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Dispersive electromagnetic waves

Let Q be in a bounded domain of R? with a Lipschitz boundary I'. The
Maxwell equations in 2 are given by

Di—curl H=0 in Q:=Q x (0,+00),
Bi+cul E=0 in Q, (P)

where E and H are respectively the electric and magnetic fields, while
D and B are respectively the electric and magnetic flux densities.
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Dispersive electromagnetic waves

Let Q be in a bounded domain of R? with a Lipschitz boundary I'. The
Maxwell equations in 2 are given by

Di—curl H=0 in Q:=Q x (0,+00),
Bi+cul E=0 in Q, (P)

where E and H are respectively the electric and magnetic fields, while
D and B are respectively the electric and magnetic flux densities.

In case of electric and magnetization effects, these latter ones take the
form

D(x,t) = e(x)E(x,t) + P(x, t),
B(x. 1) = u(x)H(x, ) + M(x, 1),
where ¢ (resp. ) is the permittivity (resp. permeability) of the medium,

while P (resp. M) is the retarded electric polarization (resp.
magnetization).
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Dispersive electromagnetic waves
The retarded electric polarization and magnetization, P and M, in most

applications (see [Cassier, Joly & Kachanovska (2017), Kristensson,
Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

t
P(x, 1) = /O ve(t — s, X)E(x, 5) ds,

t
M(x, z‘):/0 vy(t — s, x)H(x, s) ds,

where ve(t, x) (resp. vy(t, x)) is the electric (resp. magnetic)
susceptibility kernel.
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Dispersive electromagnetic waves

The retarded electric polarization and magnetization, P and M, in most
applications (see [Cassier, Joly & Kachanovska (2017), Kristensson,
Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

t
P(x, 1) = /O ve(t — s, X)E(x, 5) ds,

t
M(x, z‘):/0 vy(t — s, x)H(x, s) ds,

where ve(t, x) (resp. vy(t, x)) is the electric (resp. magnetic)
susceptibility kernel.

Our goal is to analyze the general system (P), supplemented with the
electric boundary conditions

Exn=0,H-n=0 on =09, (BC)

Cristina Pignotti (LAquila) Dispersive electromagnetic waves June 23, 2021



Dispersive electromagnetic waves

The retarded electric polarization and magnetization, P and M, in most
applications (see [Cassier, Joly & Kachanovska (2017), Kristensson,
Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

t
P(x, 1) = /O ve(t — s, X)E(x, 5) ds,

t
M(x, z‘):/0 vy(t — s, x)H(x, s) ds,

where ve(t, x) (resp. vy(t, x)) is the electric (resp. magnetic)
susceptibility kernel.

Our goal is to analyze the general system (P), supplemented with the
electric boundary conditions

Exn=0,H-n=0 on =09, (BC)
and initial conditions
E(7O) = EOa H(70) = HO in Qa (IC)

Cristina Pignotti (LAquila) Dispersive electromagnetic waves June 23, 2021



Dispersive electromagnetic waves

and find sufficient conditions that guarantee exponential or polynomial
decay of the solutions.
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Dispersive electromagnetic waves

and find sufficient conditions that guarantee exponential or polynomial
decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness
of solutions for the above problem are studied by transforming the
system to a Volterra integral equation.
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Dispersive electromagnetic waves

and find sufficient conditions that guarantee exponential or polynomial
decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness
of solutions for the above problem are studied by transforming the
system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in
[Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz
Rivera, Naso & Vuk (2004)].
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Dispersive electromagnetic waves

and find sufficient conditions that guarantee exponential or polynomial
decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness
of solutions for the above problem are studied by transforming the
system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in
[Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz
Rivera, Naso & Vuk (2004)].

In this paper we restrict to the following case:

e ¢ and pu positive constants;
o VE(f, X) = l/E(t) and VH(f, X) = VH(f).
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Dispersive electromagnetic waves

and find sufficient conditions that guarantee exponential or polynomial
decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness
of solutions for the above problem are studied by transforming the
system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in
[Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz
Rivera, Naso & Vuk (2004)].

In this paper we restrict to the following case:

e ¢ and pu positive constants;
o VE(f, X) = l/E(t) and VH(f, X) = VH(f).

This already corresponds to a large class of physical examples, see
e.g. [Kristensson, Karlsson & Rikte (2002), Sihvola (1999)].
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Dispersive electromagnetic wave

We further assume that

o v, vy € K, where K is the set of kernels v € C?([0, o0)), that
satisfy

lim /() =0,

t—o0
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Dispersive electromagnetic wave

We further assume that

o v, vy € K, where K is the set of kernels v € C?([0, o0)), that
satisfy

lim /() =0,

t—o0
and that

e there exists two positive constants C and ¢ (depending on v) such
that

1W(t)| < Ce™%, vt > 0.
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Dispersive electromagnetic wave

We further assume that
o v, vy € K, where K is the set of kernels v € C?([0, o0)), that
satisfy

lim /() =0,

t—o0

and that
e there exists two positive constants C and ¢ (depending on v) such
that

1W(t)| < Ce™%, vt > 0.

Again these assumptions cover a large class of physical models.
For brevity, we define the function w by

w(t) = Ce~% vt > 0.
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Well-posedness

We translate our system into a semigroup context (useful also for the
stability analysis).
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Well-posedness

We translate our system into a semigroup context (useful also for the
stability analysis). First we notice that combining the expressions for D,
B, P, M with Maxwell system (P) we obtain the integro-differential
system

t
eEi+ve(0)E + / ve(t—S)E(-,8)ds —curlH=0 1in Q,
0

t
wH; + UH(O)H+/ vy(t—s)H(-,s)ds+curl E=0 in Q.
0
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Well-posedness

We translate our system into a semigroup context (useful also for the
stability analysis). First we notice that combining the expressions for D,
B, P, M with Maxwell system (P) we obtain the integro-differential
system

t
eEi+ve(0)E + / ve(t—S)E(-,8)ds —curlH=0 1in Q,
0
t
wH; + UH(O)H+/ vy(t—s)H(-,s)ds+curl E=0 in Q.
0

Assuming for the moment that the solution (E, H) of this system with
boundary conditions (BC) and initial conditions (IC) exists, then for all
(t,8) € [0,00) x (0,00) we introduce the cumulative past histories

. min{s,t}
775(',3): E(vt_y)dyu

min{s,t}
D 8) = /0 H(-t— y) dy,
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Well-posedness

that respectively satisfy the transport equations

Cristina Pignotti (LAquila) Dispersive electromagnetic waves June 23, 2021



Well-posedness

that respectively satisfy the transport equations

at"ﬁ:‘(',s) = —as"?;_:('»s) + E(> t)v
atn;—l('7 S) = _6877;-/(7 S) =+ H(7 t)7
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Well-posedness

that respectively satisfy the transport equations

atntE('?s) = —as"?;_:('»s) + E(> t)v
atn;—l('7 S) = _6877;-/(7 S) =+ H(7 t)7

the boundary condition

lim nE (-, 8) = lim niy(-,8) =0,
s—0 s—0
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Well-posedness

that respectively satisfy the transport equations

atntE('?s) = —as"?;_:('»s) + E(> t)v
atn;—l('7 S) = _6877;-/(7 S) =+ H(7 t)7

the boundary condition

lim nE (-, 8) = lim niy(-,8) =0,
s—0 s—0

and the initial condition
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Well-posedness

Since formal integration by parts yields the identities

t 00
/ Vit — $)E(-, §) ds = —/ VL(S)nL(-, 5) d,
0 0

t 00
/ Vi (t — S)H(-, s) ds = —/ VI(S)nk (-, 5) ds,
0 0
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Well-posedness

Since formal integration by parts yields the identities

t 00
| vt - 9)EC s o5 =~ | vi(e)uk(- 9) .
Ot Ooo
/ Vi (t — S)H(-, s) ds = —/ VI(S)nk (-, 5) ds,
0 0

the above integro-differential Maxwell system is (formally) equivalent to

oo

eEt+ve(0)E — / VE(S)nE(-, 8)ds —curlH=0 in Q,
0 [ee]

pHy +vy(0)H — / vi(s)nh((-,8)ds +curl E=0 in Q,
0
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Well-posedness

All together by setting

Im

NEe
NH
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Well-posedness

All together by setting

E
U= H ,
NEe
NH
we obtain the abstract Cauchy problem
U= AU, (PA)
U(0) = Uy,

where
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Well-posedness

E e (—ve(0)E + [;° vE(S)ne(-, s) ds + curl H)

A H | _ (v H—i—foo " (8)nH(-, 8) ds — curl E)
yl3 —35775( s)+E ’
H _8377/‘/( 78) +H

and

Cristina Pignotti (LAquila) Dispersive electromagnetic waves June 23, 2021



Well-posedness

E e (—ve(0)E + [;° vE(S)ne(-, s) ds + curl H)

A H | _ (v H—i—foo " (8)nH(-, 8) ds — curl E)
yl3 —35775( s)+E ’
H _8377/‘/( 78) +H

and
Uy = (Ey, Hp,0,0) 7.
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Well-posedness

E e (—ve(0)E + [;° vE(S)ne(-, s) ds + curl H)

A H | | p'(~v H—i—foo " (8)nH(-, 8) ds — curl E)
ne | —83775( s)+E ’
H —9snH(-s) + H

and
Uy = (Ey, Hp,0,0) 7.

The existence of a solution to (PA) is obtained by using semigroup
theory in the appropriate Hilbert setting described here below.
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Well-posedness

E e (—ve(0)E + [;° vE(S)ne(-, s) ds + curl H)

A H | _ (v H—i—foo " (8)nH(-, 8) ds — curl E)
e —8577E( s)+ E ’
MH —0OsnH(-,S) +H

and
Uy = (Ey, Hp,0,0) 7.

The existence of a solution to (PA) is obtained by using semigroup

theory in the appropriate Hilbert setting described here below. First we
introduce the Hilbert spaces

J(Q) = {x € L3(Q)°| divy = 0},
and
J(Q)={xeJ()|x-n=0o0onT},
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Well-posedness

recalling that for a field x € J(Q2), x - n has a meaning as an element of
H~z(T), see [Girault & Raviart (1986)].
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Well-posedness

recalling that for a field x € J(Q2), x - n has a meaning as an element of

H~z(T), see [Girault & Raviart (1986)].

Observe that w € L>°([0, oc)) and recall that for a Hilbert space X with
inner product (-, -)x and induced norm || - || x, L2,((0, c0); X) is the
Hilbert space comprised of functions 1 defined on (0, co) with values in
X such that

/ " ln(s) G w(s) ds < oo,

with the natural inner product

/0 " (0().77(8))xw(s) ds, .o/ € L3,((0, 00); X).
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Well-posedness

recalling that for a field x € J(Q2), x - n has a meaning as an element of

H~z(T), see [Girault & Raviart (1986)].

Observe that w € L>°([0, oc)) and recall that for a Hilbert space X with
inner product (-, -)x and induced norm || - || x, L2,((0, c0); X) is the
Hilbert space comprised of functions 1 defined on (0, co) with values in
X such that

| Ins)w(s) os < .
with the natural inner product

/0 " (0().77(8))xw(s) ds, .o/ € L3,((0, 00); X).

Let us notice that L2,((0, o0); X) is quite large since it contains all
polynomials with coefficients in X,
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Well-posedness

namely for any non-negative integer nand any a; € X, i =0,--- ,n, the
polynomial p defined by

n
p(S) = Z a,'Si, Vse (07 OO),
i=0

belongs to L2,((0, c0); X).
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Well-posedness

namely for any non-negative integer nand any a; € X, i =0,--- ,n, the
polynomial p defined by

Za, Vs e (0,00),

belongs to L2,((0, o0); X). Now we introduce the Hilbert space
H = J(Q) x J(Q) x L5,((0,0); J(Q)) x L5,((0,0); J(Q)),

with the inner product
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Well-posedness

namely for any non-negative integer nand any a; € X, i =0,--- ,n, the
polynomial p defined by

Za, Vs e (0, 00),

belongs to L2,((0, o0); X). Now we introduce the Hilbert space
H = J(Q) x J(Q) x L3((0,00); J()) x L3((0,0); (L)),
with the inner product
((E,H,ne,nm) " (B H nfgsmig) D= /(eE'E’+uH- H') dx
Q

+[ h | (1E(x.9) (. 8) + (. 9) - 7 (x.5)) i w(s) s,
0 Q

forall (E,H,ne,nw) ", (E',H ,ng,ny) " € H.
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Well-posedness

We then define the operator A as follows:

D(A) = {(E, H.ne,ny)| € H|curll E,curl H € [3(Q)%, Exn=0 onT,
dsne € L5,((0,00); J(R)), dsni € L5((0,0); J(Q))
and ng(0) = nx(0) = 0},

andforall U = (E,H,ng,ny)" € D(A), AU is defined as above.
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Well-posedness

We then define the operator A as follows:

D(A) = {(E, H,ne,ny)" € H|curl E,curl H € [2(Q)%, Exn=0 onT,

dsne € L5,((0,00); J(R)), dsnp € L5,((0,00); J(Q))
and ng(0) = ny(0) = 0},

andforall U = (E,H,ng,ny)" € D(A), AU is defined as above.

Note that for a field £ € H(curl; Q) = {E € L?(Q)3 : curl E € L?(Q)3},

E x nhas a meaning as an element of H‘%(F)3, see [Girault & Raviart
(1986)].
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Well-posedness

We then define the operator A as follows:

D(A) = {(E, H,ne,ny)" € H|curl E,curl H € [2(Q)%, Exn=0 onT,

dsne € L5,((0,00); J(R)), dsnp € L5,((0,00); J(Q))
and ng(0) = ny(0) = 0},

andforall U = (E,H,ng,ny)" € D(A), AU is defined as above.

Note that for a field £ € H(curl; Q) = {E € L?(Q)3 : curl E € L?(Q)3},

E x nhas a meaning as an element of H‘%(F)3, see [Girault & Raviart
(1986)].

We can prove that A generates a Cy-semigroup on H.
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Well-posedness

THEOREM [Nicaise and P., 2020]
The operator A generates a Cyp-semigroup (T())s>o on H.
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Well-posedness

THEOREM [Nicaise and P., 2020]

The operator A generates a Cyp-semigroup (T(t))s>o on H. Therefore
for all Uy € H, problem (PA) has a mild solution U € C([0, c0), ) given
by U(t) = T(t)Uy, forall t > 0.
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Well-posedness

THEOREM [Nicaise and P., 2020]

The operator A generates a Cyp-semigroup (T(t))s>o on H. Therefore
for all Uy € H, problem (PA) has a mild solution U € C([0, c0), ) given
by U(t) = T(t)Uy, for all t > 0. If moreover Uy € D(A¥), with k € N*,
problem (PA) has a classical solution

U e ,C/([0. ), DA D))
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Well-posedness

THEOREM [Nicaise and P., 2020]

The operator A generates a Cyp-semigroup (T(t))s>o on H. Therefore
for all Uy € H, problem (PA) has a mild solution U € C([0, c0), ) given
by U(t) = T(t)Uy, for all t > 0. If moreover Uy € D(A¥), with k € N*,
problem (PA) has a classical solution

U e ,C/([0. ), DA D))

Proof:
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Well-posedness

THEOREM [Nicaise and P., 2020]

The operator A generates a Cyp-semigroup (T(t))s>o on H. Therefore
for all Uy € H, problem (PA) has a mild solution U € C([0, c0), ) given
by U(t) = T(t)Uy, for all t > 0. If moreover Uy € D(A¥), with k € N*,
problem (PA) has a classical solution

U e ,C/([0. ), DA D))
Proof:

We show that A — «/ is a maximal dissipative operator for some x > 0;
then by Lumer-Phillips’ theorem it generates a Cy-semigroup of
contractions on H and, consequently, A generates a Cy-semigroup on
H.
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Boundedness of the semigroup

In order to apply standard results on the decay of semigroups, the first
step is to show that the semigroup (7(t)):>o generated by A is
bounded.
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Boundedness of the semigroup

In order to apply standard results on the decay of semigroups, the first
step is to show that the semigroup (7(t)):>o generated by A is
bounded.

This property is based on the passitivity assumption (or equivalently
the assumption that the material is passive, see [Cassier, Joly &
Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

June 23, 2021
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Boundedness of the semigroup

In order to apply standard results on the decay of semigroups, the first
step is to show that the semigroup (7(t)):>o generated by A is
bounded.

This property is based on the passitivity assumption (or equivalently
the assumption that the material is passive, see [Cassier, Joly &
Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

R (Iwlve(iw)) >0, R(Iwlry(iw)) >0, Yw € R. (HP)
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Boundedness of the semigroup

In order to apply standard results on the decay of semigroups, the first
step is to show that the semigroup (7(t)):>o generated by A is
bounded.

This property is based on the passitivity assumption (or equivalently
the assumption that the material is passive, see [Cassier, Joly &
Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

R (Iwlve(iw)) >0, R(Iwlry(iw)) >0, Yw € R. (HP)
Note that this property is equivalent to

wSLre(iw) <0, wSLry(iw) <0, Yw € R.
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Boundedness of the semigroup

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption (HP), there exists a positive constant
M such that
IT(t)] <M, vt>D0.
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Boundedness of the semigroup

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption (HP), there exists a positive constant
M such that
IT(t)] <M, vt>D0.

From this, one can deduce the following result.
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Boundedness of the semigroup

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption (HP), there exists a positive constant
M such that
IT(t)] <M, vt>D0.

From this, one can deduce the following result.

COROLLARY

Under the additional assumption (HP), the resolvent set p(.A) of A
contains the right-half plane, namely

{Ae C:RX> 0} Cp(A).
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Boundedness of the semigroup

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption (HP), there exists a positive constant
M such that

IT(t)] <M, vt>D0.
From this, one can deduce the following result.

COROLLARY

Under the additional assumption (HP), the resolvent set p(.A) of A
contains the right-half plane, namely

{Ae C:RX> 0} Cp(A).

Proof:

Direct consequence of previous proposition and of Theorem 5.2.1 of
[Arendt, Batty, Hieber & Neubrander (2001)].
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Strong stability

A simple way to prove the strong stability of (PA) is to use the following
theorem due to Arendt & Batty (1988) and Lyubich & Vi (1988).
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Strong stability

A simple way to prove the strong stability of (PA) is to use the following
theorem due to Arendt & Batty (1988) and Lyubich & Vi (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vi (1988)]

Let X be a reflexive Banach space and (T(t)):>o be a Cq semigroup
generated by A on X. Assume that (T(f));>o is bounded and no
eigenvalues of A lie on the imaginary axis. If o(A) N /R is countable,
then (T(t))s>o is stable.
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Strong stability

A simple way to prove the strong stability of (PA) is to use the following
theorem due to Arendt & Batty (1988) and Lyubich & Vi (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vi (1988)]

Let X be a reflexive Banach space and (T(t)):>o be a Cq semigroup
generated by A on X. Assume that (T(f));>o is bounded and no
eigenvalues of A lie on the imaginary axis. If o(A) N /R is countable,
then (T(t))s>o is stable.

We now want to take advantage of this theorem.
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Strong stability

A simple way to prove the strong stability of (PA) is to use the following
theorem due to Arendt & Batty (1988) and Lyubich & Vi (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vi (1988)]

Let X be a reflexive Banach space and (T(t)):>o be a Cq semigroup
generated by A on X. Assume that (T(f));>o is bounded and no
eigenvalues of A lie on the imaginary axis. If o(A) N /R is countable,
then (T(t))s>o is stable.

We now want to take advantage of this theorem. Since the resolvent of
our operator is not compact, we have to analyze the full spectrum of A
on the imaginary axis.
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Strong stability

A simple way to prove the strong stability of (PA) is to use the following
theorem due to Arendt & Batty (1988) and Lyubich & Vi (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vi (1988)]

Let X be a reflexive Banach space and (T(t)):>o be a Cq semigroup
generated by A on X. Assume that (T(f));>o is bounded and no
eigenvalues of A lie on the imaginary axis. If o(A) N /R is countable,
then (T(t))s>o is stable.

We now want to take advantage of this theorem. Since the resolvent of
our operator is not compact, we have to analyze the full spectrum of A
on the imaginary axis. For that purpose, we actually need a stronger
assumption than the passitivity, namely in addition to (HP), we need
that

R (IwLlve(iw)) + R (iwlvy(iw)) > 0, Vw € R* =R\ {0}. (HP+)
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Strong stability

As before this property is equivalent to

wSLYE(iw) + wSLry(iw) < 0, Vw € R*.
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As before this property is equivalent to

wSLYE(iw) + wSLry(iw) < 0, Vw € R*.
LEMMA [Nicaise and P., 2020]

Under the additional assumptions (HP) and (HP+), and if Q is simply
connected with a connected boundary, then
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Strong stability

As before this property is equivalent to

wSLYE(iw) + wSLry(iw) < 0, Vw € R*.
LEMMA [Nicaise and P., 2020]

Under the additional assumptions (HP) and (HP+), and if Q is simply
connected with a connected boundary, then

iR={if | B eR} C p(A).
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Strong stability

As before this property is equivalent to

wSLYE(iw) + wSLry(iw) < 0, Vw € R*.
LEMMA [Nicaise and P., 2020]

Under the additional assumptions (HP) and (HP+), and if Q is simply
connected with a connected boundary, then

iR={if | B eR} C p(A).

From this lemma and the theorem of Arendt & Batty / Lyubich & Vi, we
deduce the following result.
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Strong stability

PROPOSITION [Nicaise and P., 2020]
Under the assumptions of previous lemma, (T(t))so is stable, i.e.,

T(HUy - 0inH, ast — oo, YUy € H.
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Strong stability

PROPOSITION [Nicaise and P., 2020]
Under the assumptions of previous lemma, (T(t))so is stable, i.e.,

T(HUy - 0inH, ast — oo, YUy € H.

In particular the solution (E(t), H(t)) of (P), with electric boundary
conditions (BC) and initial conditions (IC) satisfies

IE(D)|la + ||H(t)|la — 0 as t — oo, V(Ey, Hp) € J(Q) x J(Q).
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Exponential and polynomial stability results

Our stability results are based on a frequency domain approach,

namely for the exponential decay of the energy we use the following
result:
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Exponential and polynomial stability results

Our stability results are based on a frequency domain approach,
namely for the exponential decay of the energy we use the following
result:

Theorem [Pruss 1984 / Huang 1985]

Let (e'“)¢~0 be a bounded Cy semigroup on a Hilbert space H. Then it
is exponentially stable, i.e., it satisfies

e Uol| < Ce!||Uplln, YUp€H, Vt>0,
for some positive constants C and w if and only if
iR C p(L), (C1)

and
sup [|(i — £)71|| < oo, (CE)
BER
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Exponential and polynomial stability results

The polynomial decay of the energy is, instead, based on the following
result.

Theorem [Borichev and Tomilov, 2010]
Let (e'%);>0 be a bounded C, semigroup on a Hilbert space H such
that its generator £ satisfies

iR C p(L), (C1)

and let 7 be a fixed positive real number. Then the following properties
are equivalent

1
|6 Uo|| < Ct7||Upllp(ey, VUo € D(L), V> 1,
||e“3uor|scﬂHUon), VUp € D(L), Vt>1,

|
op 7 108~ 07l < oo (cP)
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Exponential and polynomial stability results

As we know the validness of assumption (C1) , it remains to check
whether (CE) or (CP) is valid. This is possible by improving the
assumption (HP+) with a precise behavior of R (iwLvg(iw)) and of
R (iwLvy(iw)) at infinity.
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Exponential and polynomial stability results

As we know the validness of assumption (C1) , it remains to check
whether (CE) or (CP) is valid. This is possible by improving the
assumption (HP+) with a precise behavior of R (iwLvg(iw)) and of
R (iwLvy(iw)) at infinity.

More precisely, we suppose that there exist four non negative
constants og, oy, wg, and m with o + o > 0 such that
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Exponential and polynomial stability results

As we know the validness of assumption (C1) , it remains to check
whether (CE) or (CP) is valid. This is possible by improving the
assumption (HP+) with a precise behavior of R (iwLvg(iw)) and of
R (iwLvy(iw)) at infinity.

More precisely, we suppose that there exist four non negative
constants og, oy, wg, and m with o + o > 0 such that

R (iwLve(iw)) | X2 + R (iwLvy(iw)) | Y)? (HP + +)
> |w|™ (0| X2+ on|Y?), VX, Y € C3, we R : |w| > wo.
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Exponential and polynomial stability results

As we know the validness of assumption (C1) , it remains to check
whether (CE) or (CP) is valid. This is possible by improving the
assumption (HP+) with a precise behavior of R (iwLvg(iw)) and of
R (iwLvy(iw)) at infinity.

More precisely, we suppose that there exist four non negative
constants og, oy, wg, and m with o + o > 0 such that

R (iwLve(iw)) | X2 + R (iwLvy(iw)) | Y)? (HP + +)
> |w|™ (0| X2+ on|Y?), VX, Y € C3, we R : |w| > wo.

We have the following result.
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Exponential and polynomial stability results

As we know the validness of assumption (C1) , it remains to check
whether (CE) or (CP) is valid. This is possible by improving the
assumption (HP+) with a precise behavior of R (iwLvg(iw)) and of
R (iwLvy(iw)) at infinity.

More precisely, we suppose that there exist four non negative
constants og, oy, wg, and m with o + o > 0 such that

R (iwLve(iw)) | X2 + R (iwLvy(iw)) | Y)? (HP + +)
> |w|™ (0| X2+ on|Y?), VX, Y € C3, we R : |w| > wo.
We have the following result.
PROPOSITION [Nicaise and P., 2020]

In addition to previous assumptions, assume that (HP++) holds. Then
the operator A satisfies (CP) with ¢/ = m.
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Exponential and polynomial stability results

From this lemma and the theorem due to Pruss 1984/Huang 1985
(resp. the theorem of Borichev and Tomilov 2010), we deduce the
following results.
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Exponential and polynomial stability results

From this lemma and the theorem due to Pruss 1984/Huang 1985
(resp. the theorem of Borichev and Tomilov 2010), we deduce the
following results.

COROLLARY

In addition to previous assumptions, assume that (HP++) holds with
m = 0. Then the semigroup (&)~ is exponentially stable, in
particular the solution (E(t), H(t)) of (P), with electric boundary
conditions (BC) and initial conditions (IC) tends exponentially to zero
in J(Q) x J(Q).
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Exponential and polynomial stability results

COROLLARY

In addition to previous assumptions, assume that (HP++) holds with
m > 0. Then the semigroup (&) is polynomially stable, i.e.

1
le“ Uoll < tm[|Uollpay. VUo € D(A), Vt>1.
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Exponential and polynomial stability results

COROLLARY

In addition to previous assumptions, assume that (HP++) holds with
m > 0. Then the semigroup (&) is polynomially stable, i.e.

1
le“ Uoll < tm[|Uollpay. VUo € D(A), Vt>1.

In particular the solution (E(t), H(t)) of (P), with electric boundary
conditions (BC) and initial conditions (IC) satisfies, V > 1,

1
ICE(t), HO)l yayxaia) S t ™ I(Eos Ho)llps):  ¥(Eo, Ho) € D(B),
where

D(B) := {(E,H) € J(Q)x J(Q)| curl E,curl H € L?(Q)%, Exn=0o0nT},
is the domain of the operator B defined by

B(E,H) = (¢E — curl H, uH + curl E).
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Some illustrative examples

All physical examples of dispersive models that we found in the
literature (see [Jackson (1962), Kristensson, Rikte & Sihvola (1998),
Sihvola (1999), Cassier, Joly & Kachanovska (2017), Bécache, Joly &

Vinoles (2018), and Nguyen & Vinoles (2018)]) are summarized in the
following example.
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Some illustrative examples

All physical examples of dispersive models that we found in the
literature (see [Jackson (1962), Kristensson, Rikte & Sihvola (1998),
Sihvola (1999), Cassier, Joly & Kachanovska (2017), Bécache, Joly &
Vinoles (2018), and Nguyen & Vinoles (2018)]) are summarized in the
following example.

Let J be a positive integer and for all j < {1,--- ,J}, let p;, g be
real-valued polynomials (of one variable). Let z; be a complex number
with z; = x; < 0 and define

J
ve(t) = _(pj(t) cos(y;t) + gj(t) sin(y;t))e¥",

J=1

where y; = 3z;. Define similarly v by taking other polynomials pj, g;
and other complex numbers z; with negative real parts. For simplicity
we only examinate the case of vg, when necessary we will add the
index E or H to distinguish polynomials related to vg or vy.
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Some illustrative examples

First, it is easy to check that v¢ satisfies the required assumptions.
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Some illustrative examples

First, it is easy to check that v¢ satisfies the required assumptions.
Furthermore, by rewritting v£ in the equivalent form

J
= > Pile
j=1
where P; is a (complex-valued) polynomial of degree dj, we see that
d; (o)
P (0)
Lve(A Z (A= z)H
Jj=1 £=0

where =) denotes the derivative of P; of order ¢. This means that
iwLve(iw) is a rational fraction in w, more precisely

Pr(w) | Piw)

Qr( ) QI(W)’

where P;, Qy, P;, Q; are real-valued polynomials such that
deg P, < deg Qr and deg P; < deg Q;.

iwLvg(iw) =
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Some illustrative examples

This means that (HP) holds if and only if

Pe r(w) Py r(w)
——~>0and ——~ >0, Vw e R.
Qe (w) = Quow) = "
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Some illustrative examples

This means that (HP) holds if and onIy if

Pe () ()
Qe o) = 02" I% o)

>0, YVw € R.

Similarly, (HP+) is valid if and only if R(w) = & f(jj§ + g”'ijjg satisfies

R(w) >0, VweR"
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Some illustrative examples

This means that (HP) holds if and onIy if

PE r(w) ( )
i >0 d >0, V R.
Qe (w) =" oHr( y =TS

Similarly, (HP+) is valid if and only if R(w) = & f(jj§ + g”'§j§ satisfies

R(w) >0, VweR"

By writing N
z ! 0 anw
Rw)= =8 "——>
(w) S b’

with Ny < Np, ayn, # 0 and ap, # 0, we notice that two necessary
conditions for (HP+) are

N, — N; even and an > 0. (*)
by,
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Some illustrative examples

Finally, the last passitivity assumption (HP++) is obviously related to
the behavior at infinity of R(w). Using previous expression for R(w) we
deduce that (HP++) holds with m = N, — N; if and only if (x) holds.
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Some illustrative examples

Finally, the last passitivity assumption (HP++) is obviously related to
the behavior at infinity of R(w). Using previous expression for R(w) we
deduce that (HP++) holds with m = N, — N; if and only if (x) holds.

Let us finish by some particular cases.
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Some illustrative examples

Finally, the last passitivity assumption (HP++) is obviously related to
the behavior at infinity of R(w). Using previous expression for R(w) we
deduce that (HP++) holds with m = N, — N; if and only if (x) holds.

Let us finish by some particular cases.

e The Debye model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and ve(t) = ﬁe‘f, with 5 and 7 two positive real numbers.
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Some illustrative examples

Finally, the last passitivity assumption (HP++) is obviously related to
the behavior at infinity of R(w). Using previous expression for R(w) we
deduce that (HP++) holds with m = N, — N; if and only if (x) holds.
Let us finish by some particular cases.

e The Debye model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and ve(t) = Be‘f, with 8 and 7 two positive real numbers.
Hence

_ b

Lre(A) = A+ 1’
and we find » 2
_ prw

Aw) = 1+ 7202

This means that (HP) and (HP+) hold and that (HP++) is valid with
m = 0. Hence,
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Some illustrative examples

Finally, the last passitivity assumption (HP++) is obviously related to
the behavior at infinity of R(w). Using previous expression for R(w) we
deduce that (HP++) holds with m = N, — N; if and only if (x) holds.

Let us finish by some particular cases.

e The Debye model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and ve(t) = Be‘f, with 8 and 7 two positive real numbers.
Hence

_ b7

Lve(A) = TA+1’
and we find » 2
_ prw

Al =20

This means that (HP) and (HP+) hold and that (HP++) is valid with
m = 0. Hence, we deduce the exponential decay of the energy if Q is
simply connected with connected boundary.
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Some illustrative examples

e The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and

ve(t) = Bsin(vot)e” 2,
with 8, v and v three positive real numbers. Hence

Bro

Lve(N) = ——F——,
ve(A) wg+)\2+1/)\

with w3 = v + 12/4.
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Some illustrative examples

e The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and
ve(t) = Bsin(l/ot)ef%t,

with 8, v and v three positive real numbers. Hence

Bro

Lve(N) = ——F——,
ve(A) wg+)\2+1/)\

with w3 = v + 12 /4. Then we easily check that (HP) and (HP+) hold
and that (HP++) is valid with m = 2. Hence,

Cristina Pignotti (LAquila) Dispersive electromagnetic waves June 23, 2021



Some illustrative examples

e The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice
vy(t) =0and
ve(t) = Bsin(l/ot)ef%t,

with 8, v and v three positive real numbers. Hence

Bro
Lve(\) = 5——F——,
ve(d) wg+)\2+1/)\

with w3 = v + 12 /4. Then we easily check that (HP) and (HP+) hold
and that (HP++) is valid with m = 2. Hence, we deduce a decay of the
energy as t~ ' if Q is simply connected with connected boundary.
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Thank you for your attention!
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