A Step towards Non-Presentable Models of Homotopy Type Theory

Nima Rasekh joint with Gabin Kolly

École Polytechnique Fédérale de Lausanne

June 23rd, 2021

Classical Models Higher Models New Models

Types and Categories

Two foundations for mathematics

- Types: Basic building block types with various type constructors (Π-types, Σ-types, ...)
- Categories: Categories with various objects with universal properties (limits, Cartesian closure, ...)

We can relate them:

- λ -calculus and Cartesian closed categories.
- Higher order type theories and elementary toposes.
- Examples: Grothendieck toposes, filter quotient toposes, realizability toposes

Lambek, Cartesian Closed Categories and Typed Lambda-calculi. Combinators and Func. Prog. Lang. (1985)

Lambek, Scott, Introduction to higher order categorical logic (1988)

Classical Models Higher Models New Models

Homotopy Types and Higher Categories

Expect two foundations for higher mathematics

- Homotopy Types: type theory with additional conditions (univalence, ...)
- Higher Categories: Categories up to homotopy with weak universal properties (homotopy limits, ...)
- We *expect* to relate them:
 - Spaces model homotopy type theory (Lumsdaine-Kapulkin)
 - Grothendieck higher toposes model homotopy type theory (Shulman)
 - Intensional type theories with Σ-types correspond to finitely complete quasi-categories (Kapulkin-Szumilo)
 - Intensional type theories with Π-types give us locally Cartesian closed quasi-categories (Kapulkin)

o ...

Classical Models Higher Models New Models

Filter quotients as Models

- Goal: Construct new models of homotopy type theory.
- Motivation: (Adelman-Johnstone) Given an elementary topos & and a filter of subobjects F we can construct a filter quotient elementary topos &_F which is a new model of higher order type theory.
- **Expectation:** Higher categorical filter quotients give us models of homotopy type theory.
- What we know: (R) For a given higher topos \mathcal{E} and filter \mathcal{F} we can construct filter quotient higher toposes $\mathcal{E}_{\mathcal{F}}$.
- Next Step: Show these filter quotient higher toposes are models of homotopy type theory.

Classical Models Higher Models New Models

Enter Model Categories

- Type theory is inherently strict
- I Higher category theory is up to homotopy

Solution: **model categories** or **fibration categories** used as a bridge. They are strict categories with additional data that help us recover higher categories.

- Model categories are used to prove Grothendieck higher toposes model homotopy type theories
- Fibrations categories are used to relate extensional type theories with quasi-categories

Filters Quotients Model Categories Example and Generalization

New Model Structures

This leads to following concrete question:

Question

Let \mathcal{M} be a model category and \mathcal{F} a filter on \mathcal{M} . Then does there exist a model structure on the filter quotient $\mathcal{M}_{\mathcal{F}}$ that inherits properties from \mathcal{M} ?

Let us figure this out!

Filters Quotients Model Categories Example and Generalization

Filters

Definition

Let \mathcal{C} be a finitely complete category with terminal object 1. A **filter of subobjects** \mathcal{F} is a sub-poset of the poset of subobjects of 1 with the following properties.

- **1** Maximum: $1 \in \mathcal{F}$
- **2** Downward Directed: If $U, V \in \mathcal{F}$ then there exists $W \in \mathcal{F}$, with $W \leq U, V$.
- **3** Upwards Closed: If $U \leq V$ and $U \in \mathcal{F}$ Then $V \in \mathcal{F}$.

Example

If $C = Set^{\mathbb{N}}$, then (*, *, ...) is terminal and we can take \mathcal{F} the cofinite subsets.

Filters Quotients Model Categories Example and Generalization

Filter Quotient Categories

Theorem

Let C be a finitely complete category with filter \mathcal{F} . Then there exists a filter quotient category $C_{\mathcal{F}}$ which has the same objects as C and

$$\operatorname{Hom}_{\mathcal{C}_{\mathcal{F}}}(A,B) = \operatorname{colim}_{U \in \mathcal{F}} \operatorname{Hom}_{\mathcal{C}}(U \times A, U \times B).$$

Example

With $C = Set^{\mathbb{N}}$, and \mathcal{F} as before, $C_{\mathcal{F}}$ has the morphisms of C up to "eventual equality".

Filters Quotients Model Categories Example and Generalization

Denseness and Model Categories

A subset $\mathcal{G} \subseteq \mathcal{F}$ is **dense** if for any $U \in \mathcal{F}$, there exists $V \in \mathcal{G}$ such that $V \leq U$.

Theorem (K-R)

Let \mathcal{M} be a model category. Suppose that the following sets of elements $U \in \mathcal{F}$ are dense:

- $\mathbf{0}$ \times U preserves finite colimits
- \mathbf{Q} \times U preserves weak equivalences and cofibrations
- \mathbf{O} $\times U$ preserves weak equivalences and fibrations

Then \mathcal{M}_F is a model category with the induced fibrations, cofibrations and weak equivalences.

Filters Quotients Model Categories Example and Generalization

Property preservation

Theorem (K-R)

Let \mathcal{M} be a model category with a filter \mathcal{F} satisfying the appropriate conditions.

- If M is (left/right) proper then M_F is (left/right) proper.
- If *M* is simplicial and *F* is compatible with simpliciality, then *M_F* is simplicial.
- If \mathcal{M} satisfies finite descent, then $\mathcal{M}_{\mathcal{F}}$ also satisfies finite descent.

Filters Quotients Model Categories Example and Generalization

Filter Products

Let I be a set and \mathcal{F} a filter on the power set of I. Then \mathcal{F} is a filter of subobjects on the product Kan model category $\prod_I sSet$ satisfying the density conditions and simpliciality conditions. So, we have following corollary

Corollary

There exists a proper, simplicial model structure on the filter product of simplicial sets $\prod_{\mathcal{F}} sSet$ induced by the Kan model structure.

Filters Quotients Model Categories Example and Generalization

Filter of Functors

- Everything said up until here is a special case of a more general approach to filter quotients via **filter of functors**.
- This allows us to generalize the study of filter quotients to pointed categories that arise in algebra and homotopy theory.

Why? What? What is next?

Why we did it

- We want to understand the relation between type theories and higher categories.
- In particular, we want to understand the relation between filter quotient higher categories and homotopy type theories
- We study this relation via model categories, which are a strictification of higher categories.
- This justifies carefully studying filter quotient model categories.

Why? What? What is next?

What we did

- We study conditions on filters in model categories that induce model structures on filter quotients.
- We apply this in particular to filter products.
- We prove that under suitable conditions the filter quotient construction preserves model categorical properties.

Why? What? What is next?

What we want to do

- Look at further topos theoretic properties of the filter quotient construction, in particular related to work of Shulman.
- Use the more general filter of functor quotients to further study filter quotients of pointed and triangulated categories.
- Use the filter quotient to construct new model categories that arise in stable homotopy theory or homological algebra.

Why? What? What is next?

Thank you! Questions?

Thank You!

Questions?