0$ for some $n=p_{1} \cdots p_{k} \mid N\left(\Leftrightarrow \Phi_{n} \mid m_{S}\right)$.
Then $\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}} \bigoplus \cdots \bigoplus \mathbb{Z}_{p_{k}} \leq \mathbb{Z}_{N}$ can be taken as a subset of the k-dimensional integer grid and $S_{\mathbb{Z}_{n}}$ denote the projection of S to \mathbb{Z}_{n}. A subset C of \mathbb{Z}_{n} an k-dimensional cube, if $C=\bigoplus_{i=1}^{k} A_{i}$, where $A_{i} \subset \mathbb{Z}_{p_{i}}$ with $\left|A_{i}\right|=2$.
Lemma (Cube rule, [4])
Let n and N as above and $m_{S}\left(\xi_{n}\right)=0$. Then for every k-dimensional cube C and $c_{0} \in C$ the following hold

$$
\sum_{c \in C}(-1)^{d_{H}\left(c_{0}, c\right)} S_{\mathbb{Z}_{n}}(c)=0
$$

Equivalently, if $m_{S}\left(\xi_{n}\right)=0$ then $S_{\mathbb{Z}_{n}}$ is the weighted sum of $\mathbb{Z}_{p_{1}-, \ldots,} \mathbb{Z}_{p_{k}}$-cosets with rational coefficients.

Cube rule II.

- Cube rule implies equidistributivity for $n=p$.
- For $n=p_{1} \cdot p_{2}$ we can more specific:

Lemma (Lam and Leung [7])
If $n=p_{1} \cdot p_{2}$ then $m_{S}\left(\xi_{n}\right)=0$ implies that the multiset $S_{\mathbb{Z}_{n}}$ is the weighted sum of $\mathbb{Z}_{p_{1}}$ - and $\mathbb{Z}_{p_{2}}$-cosets with nonnegative integer coefficients.

Tile-spectral direction on \mathbb{Z}_{N} for squarefree N

The following result was realized by I. Łaba and A. Meyerowitz, and rediscovered by R. Shi [9].

Lemma
Let N be squarefree and A, B sets such that $A \bigoplus B=\mathbb{Z}_{N}$, where $|A|=k$. Then $A \bigoplus k B=\mathbb{Z}_{N}$ and $k B$ is a subgroup.
The proof is based on Tijdeman's result: if $(p,|B|)=1$, then $A \bigoplus p B=\mathbb{Z}_{N}$ and $p B$ is the set where we forgot the p-th coordinate of B.
It simply follows from this lemma that conditions (T1) and (T2) holds for B, which implies that B is spectral. Similarly, A is spectral.

Spectral-tile direction on \mathbb{Z}_{N} for squarefree N

Lemma

Let (S, Λ) be a spectral pair in \mathbb{Z}_{N}. If S or Λ is the union of \mathbb{Z}_{p}-cosets, then S is a tile.
In some cases we show that if $S \subset \mathbb{Z}_{N}$ is spectral, then it is a tile:

- If $|S|=1$ or $|S|=N$, then it is trivial.
- If $N=p$ and $|S|>1$, then $\Phi_{p} \mid m_{S}$ hence $p||S|$. Thus $p=|S|$.
- If $N=p_{1} p_{2}$ and $|S|>1$, then we have the following cases:

1. $\Phi_{p_{1}} \Phi_{p_{2}}\left|m_{S} \Longrightarrow\right| S \mid=p_{1} p_{2}$
2. $\Phi_{p_{1} p_{2}} \mid m_{S}$, then by the cube rule S is the union of $\mathbb{Z}_{p_{1} \text { - }}$-cosets (or $\mathbb{Z}_{p_{2}}$-cosets.)
3. $\Phi_{p_{1}} \nmid m_{S}$ and $\Phi_{p_{1} p_{2}} \nmid m_{S}$, then $\Phi_{p_{2}} \mid m_{S}$ (i.e. $p_{2}| | S \mid$ and S is equidistributed) and every nonzero element of $\Lambda-\Lambda$ is of order p_{2}, hence $|S|=p_{2}$ and S is a tile.

Spectral-tile direction on \mathbb{Z}_{N} for squarefree N

If $N=p_{1} p_{2} p_{3}$ and $|S|>1$, then we distinguish two cases.

- If $\Phi_{p_{1} p_{2} p_{3}} \nmid m_{S}$ then either $|S|=p_{i}$ and S is equidistributed or we can apply the 2-dimensional cube rule, which reduce the problem to the previous case.
- If $\Phi_{p_{1} p_{2} p_{3}} \mid m_{S}$, then we apply 3-dimensional cube rule.

1. If $d_{H}(x, y)=1$ for all $x, y \in S$, then S is a $\mathbb{Z}_{p_{i}}$-coset.
2. If $d_{H}(x, y)=3$ for all $x, y \in S$, then by $3 d$ cube rule we get a contradiction.
3. If $d_{H}(x, y)=2$ for some $x, y \in S$, then by $3 d$ cube rule we get that S is the union of $Z_{p_{i}}$-cosets.
The result for $N=p_{1} p_{2} p_{3} p_{4}$ is similar case-by-case argument, but much more complicated.

Some particular open problem

Question

Does Fuglede's conjecture hold for

1. \mathbb{Z}_{N}, where N is squarefree (e.g. $N=p_{1} \cdots p_{5}$)?
2. $\mathbb{Z}_{p^{n} q^{k}}$, where p, q are different primes and $n, k \in \mathbb{N}$?

Thank you for your kind attention.

D．E．Dutkay，C－H．Lai，Some reductions of the spectral set conjecture to integers，Math．Proc．Cambridge Philos．Soc． 156 （1），123－135， 2014.

B．Farkas，M．Matolcsi，P．Móra，On Fuglede＇s conjecture and the existence of universal spectra，J．Fourier Anal．Appl． 12 （5），483－494， 2006.

B．Fuglede，Commuting self－adjoint partial differential operators and a group theoretic problem，J．Funct．Anal． 16 （1），101－121， 1974.

G．Kiss，R．D．Malikiosis，G．Somlai，M．Vizer，On the discrete Fuglede and Pompeiu problems，Anal．\＆PDE 13 （3），765－788， 2020.

G．Kiss，R．D．Malikiosis，G．Somlai，M．Vizer，Fuglede＇s conjecture holds for cyclic groups of order pqrs，submitted，https：／／arxiv．org／abs／2011．09578

M．N．Kolountzakis，M．Matolcsi，Complex Hadamard matrices and the spectral set conjecture，Collect．Math．，Vol．Extra，281－291， 2006.

T．Y．Lam and K．H．Leung，On vanishing sums of roots of unity，J．Algebra 224 （1），91－109， 2000.

R．D．Malikiosis，On the structure of spectral and tiling subsets of cyclic groups submitted，https：／／arxiv．org／abs／2005． 05800

R．Shi，Fuglede＇s conjecture holds on cyclic groups $\mathbb{Z}_{p q r}$ ，Discrete Anal．，2019：14， 14 pp．

T．Tao，Fuglede＇s conjecture is false in 5 and higher dimensions，Math．Res．
Lett．11（2），251－258， 2004.

