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Types and Categories

Two foundations for mathematics
1 Types: Basic building block types with various type

constructors (Π-types, Σ-types, ...)
2 Categories: Categories with various objects with universal

properties (limits, Cartesian closure, ...)

We can relate them:

λ-calculus and Cartesian closed categories.
Higher order type theories and elementary toposes.
Examples: Grothendieck toposes, filter quotient toposes,
realizability toposes

Lambek, Cartesian Closed Categories and Typed Lambda-calculi. Combinators and Func. Prog. Lang. (1985)

Lambek, Scott, Introduction to higher order categorical logic (1988)
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Homotopy Types and Higher Categories

Expect two foundations for higher mathematics

1 Homotopy Types: type theory with additional conditions
(univalence, ...)

2 Higher Categories: Categories up to homotopy with weak
universal properties (homotopy limits, ...)

We expect to relate them:

Spaces model homotopy type theory (Lumsdaine-Kapulkin)

Grothendieck higher toposes model homotopy type theory
(Shulman)

Intensional type theories with Σ-types correspond to finitely
complete quasi-categories (Kapulkin-Szumilo)

Intensional type theories with Π-types give us locally Cartesian
closed quasi-categories (Kapulkin)

...
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Filter quotients as Models

Goal: Construct new models of homotopy type theory.

Motivation: (Adelman-Johnstone) Given an elementary
topos E and a filter of subobjects F we can construct a filter
quotient elementary topos EF which is a new model of higher
order type theory.

Expectation: Higher categorical filter quotients give us
models of homotopy type theory.

What we know: (R) For a given higher topos E and filter F
we can construct filter quotient higher toposes EF .

Next Step: Show these filter quotient higher toposes are
models of homotopy type theory.
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Enter Model Categories

1 Type theory is inherently strict

2 Higher category theory is up to homotopy

Solution: model categories or fibration categories used as a
bridge. They are strict categories with additional data that help us
recover higher categories.

Model categories are used to prove Grothendieck higher
toposes model homotopy type theories

Fibrations categories are used to relate extensional type
theories with quasi-categories
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New Model Structures

This leads to following concrete question:

Question

Let M be a model category and F a filter on M. Then does there
exist a model structure on the filter quotient MF that inherits
properties from M?

Let us figure this out!
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Filters

Definition

Let C be a finitely complete category with terminal object 1. A
filter of subobjects F is a sub-poset of the poset of subobjects of
1 with the following properties.

1 Maximum: 1 ∈ F
2 Downward Directed: If U,V ∈ F then there exists W ∈ F ,

with W ≤ U,V .

3 Upwards Closed: If U ≤ V and U ∈ F Then V ∈ F .

Example

If C = SetN, then (∗, ∗, ...) is terminal and we can take F the
cofinite subsets.
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Filter Quotient Categories

Theorem

Let C be a finitely complete category with filter F . Then there
exists a filter quotient category CF which has the same objects as
C and

HomCF (A,B) = colimU∈FHomC(U × A,U × B).

Example

With C = SetN, and F as before, CF has the morphisms of C up
to “eventual equality”.
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Denseness and Model Categories

A subset G ⊆ F is dense if for any U ∈ F , there exists V ∈ G
such that V ≤ U.

Theorem (K-R)

Let M be a model category. Suppose that the following sets of
elements U ∈ F are dense:

1 −× U preserves finite colimits

2 −× U preserves weak equivalences and cofibrations

3 −× U preserves weak equivalences and fibrations

Then MF is a model category with the induced fibrations,
cofibrations and weak equivalences.
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Property preservation

Theorem (K-R)

Let M be a model category with a filter F satisfying the
appropriate conditions.

If M is (left/right) proper then MF is (left/right) proper.

If M is simplicial and F is compatible with simpliciality, then
MF is simplicial.

If M satisfies finite descent, then MF also satisfies finite
descent.
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Filter Products

Let I be a set and F a filter on the power set of I . Then F is a
filter of subobjects on the product Kan model category

∏
I sSet

satisfying the density conditions and simpliciality conditions. So,
we have following corollary

Corollary

There exists a proper, simplicial model structure on the filter
product of simplicial sets

∏
F sSet induced by the Kan model

structure.
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Filter of Functors

Everything said up until here is a special case of a more
general approach to filter quotients via filter of functors.

This allows us to generalize the study of filter quotients to
pointed categories that arise in algebra and homotopy theory.
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Why we did it

We want to understand the relation between type theories and
higher categories.

In particular, we want to understand the relation between
filter quotient higher categories and homotopy type theories

We study this relation via model categories, which are a
strictification of higher categories.

This justifies carefully studying filter quotient model
categories.
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What we did

We study conditions on filters in model categories that induce
model structures on filter quotients.

We apply this in particular to filter products.

We prove that under suitable conditions the filter quotient
construction preserves model categorical properties.
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What we want to do

Look at further topos theoretic properties of the filter quotient
construction, in particular related to work of Shulman.

Use the more general filter of functor quotients to further
study filter quotients of pointed and triangulated categories.

Use the filter quotient to construct new model categories that
arise in stable homotopy theory or homological algebra.
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Thank you! Questions?

Thank You!

Questions?
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