Asymptotic behavior of dispersive electromagnetic waves in bounded domains

Cristina Pignotti

University of L'Aquila

Joint with Serge Nicaise (Université Polytechnique Hauts-de-France)

Analysis, Control and Inverse Problems for PDEs (MS22) 8ECM, June 20-26, 2021

Let Ω be in a bounded domain of \mathbb{R}^3 with a Lipschitz boundary Γ . The Maxwell equations in Ω are given by

$$\begin{cases} D_t - \text{curl } H = 0 & \text{in} \quad Q := \Omega \times (0, +\infty), \\ B_t + \text{curl } E = 0 & \text{in} \quad Q, \end{cases}$$
 (P)

where E and H are respectively the electric and magnetic fields, while D and B are respectively the electric and magnetic flux densities.

Let Ω be in a bounded domain of \mathbb{R}^3 with a Lipschitz boundary Γ . The Maxwell equations in Ω are given by

$$\begin{cases} D_t - \text{curl } H = 0 & \text{in} \quad Q := \Omega \times (0, +\infty), \\ B_t + \text{curl } E = 0 & \text{in} \quad Q, \end{cases}$$
 (P)

where *E* and *H* are respectively the electric and magnetic fields, while *D* and *B* are respectively the electric and magnetic flux densities. In case of electric and magnetization effects, these latter ones take the form

$$D(x,t) = \varepsilon(x)E(x,t) + P(x,t),$$

$$B(x,t) = \mu(x)H(x,t) + M(x,t),$$

where ε (resp. μ) is the permittivity (resp. permeability) of the medium, while P (resp. M) is the retarded electric polarization (resp. magnetization).

The retarded electric polarization and magnetization, P and M, in most applications (see [Cassier, Joly & Kachanovska (2017), Kristensson, Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

$$P(x,t) = \int_0^t \nu_E(t-s,x) E(x,s) \, ds,$$

$$M(x,t) = \int_0^t \nu_H(t-s,x) H(x,s) \, ds,$$

where $\nu_E(t,x)$ (resp. $\nu_H(t,x)$) is the electric (resp. magnetic) susceptibility kernel.

The retarded electric polarization and magnetization, P and M, in most applications (see [Cassier, Joly & Kachanovska (2017), Kristensson, Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

$$P(x,t) = \int_0^t \nu_E(t-s,x) E(x,s) ds,$$

$$M(x,t) = \int_0^t \nu_H(t-s,x) H(x,s) ds,$$

where $\nu_E(t,x)$ (resp. $\nu_H(t,x)$) is the electric (resp. magnetic) susceptibility kernel.

Our goal is to analyze the general system (P), supplemented with the electric boundary conditions

$$\mathbf{E} \times \mathbf{n} = 0, \ H \cdot \mathbf{n} = 0 \quad \text{on } \Gamma = \partial \Omega,$$
 (BC)

The retarded electric polarization and magnetization, P and M, in most applications (see [Cassier, Joly & Kachanovska (2017), Kristensson, Karlsson & Rikte (2002), Sihvola (1999)]) are of integral form

$$P(x,t) = \int_0^t \nu_E(t-s,x) E(x,s) \, ds,$$

$$M(x,t) = \int_0^t \nu_H(t-s,x) H(x,s) \, ds,$$

where $\nu_E(t,x)$ (resp. $\nu_H(t,x)$) is the electric (resp. magnetic) susceptibility kernel.

Our goal is to analyze the general system **(P)**, supplemented with the electric boundary conditions

$$\mathbf{E} \times \mathbf{n} = 0, \ H \cdot \mathbf{n} = 0 \quad \text{on } \Gamma = \partial \Omega,$$
 (BC)

and initial conditions

$$E(\cdot,0)=E_0,\ H(\cdot,0)=H_0 \quad \text{in } \Omega,$$
 (IC)

and find sufficient conditions that guarantee exponential or polynomial decay of the solutions.

and find sufficient conditions that guarantee exponential or polynomial decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness of solutions for the above problem are studied by transforming the system to a Volterra integral equation.

and find sufficient conditions that guarantee exponential or polynomial decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness of solutions for the above problem are studied by transforming the system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in [Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz Rivera, Naso & Vuk (2004)].

and find sufficient conditions that guarantee exponential or polynomial decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness of solutions for the above problem are studied by transforming the system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in [Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz Rivera, Naso & Vuk (2004)].

In this paper we restrict to the following case:

- ϵ and μ positive constants;
- $\nu_E(t, x) = \nu_E(t)$ and $\nu_H(t, x) = \nu_H(t)$.

and find sufficient conditions that guarantee exponential or polynomial decay of the solutions.

In [loannidis, Kristensson & Stratis (2012)] existence and uniqueness of solutions for the above problem are studied by transforming the system to a Volterra integral equation.

We use here a different approach based on semigroup theory as in [Conti, Gatti & Pata (2008), Danese, Geredeli & Pata (2015), Munoz Rivera, Naso & Vuk (2004)].

In this paper we restrict to the following case:

- ϵ and μ positive constants;
- $\nu_E(t, x) = \nu_E(t)$ and $\nu_H(t, x) = \nu_H(t)$.

This already corresponds to a large class of physical examples, see e.g. [Kristensson, Karlsson & Rikte (2002), Sihvola (1999)].

We further assume that

• $\nu_E, \nu_H \in K$, where K is the set of kernels $\nu \in C^2([0, \infty))$, that satisfy

$$\lim_{t\to\infty}\nu'(t)=0,$$

We further assume that

• $\nu_E, \nu_H \in K$, where K is the set of kernels $\nu \in C^2([0, \infty))$, that satisfy

$$\lim_{t\to\infty}\nu'(t)=0,$$

and that

• there exists two positive constants ${\it C}$ and δ (depending on ν) such that

$$|\nu''(t)| \leq Ce^{-\delta t}, \forall t \geq 0.$$

We further assume that

• $\nu_E, \nu_H \in K$, where K is the set of kernels $\nu \in C^2([0, \infty))$, that satisfy

$$\lim_{t\to\infty}\nu'(t)=0,$$

and that

• there exists two positive constants ${\it C}$ and δ (depending on ν) such that

$$|\nu''(t)| \leq Ce^{-\delta t}, \forall t \geq 0.$$

Again these assumptions cover a large class of physical models.

For brevity, we define the function w by

$$w(t) = Ce^{-\delta t}, \forall t \geq 0.$$

We translate our system into a semigroup context (useful also for the stability analysis).

We translate our system into a semigroup context (useful also for the stability analysis). First we notice that combining the expressions for D, B, P, M with Maxwell system (P) we obtain the integro-differential system

$$\begin{cases} \varepsilon E_t + \nu_E(0)E + \int_0^t \nu_E'(t-s)E(\cdot,s) \, ds - \operatorname{curl} H = 0 & \text{in } Q, \\ \mu H_t + \nu_H(0)H + \int_0^t \nu_H'(t-s)H(\cdot,s) \, ds + \operatorname{curl} E = 0 & \text{in } Q. \end{cases}$$

We translate our system into a semigroup context (useful also for the stability analysis). First we notice that combining the expressions for D, B, P, M with Maxwell system (P) we obtain the integro-differential system

$$\begin{cases} \varepsilon E_t + \nu_E(0)E + \int_0^t \nu_E'(t-s)E(\cdot,s) ds - \operatorname{curl} H = 0 & \text{in } Q, \\ \mu H_t + \nu_H(0)H + \int_0^t \nu_H'(t-s)H(\cdot,s) ds + \operatorname{curl} E = 0 & \text{in } Q. \end{cases}$$

Assuming for the moment that the solution (E, H) of this system with boundary conditions **(BC)** and initial conditions **(IC)** exists, then for all $(t,s) \in [0,\infty) \times (0,\infty)$ we introduce the cumulative past histories

$$\eta_E^t(\cdot,s) = \int_0^{\min\{s,t\}} E(\cdot,t-y) \, dy,$$

$$\eta_H^t(\cdot,s) = \int_0^{\min\{s,t\}} H(\cdot,t-y) \, dy,$$

that respectively satisfy the transport equations

that respectively satisfy the transport equations

$$\begin{split} \partial_t \eta_E^t(\cdot, s) &= -\partial_s \eta_E^t(\cdot, s) + E(\cdot, t), \\ \partial_t \eta_H^t(\cdot, s) &= -\partial_s \eta_H^t(\cdot, s) + H(\cdot, t), \end{split}$$

that respectively satisfy the transport equations

$$\begin{aligned} \partial_t \eta_{\mathsf{E}}^t(\cdot, \mathbf{s}) &= -\partial_{\mathbf{s}} \eta_{\mathsf{E}}^t(\cdot, \mathbf{s}) + \mathsf{E}(\cdot, t), \\ \partial_t \eta_{\mathsf{H}}^t(\cdot, \mathbf{s}) &= -\partial_{\mathbf{s}} \eta_{\mathsf{H}}^t(\cdot, \mathbf{s}) + \mathsf{H}(\cdot, t), \end{aligned}$$

the boundary condition

$$\lim_{s \to 0} \eta_{\textit{E}}^{\textit{t}}(\cdot, \textit{s}) = \lim_{s \to 0} \eta_{\textit{H}}^{\textit{t}}(\cdot, \textit{s}) = 0,$$

that respectively satisfy the transport equations

$$\begin{aligned} \partial_t \eta_{\mathsf{E}}^t(\cdot, \mathbf{s}) &= -\partial_{\mathbf{s}} \eta_{\mathsf{E}}^t(\cdot, \mathbf{s}) + \mathsf{E}(\cdot, t), \\ \partial_t \eta_{\mathsf{H}}^t(\cdot, \mathbf{s}) &= -\partial_{\mathbf{s}} \eta_{\mathsf{H}}^t(\cdot, \mathbf{s}) + \mathsf{H}(\cdot, t), \end{aligned}$$

the boundary condition

$$\lim_{s\to 0}\eta_E^t(\cdot,s)=\lim_{s\to 0}\eta_H^t(\cdot,s)=0,$$

and the initial condition

$$\eta_E^0(\cdot,s)=\eta_H^0(\cdot,s)=0.$$

Since formal integration by parts yields the identities

$$\begin{split} &\int_0^t \nu_E'(t-s) E(\cdot,s) \, \textit{d}s = - \int_0^\infty \nu_E''(s) \eta_E^t(\cdot,s) \, \textit{d}s, \\ &\int_0^t \nu_H'(t-s) H(\cdot,s) \, \textit{d}s = - \int_0^\infty \nu_H''(s) \eta_H^t(\cdot,s) \, \textit{d}s, \end{split}$$

Since formal integration by parts yields the identities

$$\begin{split} &\int_0^t \nu_E'(t-s) E(\cdot,s) \, \textit{d}s = -\int_0^\infty \nu_E''(s) \eta_E^t(\cdot,s) \, \textit{d}s, \\ &\int_0^t \nu_H'(t-s) H(\cdot,s) \, \textit{d}s = -\int_0^\infty \nu_H''(s) \eta_H^t(\cdot,s) \, \textit{d}s, \end{split}$$

the above integro-differential Maxwell system is (formally) equivalent to

$$\left\{ \begin{array}{l} \varepsilon E_t + \nu_E(0) E - \int_0^\infty \nu_E''(s) \eta_E^t(\cdot,s) \, ds - \operatorname{curl} H = 0 \quad \text{in } Q, \\ \mu H_t + \nu_H(0) H - \int_0^\infty \nu_H''(s) \eta_H^t((\cdot,s) \, ds + \operatorname{curl} E = 0 \quad \text{in } Q, \end{array} \right.$$

All together by setting

$$U = \left(egin{array}{c} E \ H \ \eta_E \ \eta_H \end{array}
ight),$$

All together by setting

$$U = \begin{pmatrix} E \\ H \\ \eta_E \\ \eta_H \end{pmatrix},$$

we obtain the abstract Cauchy problem

$$\begin{cases}
U_t = AU, \\
U(0) = U_0,
\end{cases}$$
(PA)

where

$$\mathcal{A}\begin{pmatrix} E \\ H \\ \eta_E \\ \eta_H \end{pmatrix} = \begin{pmatrix} \varepsilon^{-1}(-\nu_E(0)E + \int_0^\infty \nu_E''(s)\eta_E(\cdot,s)\,ds + \operatorname{curl} H) \\ \mu^{-1}(-\nu_H(0)H + \int_0^\infty \nu_H''(s)\eta_H(\cdot,s)\,ds - \operatorname{curl} E) \\ -\partial_s\eta_E(\cdot,s) + E \\ -\partial_s\eta_H(\cdot,s) + H \end{pmatrix},$$

and

$$\mathcal{A}\begin{pmatrix}E\\H\\\eta_E\\\eta_H\end{pmatrix}=\begin{pmatrix}\varepsilon^{-1}(-\nu_E(0)E+\int_0^\infty\nu_E''(s)\eta_E(\cdot,s)\,ds+\operatorname{curl}H)\\\mu^{-1}(-\nu_H(0)H+\int_0^\infty\nu_H''(s)\eta_H(\cdot,s)\,ds-\operatorname{curl}E)\\-\partial_s\eta_E(\cdot,s)+E\\-\partial_s\eta_H(\cdot,s)+H\end{pmatrix},$$

and

$$U_0 = (E_0, H_0, 0, 0)^{\top}.$$

$$\mathcal{A} \begin{pmatrix} E \\ H \\ \eta_E \\ \eta_H \end{pmatrix} = \begin{pmatrix} \varepsilon^{-1}(-\nu_E(0)E + \int_0^\infty \nu_E''(s)\eta_E(\cdot,s)\,ds + \operatorname{curl} H) \\ \mu^{-1}(-\nu_H(0)H + \int_0^\infty \nu_H''(s)\eta_H(\cdot,s)\,ds - \operatorname{curl} E) \\ -\partial_s\eta_E(\cdot,s) + E \\ -\partial_s\eta_H(\cdot,s) + H \end{pmatrix},$$

and

$$U_0 = (E_0, H_0, 0, 0)^{\top}.$$

The existence of a solution to **(PA)** is obtained by using semigroup theory in the appropriate Hilbert setting described here below.

$$\mathcal{A} \begin{pmatrix} E \\ H \\ \eta_E \\ \eta_H \end{pmatrix} = \begin{pmatrix} \varepsilon^{-1}(-\nu_E(0)E + \int_0^\infty \nu_E''(s)\eta_E(\cdot,s)\,ds + \operatorname{curl} H) \\ \mu^{-1}(-\nu_H(0)H + \int_0^\infty \nu_H''(s)\eta_H(\cdot,s)\,ds - \operatorname{curl} E) \\ -\partial_s\eta_E(\cdot,s) + E \\ -\partial_s\eta_H(\cdot,s) + H \end{pmatrix},$$

and

$$U_0 = (E_0, H_0, 0, 0)^{\top}.$$

The existence of a solution to **(PA)** is obtained by using semigroup theory in the appropriate Hilbert setting described here below. First we introduce the Hilbert spaces

$$J(\Omega) = \{ \chi \in L^2(\Omega)^3 | \operatorname{div} \chi = 0 \},\$$

and

$$\hat{J}(\Omega) = \{ \chi \in J(\Omega) | \chi \cdot \mathbf{n} = 0 \text{ on } \Gamma \},$$

recalling that for a field $\chi \in J(\Omega)$, $\chi \cdot \mathbf{n}$ has a meaning as an element of $H^{-\frac{1}{2}}(\Gamma)$, see [Girault & Raviart (1986)].

recalling that for a field $\chi \in J(\Omega)$, $\chi \cdot \mathbf{n}$ has a meaning as an element of $H^{-\frac{1}{2}}(\Gamma)$, see [Girault & Raviart (1986)].

Observe that $w \in L^{\infty}([0,\infty))$ and recall that for a Hilbert space X with inner product $(\cdot,\cdot)_X$ and induced norm $\|\cdot\|_X$, $L^2_w((0,\infty);X)$ is the Hilbert space comprised of functions η defined on $(0,\infty)$ with values in X such that

$$\int_0^\infty \|\eta(s)\|_X^2 w(s)\,ds < \infty,$$

with the natural inner product

$$\int_0^\infty (\eta(s), \eta'(s))_X w(s) ds, \ \forall \eta, \eta' \in L^2_w((0, \infty); X).$$

recalling that for a field $\chi \in J(\Omega)$, $\chi \cdot \mathbf{n}$ has a meaning as an element of $H^{-\frac{1}{2}}(\Gamma)$, see [Girault & Raviart (1986)].

Observe that $w \in L^{\infty}([0,\infty))$ and recall that for a Hilbert space X with inner product $(\cdot,\cdot)_X$ and induced norm $\|\cdot\|_X$, $L^2_w((0,\infty);X)$ is the Hilbert space comprised of functions η defined on $(0,\infty)$ with values in X such that

$$\int_0^\infty \|\eta(s)\|_X^2 w(s)\,ds < \infty,$$

with the natural inner product

$$\int_0^\infty (\eta(s), \eta'(s))_X w(s) ds, \ \forall \eta, \eta' \in L^2_w((0, \infty); X).$$

Let us notice that $L^2_w((0,\infty);X)$ is quite large since it contains all polynomials with coefficients in X,

namely for any non-negative integer n and any $a_i \in X$, $i = 0, \dots, n$, the polynomial p defined by

$$p(s) = \sum_{i=0}^{n} a_i s^i, \quad \forall \ s \in (0, \infty),$$

belongs to $L_w^2((0,\infty);X)$.

namely for any non-negative integer n and any $a_i \in X$, $i = 0, \dots, n$, the polynomial p defined by

$$p(s) = \sum_{i=0}^{n} a_i s^i, \quad \forall \ s \in (0, \infty),$$

belongs to $L_w^2((0,\infty);X)$. Now we introduce the Hilbert space

$$\mathcal{H} = J(\Omega) \times \hat{J}(\Omega) \times L_w^2((0,\infty); J(\Omega)) \times L_w^2((0,\infty); \hat{J}(\Omega)),$$

with the inner product

namely for any non-negative integer n and any $a_i \in X$, $i = 0, \dots, n$, the polynomial p defined by

$$p(s) = \sum_{i=0}^{n} a_i s^i, \quad \forall \ s \in (0, \infty),$$

belongs to $L_w^2((0,\infty);X)$. Now we introduce the Hilbert space

$$\mathcal{H} = J(\Omega) \times \hat{J}(\Omega) \times L^2_w((0,\infty);J(\Omega)) \times L^2_w((0,\infty);\hat{J}(\Omega)),$$

with the inner product

$$\begin{split} ((E,H,\eta_E,\eta_H)^\top,(E',H',\eta_E',\eta_H')^\top)_{\mathcal{H}} := \int_\Omega (\varepsilon E \cdot \bar{E}' + \mu H \cdot \bar{H}') \, dx \\ + \int_0^\infty \int_\Omega (\eta_E(x,s) \cdot \bar{\eta}_E'(x,s) + \eta_H(x,s) \cdot \bar{\eta}_H'(x,s)) \, dx \, w(s) \, ds, \end{split}$$

for all $(E, H, \eta_E, \eta_H)^\top, (E', H', \eta'_F, \eta'_H)^\top \in \mathcal{H}.$

We then define the operator \mathcal{A} as follows:

$$\mathcal{D}(\mathcal{A}) = \left\{ (E, H, \eta_E, \eta_H)^\top \in \mathcal{H} | \operatorname{curl} E, \operatorname{curl} H \in L^2(\Omega)^3, E \times n = 0 \text{ on } \Gamma, \\ \partial_{\mathcal{S}} \eta_E \in L^2_{W}((0, \infty); J(\Omega)), \partial_{\mathcal{S}} \eta_H \in L^2_{W}((0, \infty); \hat{J}(\Omega)) \\ \operatorname{and} \eta_E(0) = \eta_H(0) = 0 \right\},$$

and for all $U = (E, H, \eta_E, \eta_H)^{\top} \in \mathcal{D}(A)$, AU is defined as above.

We then define the operator \mathcal{A} as follows:

$$\mathcal{D}(\mathcal{A}) = \left\{ (E, H, \eta_E, \eta_H)^\top \in \mathcal{H} | \operatorname{curl} E, \operatorname{curl} H \in L^2(\Omega)^3, E \times n = 0 \text{ on } \Gamma, \\ \partial_{\mathcal{S}} \eta_E \in L^2_{W}((0, \infty); J(\Omega)), \partial_{\mathcal{S}} \eta_H \in L^2_{W}((0, \infty); \hat{J}(\Omega)) \\ \operatorname{and} \eta_E(0) = \eta_H(0) = 0 \right\},$$

and for all $U = (E, H, \eta_E, \eta_H)^{\top} \in \mathcal{D}(A)$, AU is defined as above.

Note that for a field $E \in H(\operatorname{curl}; \Omega) = \{E \in L^2(\Omega)^3 : \operatorname{curl} E \in L^2(\Omega)^3\},$ $E \times n$ has a meaning as an element of $H^{-\frac{1}{2}}(\Gamma)^3$, see [Girault & Raviart (1986)].

We then define the operator \mathcal{A} as follows:

$$\mathcal{D}(\mathcal{A}) = \left\{ (E, H, \eta_E, \eta_H)^\top \in \mathcal{H} | \operatorname{curl} E, \operatorname{curl} H \in L^2(\Omega)^3, E \times n = 0 \text{ on } \Gamma, \\ \partial_{\mathcal{S}} \eta_E \in L^2_{w}((0, \infty); J(\Omega)), \partial_{\mathcal{S}} \eta_H \in L^2_{w}((0, \infty); \hat{J}(\Omega)) \\ \operatorname{and} \eta_E(0) = \eta_H(0) = 0 \right\},$$

and for all $U = (E, H, \eta_E, \eta_H)^{\top} \in \mathcal{D}(A)$, AU is defined as above.

Note that for a field $E \in H(\operatorname{curl}; \Omega) = \{E \in L^2(\Omega)^3 : \operatorname{curl} E \in L^2(\Omega)^3\},$ $E \times n$ has a meaning as an element of $H^{-\frac{1}{2}}(\Gamma)^3$, see [Girault & Raviart (1986)].

We can prove that \mathcal{A} generates a C_0 -semigroup on \mathcal{H} .

THEOREM [Nicaise and P., 2020]

The operator \mathcal{A} generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on \mathcal{H} .

THEOREM [Nicaise and P., 2020]

The operator \mathcal{A} generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on \mathcal{H} . Therefore for all $U_0\in\mathcal{H}$, problem **(PA)** has a mild solution $U\in C([0,\infty),\mathcal{H})$ given by $U(t)=T(t)U_0$, for all $t\geq 0$.

THEOREM [Nicaise and P., 2020]

The operator \mathcal{A} generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on \mathcal{H} . Therefore for all $U_0\in\mathcal{H}$, problem **(PA)** has a mild solution $U\in C([0,\infty),\mathcal{H})$ given by $U(t)=T(t)U_0$, for all $t\geq 0$. If moreover $U_0\in D(\mathcal{A}^k)$, with $k\in\mathbb{N}^*$, problem **(PA)** has a classical solution

$$U \in \bigcap_{j=0}^k C^j([0,\infty), D(A^{k-j})).$$

THEOREM [Nicaise and P., 2020]

The operator \mathcal{A} generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on \mathcal{H} . Therefore for all $U_0\in\mathcal{H}$, problem **(PA)** has a mild solution $U\in C([0,\infty),\mathcal{H})$ given by $U(t)=T(t)U_0$, for all $t\geq 0$. If moreover $U_0\in D(\mathcal{A}^k)$, with $k\in\mathbb{N}^*$, problem **(PA)** has a classical solution

$$U \in \bigcap_{j=0}^k C^j([0,\infty), D(A^{k-j})).$$

Proof:

THEOREM [Nicaise and P., 2020]

The operator \mathcal{A} generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on \mathcal{H} . Therefore for all $U_0\in\mathcal{H}$, problem **(PA)** has a mild solution $U\in C([0,\infty),\mathcal{H})$ given by $U(t)=T(t)U_0$, for all $t\geq 0$. If moreover $U_0\in D(\mathcal{A}^k)$, with $k\in\mathbb{N}^*$, problem **(PA)** has a classical solution

$$U \in \bigcap_{j=0}^k C^j([0,\infty), D(\mathcal{A}^{k-j})).$$

Proof:

We show that $\mathcal{A} - \kappa I$ is a maximal dissipative operator for some $\kappa \geq 0$; then by Lumer-Phillips' theorem it generates a C_0 -semigroup of contractions on \mathcal{H} and, consequently, \mathcal{A} generates a C_0 -semigroup on \mathcal{H} .

In order to apply standard results on the decay of semigroups, the first step is to show that the semigroup $(T(t))_{t\geq 0}$ generated by $\mathcal A$ is bounded.

In order to apply standard results on the decay of semigroups, the first step is to show that the semigroup $(T(t))_{t\geq 0}$ generated by $\mathcal A$ is bounded.

This property is based on the passitivity assumption (or equivalently the assumption that the material is passive, see [Cassier, Joly & Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

In order to apply standard results on the decay of semigroups, the first step is to show that the semigroup $(T(t))_{t\geq 0}$ generated by $\mathcal A$ is bounded.

This property is based on the passitivity assumption (or equivalently the assumption that the material is passive, see [Cassier, Joly & Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

$$\Re\left(i\omega\mathcal{L}\nu_{E}(i\omega)\right)\geq0,\quad\Re\left(i\omega\mathcal{L}\nu_{H}(i\omega)\right)\geq0,\;\forall\omega\in\mathbb{R}.$$
 (HP)

In order to apply standard results on the decay of semigroups, the first step is to show that the semigroup $(T(t))_{t\geq 0}$ generated by $\mathcal A$ is bounded.

This property is based on the passitivity assumption (or equivalently the assumption that the material is passive, see [Cassier, Joly & Kachanovska (2017) and Nguyen & Vinoles (2018)]), that says that

$$\Re\left(i\omega\mathcal{L}\nu_{E}(i\omega)\right)\geq0,\quad\Re\left(i\omega\mathcal{L}\nu_{H}(i\omega)\right)\geq0,\;\forall\omega\in\mathbb{R}.$$
 (HP)

Note that this property is equivalent to

$$\omega \Im \mathcal{L} \nu_{\mathsf{E}}(i\omega) \leq 0, \quad \omega \Im \mathcal{L} \nu_{\mathsf{H}}(i\omega) \leq 0, \ \forall \omega \in \mathbb{R}.$$

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption **(HP)**, there exists a positive constant *M* such that

$$||T(t)|| \leq M, \ \forall t \geq 0.$$

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption **(HP)**, there exists a positive constant *M* such that

$$||T(t)|| \leq M, \ \forall t \geq 0.$$

From this, one can deduce the following result.

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption **(HP)**, there exists a positive constant *M* such that

$$||T(t)|| \leq M, \ \forall t \geq 0.$$

From this, one can deduce the following result.

COROLLARY

Under the additional assumption **(HP)**, the resolvent set $\rho(A)$ of A contains the right-half plane, namely

$$\{\lambda \in \mathbb{C} : \Re \lambda > 0\} \subset \rho(\mathcal{A}).$$

PROPOSITION [Nicaise and P., 2020]

Under the additional assumption **(HP)**, there exists a positive constant *M* such that

$$||T(t)|| \leq M, \ \forall t \geq 0.$$

From this, one can deduce the following result.

COROLLARY

Under the additional assumption **(HP)**, the resolvent set $\rho(A)$ of A contains the right-half plane, namely

$$\{\lambda \in \mathbb{C} : \Re \lambda > 0\} \subset \rho(\mathcal{A}).$$

Proof:

Direct consequence of previous proposition and of Theorem 5.2.1 of [Arendt, Batty, Hieber & Neubrander (2001)].

A simple way to prove the strong stability of **(PA)** is to use the following theorem due to Arendt & Batty (1988) and Lyubich & Vũ (1988).

A simple way to prove the strong stability of **(PA)** is to use the following theorem due to Arendt & Batty (1988) and Lyubich & Vũ (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vũ (1988)]

Let X be a reflexive Banach space and $(T(t))_{t\geq 0}$ be a C_0 semigroup generated by A on X. Assume that $(T(t))_{t\geq 0}$ is bounded and no eigenvalues of A lie on the imaginary axis. If $\sigma(A)\cap i\mathbb{R}$ is countable, then $(T(t))_{t\geq 0}$ is stable.

A simple way to prove the strong stability of **(PA)** is to use the following theorem due to Arendt & Batty (1988) and Lyubich & Vũ (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vũ (1988)]

Let X be a reflexive Banach space and $(T(t))_{t\geq 0}$ be a C_0 semigroup generated by A on X. Assume that $(T(t))_{t\geq 0}$ is bounded and no eigenvalues of A lie on the imaginary axis. If $\sigma(A)\cap i\mathbb{R}$ is countable, then $(T(t))_{t\geq 0}$ is stable.

We now want to take advantage of this theorem.

A simple way to prove the strong stability of **(PA)** is to use the following theorem due to Arendt & Batty (1988) and Lyubich & Vũ (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vũ (1988)]

Let X be a reflexive Banach space and $(T(t))_{t\geq 0}$ be a C_0 semigroup generated by A on X. Assume that $(T(t))_{t\geq 0}$ is bounded and no eigenvalues of A lie on the imaginary axis. If $\sigma(A)\cap i\mathbb{R}$ is countable, then $(T(t))_{t\geq 0}$ is stable.

We now want to take advantage of this theorem. Since the resolvent of our operator is not compact, we have to analyze the full spectrum of $\mathcal A$ on the imaginary axis.

A simple way to prove the strong stability of **(PA)** is to use the following theorem due to Arendt & Batty (1988) and Lyubich & Vũ (1988).

Theorem [Arendt & Batty (1988), Lyubich & Vũ (1988)]

Let X be a reflexive Banach space and $(T(t))_{t\geq 0}$ be a C_0 semigroup generated by A on X. Assume that $(T(t))_{t\geq 0}$ is bounded and no eigenvalues of A lie on the imaginary axis. If $\sigma(A)\cap i\mathbb{R}$ is countable, then $(T(t))_{t\geq 0}$ is stable.

We now want to take advantage of this theorem. Since the resolvent of our operator is not compact, we have to analyze the full spectrum of $\mathcal A$ on the imaginary axis. For that purpose, we actually need a stronger assumption than the passitivity, namely in addition to **(HP)**, we need that

$$\Re\left(i\omega\mathcal{L}\nu_{E}(i\omega)\right) + \Re\left(i\omega\mathcal{L}\nu_{H}(i\omega)\right) > 0, \ \forall \omega \in \mathbb{R}^{*} = \mathbb{R} \setminus \{0\}. \quad (\mathsf{HP}+)$$

As before this property is equivalent to

$$\omega\Im\mathcal{L}\nu_{E}(i\omega) + \omega\Im\mathcal{L}\nu_{H}(i\omega) < 0, \ \forall \omega \in \mathbb{R}^{*}.$$

As before this property is equivalent to

$$\omega\Im\mathcal{L}\nu_{\textit{E}}(\textit{i}\omega) + \omega\Im\mathcal{L}\nu_{\textit{H}}(\textit{i}\omega) < 0, \ \forall \omega \in \mathbb{R}^*.$$

LEMMA [Nicaise and P., 2020]

Under the additional assumptions (**HP**) and (**HP+**), and if Ω is simply connected with a connected boundary, then

As before this property is equivalent to

$$\omega\Im\mathcal{L}\nu_{E}(i\omega) + \omega\Im\mathcal{L}\nu_{H}(i\omega) < 0, \ \forall \omega \in \mathbb{R}^{*}.$$

LEMMA [Nicaise and P., 2020]

Under the additional assumptions (**HP**) and (**HP+**), and if Ω is simply connected with a connected boundary, then

$$i\mathbb{R} \equiv \{i\beta \mid \beta \in \mathbb{R}\} \subset \rho(A).$$

As before this property is equivalent to

$$\omega \Im \mathcal{L} \nu_{E}(i\omega) + \omega \Im \mathcal{L} \nu_{H}(i\omega) < 0, \ \forall \omega \in \mathbb{R}^{*}.$$

LEMMA [Nicaise and P., 2020]

Under the additional assumptions (**HP**) and (**HP+**), and if Ω is simply connected with a connected boundary, then

$$i\mathbb{R} \equiv \{i\beta \mid \beta \in \mathbb{R}\} \subset \rho(\mathcal{A}).$$

From this lemma and the theorem of Arendt & Batty / Lyubich & $V\tilde{u}$, we deduce the following result.

PROPOSITION [Nicaise and P., 2020]

Under the assumptions of previous lemma, $(T(t))_{t\geq 0}$ is stable, i.e.,

$$T(t)U_0 \rightarrow 0 \text{ in } \mathcal{H}, \text{ as } t \rightarrow \infty, \ \forall U_0 \in \mathcal{H}.$$

PROPOSITION [Nicaise and P., 2020]

Under the assumptions of previous lemma, $(T(t))_{t\geq 0}$ is stable, i.e.,

$$T(t)U_0 \rightarrow 0 \text{ in } \mathcal{H}, \text{ as } t \rightarrow \infty, \ \forall U_0 \in \mathcal{H}.$$

In particular the solution (E(t), H(t)) of **(P)**, with electric boundary conditions **(BC)** and initial conditions **(IC)** satisfies

$$\|E(t)\|_{\Omega} + \|H(t)\|_{\Omega} \to 0 \text{ as } t \to \infty, \ \forall (E_0, H_0) \in J(\Omega) \times \hat{J}(\Omega).$$

Our stability results are based on a frequency domain approach, namely for the exponential decay of the energy we use the following result:

Our stability results are based on a frequency domain approach, namely for the exponential decay of the energy we use the following result:

Theorem [Pruss 1984 / Huang 1985]

Let $(e^{t\mathcal{L}})_{t\geq 0}$ be a bounded C_0 semigroup on a Hilbert space H. Then it is exponentially stable, i.e., it satisfies

$$||e^{t\mathcal{L}}U_0|| \leq C e^{-\omega t}||U_0||_H, \quad \forall U_0 \in H, \quad \forall t \geq 0,$$

for some positive constants ${\it C}$ and ω if and only if

$$i\mathbb{R}\subset
ho(\mathcal{L}),$$
 (C1)

and

$$\sup_{\beta \in \mathbb{P}} \|(i\beta - \mathcal{L})^{-1}\| < \infty. \tag{CE}$$

The polynomial decay of the energy is, instead, based on the following result.

Theorem [Borichev and Tomilov, 2010]

Let $(e^{t\mathcal{L}})_{t\geq 0}$ be a bounded C_0 semigroup on a Hilbert space H such that its generator \mathcal{L} satisfies

$$i\mathbb{R}\subset
ho(\mathcal{L}),$$
 (C1)

and let ℓ be a fixed positive real number. Then the following properties are equivalent

$$\begin{split} ||e^{t\mathcal{L}}U_{0}|| &\leq C \, t^{-\frac{1}{\ell}} ||U_{0}||_{\mathcal{D}(\mathcal{L})}, \quad \forall U_{0} \in \mathcal{D}(\mathcal{L}), \quad \forall t > 1, \\ ||e^{t\mathcal{L}}U_{0}|| &\leq C \, t^{-1} ||U_{0}||_{\mathcal{D}(\mathcal{L}^{\ell})}, \quad \forall U_{0} \in \mathcal{D}(\mathcal{L}^{\ell}), \quad \forall t > 1, \\ \sup_{\beta \in \mathbb{R}} \frac{1}{1 + |\beta|^{\ell}} \, ||(i\beta - \mathcal{L})^{-1}|| &< \infty. \end{split}$$
(CP)

As we know the validness of assumption **(C1)**, it remains to check whether **(CE)** or **(CP)** is valid. This is possible by improving the assumption **(HP+)** with a precise behavior of $\Re(i\omega\mathcal{L}\nu_E(i\omega))$ and of $\Re(i\omega\mathcal{L}\nu_H(i\omega))$ at infinity.

As we know the validness of assumption **(C1)**, it remains to check whether **(CE)** or **(CP)** is valid. This is possible by improving the assumption **(HP+)** with a precise behavior of $\Re(i\omega\mathcal{L}\nu_E(i\omega))$ and of $\Re(i\omega\mathcal{L}\nu_H(i\omega))$ at infinity.

More precisely, we suppose that there exist four non negative constants σ_E , σ_H , ω_0 , and m with $\sigma_E + \sigma_H > 0$ such that

As we know the validness of assumption **(C1)**, it remains to check whether **(CE)** or **(CP)** is valid. This is possible by improving the assumption **(HP+)** with a precise behavior of $\Re (i\omega \mathcal{L}\nu_E(i\omega))$ and of $\Re (i\omega \mathcal{L}\nu_H(i\omega))$ at infinity.

More precisely, we suppose that there exist four non negative constants σ_E , σ_H , ω_0 , and m with $\sigma_E + \sigma_H > 0$ such that

$$\Re (i\omega \mathcal{L}\nu_{E}(i\omega)) |X|^{2} + \Re (i\omega \mathcal{L}\nu_{H}(i\omega)) |Y|^{2}$$

$$\geq |\omega|^{-m} (\sigma_{E}|X|^{2} + \sigma_{H}|Y|^{2}), \ \forall X, Y \in \mathbb{C}^{3}, \ \omega \in \mathbb{R} : |\omega| > \omega_{0}.$$

As we know the validness of assumption **(C1)**, it remains to check whether **(CE)** or **(CP)** is valid. This is possible by improving the assumption **(HP+)** with a precise behavior of $\Re (i\omega \mathcal{L}\nu_E(i\omega))$ and of $\Re (i\omega \mathcal{L}\nu_H(i\omega))$ at infinity.

More precisely, we suppose that there exist four non negative constants σ_E , σ_H , ω_0 , and m with $\sigma_E + \sigma_H > 0$ such that

$$\Re (i\omega \mathcal{L}\nu_{E}(i\omega)) |X|^{2} + \Re (i\omega \mathcal{L}\nu_{H}(i\omega)) |Y|^{2} \qquad (\mathbf{HP} + +) \\
\geq |\omega|^{-m} (\sigma_{E}|X|^{2} + \sigma_{H}|Y|^{2}), \ \forall X, Y \in \mathbb{C}^{3}, \ \omega \in \mathbb{R} : |\omega| > \omega_{0}.$$

We have the following result.

As we know the validness of assumption **(C1)**, it remains to check whether **(CE)** or **(CP)** is valid. This is possible by improving the assumption **(HP+)** with a precise behavior of $\Re(i\omega\mathcal{L}\nu_E(i\omega))$ and of $\Re(i\omega\mathcal{L}\nu_H(i\omega))$ at infinity.

More precisely, we suppose that there exist four non negative constants σ_E , σ_H , ω_0 , and m with $\sigma_E + \sigma_H > 0$ such that

$$\Re (i\omega \mathcal{L}\nu_{E}(i\omega)) |X|^{2} + \Re (i\omega \mathcal{L}\nu_{H}(i\omega)) |Y|^{2} \qquad (\mathbf{HP} + +) \\
\geq |\omega|^{-m} (\sigma_{E}|X|^{2} + \sigma_{H}|Y|^{2}), \ \forall X, Y \in \mathbb{C}^{3}, \ \omega \in \mathbb{R} : |\omega| > \omega_{0}.$$

We have the following result.

PROPOSITION [Nicaise and P., 2020]

In addition to previous assumptions, assume that **(HP++)** holds. Then the operator \mathcal{A} satisfies **(CP)** with $\ell = m$.

From this lemma and the theorem due to Pruss 1984/Huang 1985 (resp. the theorem of Borichev and Tomilov 2010), we deduce the following results.

From this lemma and the theorem due to Pruss 1984/Huang 1985 (resp. the theorem of Borichev and Tomilov 2010), we deduce the following results.

COROLLARY

In addition to previous assumptions, assume that **(HP++)** holds with m=0. Then the semigroup $(e^{t\mathcal{A}})_{t\geq 0}$ is exponentially stable, in particular the solution (E(t),H(t)) of **(P)**, with electric boundary conditions **(BC)** and initial conditions **(IC)** tends exponentially to zero in $J(\Omega) \times \hat{J}(\Omega)$.

Exponential and polynomial stability results

COROLLARY

In addition to previous assumptions, assume that **(HP++)** holds with m > 0. Then the semigroup $(e^{tA})_{t>0}$ is polynomially stable, i.e.

$$\|\mathbf{e}^{t\mathcal{L}}U_0\|\lesssim t^{-\frac{1}{m}}\|U_0\|_{\mathcal{D}(\mathcal{A})},\quad \forall U_0\in\mathcal{D}(\mathcal{A}),\quad \forall t>1.$$

Exponential and polynomial stability results

COROLLARY

In addition to previous assumptions, assume that **(HP++)** holds with m > 0. Then the semigroup $(e^{tA})_{t \ge 0}$ is polynomially stable, i.e.

$$\|e^{t\mathcal{L}}U_0\| \lesssim t^{-\frac{1}{m}}\|U_0\|_{\mathcal{D}(\mathcal{A})}, \quad \forall U_0 \in \mathcal{D}(\mathcal{A}), \quad \forall t > 1.$$

In particular the solution (E(t), H(t)) of **(P)**, with electric boundary conditions **(BC)** and initial conditions **(IC)** satisfies, $\forall t > 1$,

$$\|(E(t),H(t))\|_{J(\Omega)\times \hat{J}(\Omega)} \lesssim t^{-\frac{1}{m}} \|(E_0,H_0)\|_{\mathcal{D}(\mathcal{B})}, \quad \forall (E_0,H_0) \in \mathcal{D}(\mathcal{B}),$$

where

$$D(\mathcal{B}) := \{(E, H) \in J(\Omega) \times \hat{J}(\Omega) | \operatorname{curl} E, \operatorname{curl} H \in L^2(\Omega)^3, E \times n = 0 \text{ on } \Gamma\},$$

is the domain of the operator \mathcal{B} defined by

$$\mathcal{B}(E, H) = (\epsilon E - \text{curl } H, \mu H + \text{curl } E).$$

All physical examples of dispersive models that we found in the literature (see [Jackson (1962), Kristensson, Rikte & Sihvola (1998), Sihvola (1999), Cassier, Joly & Kachanovska (2017), Bécache, Joly & Vinoles (2018), and Nguyen & Vinoles (2018)]) are summarized in the following example.

All physical examples of dispersive models that we found in the literature (see [Jackson (1962), Kristensson, Rikte & Sihvola (1998), Sihvola (1999), Cassier, Joly & Kachanovska (2017), Bécache, Joly & Vinoles (2018), and Nguyen & Vinoles (2018)]) are summarized in the following example.

Let J be a positive integer and for all $j \in \{1, \dots, J\}$, let p_j, q_j be real-valued polynomials (of one variable). Let z_j be a complex number with $\Re z_j = x_j < 0$ and define

$$u_{E}(t) = \sum_{j=1}^{J} (p_{j}(t)\cos(y_{j}t) + q_{j}(t)\sin(y_{j}t))e^{x_{j}t},$$

where $y_j = \Im z_j$. Define similarly ν_H by taking other polynomials p_j, q_j and other complex numbers z_j with negative real parts. For simplicity we only examinate the case of ν_E , when necessary we will add the index E or H to distinguish polynomials related to ν_E or ν_H .

First, it is easy to check that ν_E satisfies the required assumptions.

First, it is easy to check that ν_E satisfies the required assumptions. Furthermore, by rewritting ν_E in the equivalent form

$$\nu_{E}(t) = \sum_{j=1}^{J} P_{j}(t)e^{z_{j}t},$$

where P_i is a (complex-valued) polynomial of degree d_i , we see that

$$\mathcal{L}\nu_{E}(\lambda) = \sum_{j=1}^{J} \sum_{\ell=0}^{d_{j}} \frac{P_{j}^{(\ell)}(0)}{(\lambda - z_{j})^{\ell+1}},$$

where $P_j^{(\ell)}$ denotes the derivative of P_j of order ℓ . This means that $i\omega \mathcal{L}\nu_E(i\omega)$ is a rational fraction in ω , more precisely

$$i\omega \mathcal{L}\nu_{E}(i\omega) = \frac{P_{r}(\omega)}{Q_{r}(\omega)} + i\frac{P_{i}(\omega)}{Q_{i}(\omega)},$$

where P_r , Q_r , P_i , Q_i are real-valued polynomials such that

 $\deg P_r < \deg Q_r$ and $\deg P_i \leq \deg Q_i$.

This means that **(HP)** holds if and only if

$$rac{P_{E,r}(\omega)}{Q_{E,r}(\omega)} \geq 0 ext{ and } rac{P_{H,r}(\omega)}{Q_{H,r}(\omega)} \geq 0, \; orall \omega \in \mathbb{R}.$$

This means that (HP) holds if and only if

$$\frac{P_{E,r}(\omega)}{Q_{E,r}(\omega)} \geq 0 \text{ and } \frac{P_{H,r}(\omega)}{Q_{H,r}(\omega)} \geq 0, \ \forall \omega \in \mathbb{R}.$$

Similarly, **(HP+)** is valid if and only if $R(\omega) = \frac{P_{E,r}(\omega)}{Q_{E,r}(\omega)} + \frac{P_{H,r}(\omega)}{Q_{H,r}(\omega)}$ satisfies

$$R(\omega) > 0, \quad \forall \ \omega \in \mathbb{R}^*.$$

This means that (HP) holds if and only if

$$\frac{\textit{P}_{\textit{E},\textit{r}}(\omega)}{\textit{Q}_{\textit{E},\textit{r}}(\omega)} \geq 0 \text{ and } \frac{\textit{P}_{\textit{H},\textit{r}}(\omega)}{\textit{Q}_{\textit{H},\textit{r}}(\omega)} \geq 0, \ \forall \omega \in \mathbb{R}.$$

Similarly, **(HP+)** is valid if and only if $R(\omega) = \frac{P_{E,r}(\omega)}{Q_{E,r}(\omega)} + \frac{P_{H,r}(\omega)}{Q_{H,r}(\omega)}$ satisfies

$$R(\omega) > 0, \quad \forall \ \omega \in \mathbb{R}^*.$$

By writing

$$R(\omega) = \frac{\sum_{n=0}^{N_1} a_n \omega^n}{\sum_{n=0}^{N_2} b_n \omega^n},$$

with $N_1 \le N_2$, $a_{N_1} \ne 0$ and $a_{N_2} \ne 0$, we notice that two necessary conditions for **(HP+)** are

$$N_2 - N_1$$
 even and $\frac{a_{N_1}}{b_{N_2}} > 0$. (\star)

Finally, the last passitivity assumption **(HP++)** is obviously related to the behavior at infinity of $R(\omega)$. Using previous expression for $R(\omega)$ we deduce that **(HP++)** holds with $m = N_2 - N_1$ if and only if (\star) holds.

Finally, the last passitivity assumption **(HP++)** is obviously related to the behavior at infinity of $R(\omega)$. Using previous expression for $R(\omega)$ we deduce that **(HP++)** holds with $m = N_2 - N_1$ if and only if (\star) holds. Let us finish by some particular cases.

Finally, the last passitivity assumption **(HP++)** is obviously related to the behavior at infinity of $R(\omega)$. Using previous expression for $R(\omega)$ we deduce that **(HP++)** holds with $m = N_2 - N_1$ if and only if (\star) holds. Let us finish by some particular cases.

• The Debye model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t)=0$ and $\nu_E(t)=\beta e^{-\frac{t}{\tau}}$, with β and τ two positive real numbers.

Finally, the last passitivity assumption **(HP++)** is obviously related to the behavior at infinity of $R(\omega)$. Using previous expression for $R(\omega)$ we deduce that **(HP++)** holds with $m = N_2 - N_1$ if and only if (\star) holds.

Let us finish by some particular cases.

• The Debye model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t)=0$ and $\nu_E(t)=\beta e^{-\frac{t}{\tau}}$, with β and τ two positive real numbers. Hence

$$\mathcal{L}\nu_{\mathsf{E}}(\lambda) = \frac{\beta\tau}{\tau\lambda + 1},$$

and we find

$$R(\omega) = \frac{\beta \tau^2 \omega^2}{1 + \tau^2 \omega^2}.$$

This means that **(HP)** and **(HP+)** hold and that **(HP++)** is valid with m = 0. Hence,

Finally, the last passitivity assumption **(HP++)** is obviously related to the behavior at infinity of $R(\omega)$. Using previous expression for $R(\omega)$ we deduce that **(HP++)** holds with $m = N_2 - N_1$ if and only if (\star) holds.

Let us finish by some particular cases.

• The Debye model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t)=0$ and $\nu_E(t)=\beta e^{-\frac{t}{\tau}}$, with β and τ two positive real numbers. Hence

$$\mathcal{L}\nu_{\mathsf{E}}(\lambda) = \frac{\beta\tau}{\tau\lambda + 1},$$

and we find

$$R(\omega) = \frac{\beta \tau^2 \omega^2}{1 + \tau^2 \omega^2}.$$

This means that **(HP)** and **(HP+)** hold and that **(HP++)** is valid with m=0. Hence, we deduce the exponential decay of the energy if Ω is simply connected with connected boundary.

• The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t) = 0$ and

$$\nu_{E}(t) = \beta \sin(\nu_0 t) e^{-\frac{\nu t}{2}},$$

with β , ν and ν_0 three positive real numbers. Hence

$$\mathcal{L}\nu_{E}(\lambda) = \frac{\beta\nu_{0}}{\omega_{0}^{2} + \lambda^{2} + \nu\lambda},$$

with $\omega_0^2 = \nu_0^2 + \nu^2/4$.

• The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t)=0$ and

$$\nu_E(t) = \beta \sin(\nu_0 t) e^{-\frac{\nu t}{2}},$$

with β , ν and ν_0 three positive real numbers. Hence

$$\mathcal{L}\nu_{E}(\lambda) = \frac{\beta\nu_{0}}{\omega_{0}^{2} + \lambda^{2} + \nu\lambda},$$

with $\omega_0^2 = \nu_0^2 + \nu^2/4$. Then we easily check that **(HP)** and **(HP+)** hold and that **(HP++)** is valid with m=2. Hence,

• The Lorentz model (cf. [Sihlova (1999)]) corresponds to the choice $\nu_H(t)=0$ and

$$\nu_{E}(t) = \beta \sin(\nu_0 t) e^{-\frac{\nu t}{2}},$$

with β , ν and ν_0 three positive real numbers. Hence

$$\mathcal{L}\nu_{E}(\lambda) = \frac{\beta\nu_{0}}{\omega_{0}^{2} + \lambda^{2} + \nu\lambda},$$

with $\omega_0^2 = \nu_0^2 + \nu^2/4$. Then we easily check that **(HP)** and **(HP+)** hold and that **(HP++)** is valid with m=2. Hence, we deduce a decay of the energy as t^{-1} if Ω is simply connected with connected boundary.

Thank you for your attention!