Infinitesimal Torelli for elliptic surfaces revisited

Remke Kloosterman

University of Padova

June 22, 2022

Elliptic surfaces

- ► Today: elliptic surface means compact complex surface with a minimal genus one fibration, without *multiple fibers*.
- No requirement for a section.
- ▶ No requirement that the surface is algebraic.
- Let X be an elliptic surface, let C be the base curve for the elliptic fibration $\pi: X \to C$, let g be the genus of C.
- ▶ The *j*-map, sending $p \in C$ to the *j*-invariant of $\pi^{-1}(p)$, plays an important role in the sequel.

Fundamental line bundle

- ▶ Let $\mathcal{L} = (R^1 \pi_* \mathcal{O}_X)^*$ (fundamental line bundle).
- ▶ Let $d = \deg(\mathcal{L})$.
- ▶ If X is not a product then $p_g(X) = \dim H^0(\Omega_X^2) = d + g 1$.
- ▶ If j is constant and different from 0, 1728 then π has 2d fibers of type I_0^* .
- ▶ For j = 0 and j = 1728 and fixed d there are several fiber configurations possible.

Numerical invariants

$d \setminus g$	0	1	≥ 2	
0	$E \times \mathbf{P}^1$	Products and nontrivial fiber bundles		
1, $h^0(\mathcal{L}) > 0$ 1, $h^0(\mathcal{L}) = 0$	RES	Base locus of $ \Omega_X^2 $ is non empty		
1, $h^0(\mathcal{L}) = 0$	_	-	$ \Omega_X^2 $ is base point free	
2	K3	*	*	
3,4,5 > 6	*	*	*	
≥ 6	*	*	*	

Infinitesimal Torelli

- Let Y be a smooth compact Kähler manifold of dimension n. Then Y satisfies infinitesimal Torelli on $H^k(Y, \mathbb{C})$ if the differential of the period map on $H^k(Y, \mathbb{C})$ is injective.
- Using Griffiths' transversality, Hodge symmetry etc this equivalent to whether the map

$$\delta_k: H^1(Y, \Theta_Y) \to \bigoplus_{p=0}^{\lfloor (k-1)/2 \rfloor} \operatorname{Hom}(H^p(Y, \Omega_Y^{k-p}), H^{p+1}(Y, \Omega_Y^{k-p-1}))$$

is injective.

- ▶ The map δ_k is injective if and only if δ_{2n-k} is injective. In particular we may assume that $k \leq n$.
- δ_0 is the zero map.

Infinitesimal Torelli

- ▶ Recall that $\pi: X \to C$ is a minimal elliptic fibration.
- ▶ If X is not a product. Then $H^1(X) \cong H^1(C)$ and δ_1 is not injective
- ▶ For the rest of the talk we concentrate on δ_2 , i.e., whether

$$H^1(X,\Theta_X) \to \operatorname{\mathsf{Hom}}(H^0(X,\Omega^2),H^1(X,\Omega^1))$$

is injective.

Torelli for elliptic surfaces

- Rational elliptic surfaces do not satisfy infinitesimal Torelli. (Case (g, d) = (0, 1).)
- ► K3 surfaces do satisfy infinitesimal Torelli. (Case (g, d) = (0, 2).)
- ► Fiber bundles and base will be treated separately. These surfaces have constant *j*-invariant and may be non-algebraic.

Very old results

- ▶ If g = 0 then we have $\Omega_X^2 = \pi^* \mathcal{O}_C(d-2)$. Hence if d > 2 then Ω_X^2 is divisible in Pic(X).
- Lieberman-Wilsker-Peters (1977) proved a result for infinitesimal Torelli for manifolds with divisible canonical bundle. They use some Koszul cohomology argument.
- ▶ Kii (1978) proved a similar result. He used this to show infinitesimal Torelli if g=0, $d\geq 3$ and the j-invariant is nonconstant.

Saito's PhD thesis

- M.-H. Saito (1983) proved infinitesimal Torelli
 - 1. if the *j*-invariant is nonconstant and $(g, d) \neq (0, 1)$,
 - 2. if the *j*-invariant is constant but different from 0,1728 and g = 0, d > 1,
 - 3. if the *j*-invariant is constant but different from 0,1728 and g > 0, $d \ge 3$.
- Saito had partial results for the case of elliptic fiber bundles. (Both counterexamples to infinitesimal Torelli as positive results)

Somewhat recent results I

In one of the chapters of my PhD thesis I studied elliptic surfaces with $C = \mathbf{P^1}$ and $\rho(X) = h^{1,1}(X)$. It turned out that there exists finitely many positive dimensional families (2004), e.g.,

$$X_{\alpha,\beta,\gamma}: y^2 = x^3 + [t(t-1)(t-\alpha)(t-\beta)(t-\gamma)]^5$$

is such a family. (There are six fibers of type II^* , d=5.)

▶ The period map is constant along such a family. In all cases we have j = 0, j = 1728. This is consistent with Saito's result.

Somewhat recent results II

Theorem

Suppose g=0 and d>2. Then X does not satisfy infinitesimal Torelli if and only if j is constant and π has d+1 singular fibers.

- ▶ The number of singular fibers is at least $\lceil \frac{6}{5}d \rceil \ge d+1$.
- ▶ There exits examples with d + 1 singular fibers, but only for $d \le 5$.
- ▶ Ikeda (2019) gave a counterexample to infinitesimal Torelli with g=1, d=1 and nonconstant j-invariant. This contradicts Saito's result.

Saito's proof

- ▶ There are several minor issues with Saito's result, most of which can be easily resolved or apply only to j = 0,1728 case.
- ▶ In the case of nonconstant j-invariant there is a single issue:
- ► Saito correctly shows that there is a torsion T such that X satisfies infinitesimal Torelli if

$$H^0(\Omega^1_C\otimes \mathcal{L})\otimes H^0(\mathcal{T})\to H^0(\Omega^1_C\otimes \mathcal{L}\otimes \mathcal{T})$$

is surjective.

- ▶ However, Saito then claims that this map is surjective for any torsion sheaf *T*.
- ▶ If d=1 and $h^0(\mathcal{L})>0$ then $\mathcal{L}\cong\mathcal{O}(p)$. If \mathcal{T} is supported at p then the above map is not surjective. This happens in Ikeda's example.
- ▶ The case of constant *j*-invariant is harder to repair.

Alternative approach: Koszul cohomology

Definition

Let Y be a compact complex manifold. Let \mathcal{F} be a coherent analytic sheaf on Y and let \mathcal{L} be an analytic line bundle on Y. Then for any pair of integers (p,q) we define the Koszul cohomology group $K_{p,q}(Y,\mathcal{F},\mathcal{L})$ as the cohomology of

$$\begin{array}{ccc} H^0(\mathcal{F}\otimes\mathcal{L}^{(q-1)})\otimes\wedge^{p+1}H^0(\mathcal{L}) & \to & H^0(\mathcal{F}\otimes\mathcal{L}^q)\otimes\wedge^pH^0(\mathcal{L})\to \\ & \to & H^0(\mathcal{F}\otimes\mathcal{L}^{(q+1)})\otimes\wedge^{p-1}H^0(\mathcal{L}). \end{array}$$

If $\mathcal{F} = \mathcal{O}_Y$ then one writes $K_{p,q}(Y,\mathcal{L})$ for $K_{p,q}(Y,\mathcal{O}_Y,\mathcal{L})$.

- ▶ LWP77 use a dual definition.
- Aim to reprove infinitesimal Torelli, to cover some of the open cases. In particular j = 0,1728.

Green's result

Green in 1984 wrote a paper in which he proposed the use of Koszul cohomology in algebraic geometry and developed a lot of theory. One of his results is:

Theorem

Let Y be a compact Kähler manifold of dimension n. Suppose Ω_Y^n is base point free. Let $p_g = h^0(\Omega_Y^n)$. Then Y satisfies infinitesimal Torelli if and only if $K_{p_g-2,1}(Y,\Omega^{n-1},\Omega^n)=0$.

For our elliptic surface X we have that Ω_X^2 is base point free if d>1 or d=1 and $h^0(\mathcal{L})=0$. In the latter case g>1.

Green's result applied to j nonconstant

Lemma

Let X be an elliptic surface with $d \geq 2$ or d = 1 and $h^0(\mathcal{L}) = 0$ such that the j-invariant is nonconstant. Then $K_{p_g-2,1}(X,\Omega^1,\Omega^2) = 0$.

• Using that $\pi_*\Omega^1_X=\Omega^1_C$ we obtain that

$$\mathsf{K}_{\mathsf{p}_g-2,1}(X,\Omega^1_X,\Omega^2_X) = \mathsf{K}_{\mathsf{p}_g-2,1}(C,\Omega^1_C,\Omega^1_C\otimes\mathcal{L})$$

Koszul duality on C yields

$$K_{p_g-2,1}(C,\Omega_C^1,\Omega_C^1\otimes\mathcal{L})\cong K_{0,1}(C,\mathcal{O}_C,\Omega_C^1\otimes\mathcal{L})^*.$$

 The latter group is (by definition) the cokernel of the multiplication map

$$H^0(\mathcal{O})\otimes H^0(\Omega^1_C\otimes \mathcal{L})\to H^0(\Omega^1_C\otimes \mathcal{L})$$

- This map is obviously surjective.
- ▶ If j is nonconstant then infinitesimal Torelli holds unless maybe when d = 1 and $h^0(\mathcal{L}) > 0$.

i constant

- ▶ Suppose now that the *j*-invariant is constant.
- ▶ We exclude now d = 0 (fiber bundles, products), d = 1 and $h^0(\mathcal{L}) > 0$ (as before) and (g, d) = (0, 2) (K3 surfaces).
- ▶ Again we would like to determine whether $K_{p_g-2,1}(X,\Omega^{n-1},\Omega^n)$ vanishes.
- ▶ However, instead of $\pi_*\Omega^1_X=\Omega^1_C$ we have an exact sequence

$$0 \to \Omega^1_C \to \pi_*\Omega^1_X \to \mathcal{L}(-\Delta) \to 0.$$

- lacktriangle Δ is the reduced divisor supported at the discriminant.
- A one page calculation shows that $K_{p_g-2,1}(X,\Omega_X^1,\Omega_X^2)$ vanishes if and only if the multiplication map

$$\mu_{\pi}: H^{0}(C, \Omega_{C}^{1} \otimes \mathcal{L}^{-1}(\Delta)) \otimes H^{0}(C, \Omega_{C}^{1} \otimes \mathcal{L}) \to H^{0}(C, (\Omega_{C}^{1})^{2}(\Delta))$$

is surjective.

▶ Let $s = \deg(\Delta)$. Then $s \ge d+1$. The three line bundles have degree 2g-2+s-d, 2g-2+d, 4g-4+s.

j constant

Green, Green-Lazarsfeld have a series of results on when

$$H^0(\mathcal{L})\otimes H^0(\mathcal{M}) o H^0(\mathcal{L}\otimes \mathcal{M})$$

is surjective.

- ▶ The H^0 -lemma of Green yields that for most choices of (s, d) this map is surjective, namely when
 - 1. $d \ge 3$ and $s \ge d + 2$
 - 2. d = 1, 2 and $s \ge d + 3$.
 - 3. $d \in \{1,2\}$, s = d + 2 and $h^0(\mathcal{L}^{-2}(\Delta)) = 0$.
- ▶ Recall that $s \ge \frac{6}{5}d$. Hence for $1 \le d \le 5$ we have $s \ge d+1$. For d > 6 we have $s \ge d+2$.
- ▶ The H^0 -lemma is sufficient to cover all cases with $d \ge 6$. (We do not assume that $j \ne 0,1728$.)
- ▶ We obtain stronger results if we replace the H⁰-lemma of Green by results of D.C. Butler.

Main Result

Theorem

Let $\pi: X \to C$ be an elliptic surface with constant j-invariant. Let $d = \deg(\mathcal{L})$ and s the number of singular fibers. Assume that $d \geq 2$ or d = 1 and $h^0(\mathcal{L}) = 0$.

- If one of the following holds
 - 1. g = 0 and d = 2;
 - 2. $s \ge d + 3$;
 - 3. s = d + 2 and $d \ge 3$.
 - 4. s = d+1; $h^0(\mathcal{L}^{-1}(\Delta)) = 0$; $g \ge 3$ and $\text{Cliff}(C) \ge \min\{4-d,2\}$. If $d \in \{1,2\}$ then one of $\Omega^1_C \otimes \mathcal{L}$, $\Omega^1_C \otimes \mathcal{L}^{-1}(\Delta)$ is very ample.
 - 5. $d \in \{1, 2\}$; s = d + 2; $h^0(\mathcal{L}^{-2}(\Delta)) = 0$.
 - 6. $d \in \{1, 2\}$; s = d + 2; $h^0(\mathcal{L}^{-2}(\Delta)) \neq 0$; $h^0(\mathcal{L}^{-1}(\Delta)) = 0$; $Cliff(C) \geq 3 d$.

then X satisfies infinitesimal Torelli.

Counterexamples to infinitesimal Torelli

In some cases we manage to show that

$$\mu_{\pi}: H^0(C,\Omega^1_C\otimes \mathcal{L}^{-1}(\Delta))\otimes H^0(C,\Omega^1_C\otimes \mathcal{L}) \to H^0(C,(\Omega^1_C)^2(\Delta))$$

is not surjective:

Theorem

Let $\pi: X \to C$ be an elliptic surface with constant j-invariant. Assume that $d \ge 2$ or d = 1 and $h^0(\mathcal{L}) = 0$. If d = 2 assume that g(C) > 0.

- 1. If s = d + 1 and $h^0(\mathcal{L}^{-1}(\Delta)) > 0$ or
- 2. if d=2, g=1 and $\mathcal{O}_{\mathcal{C}}(\Delta)\cong\mathcal{L}^2$

then X does satisfy infinitesimal Torelli.

Remaining case: d=1 and $h^0(\mathcal{L})>0$

- ▶ If g = 0 then this corresponds to rational elliptic surfaces. No Torelli.
- If g = 1 then we lkeda's counterexample.
- For g > 1 we have little information. Examples with g > 1 are rare.
- ▶ One can show that to have d = 1 and $h^0(\mathcal{L}) > 0$ we need that C is 6-gonal.
- ▶ If we want to have nonconstant j-invariant then C is 4-gonal.

Fiber bundle

- ▶ Let $\pi: X \to C$ be an elliptic fiber bundle. Then \mathcal{L} is a torsion line bundle of order 1, 2, 3, 4 or 6.
- ▶ Suppose that $\mathcal{L} \ncong \mathcal{O}$. Then we showed that X satisfies infinitesimal Torelli if and only if the multiplication map

$$\mu_{\pi}: H^0(\Omega^1_C \otimes \mathcal{L}) \otimes H^0(\Omega^1_C \otimes \mathcal{L}^{-1}) \to H^0((\Omega^1_C)^2)$$

is surjective.

- ▶ If g(C) = 1 and \mathcal{L} is nontrivial then the LHS is zero and the RHS is nonzero, so no infinitesimal Torelli.
- ▶ (Saito:) If $h^1(X)$ is odd and $\mathcal{L} \cong \mathcal{O}$ then X does not satisfy infinitesimal Torelli.
- ▶ (Saito:) If $h^1(X)$ is even, C is not hyperelliptic and $\mathcal{L} \cong \mathcal{O}$ then X does satisfy infinitesimal Torelli.

Summary j nonconstant

$d \setminus g$	0	1	≥ 2
$1, h^0(\mathcal{L}) > 0$	-	С	?
1, $h^0(\mathcal{L}) = 0$	Χ	Х	+
2	+	+	+
3,4,5	+	+	+
≥ 6	+	+	+

- X=No such surface exist
- ► +=Infinitesimal torelli holds
- -=Infinitesimal torelli does not hold
- ► C=There are counterexamples, general case open

Summary *j* constant

$d \setminus g$	0	1	≥ 2
0	_	C/E/?	C/E/?
1, $h^0(\mathcal{L}) > 0$	_	?	?
1, $h^0(\mathcal{L}) = 0$	X	Χ	C/E/?
2	+	C/E/?	C/E/?
3,4,5	C/E	C/E/?	C/E/?
≥ 6	+	+	+

- X=No such surface exist
- ► +=Infinitesimal Torelli holds
- -=Infinitesimal Torelli does not hold
- ► C=There are counterexamples, general case open
- ► C/E=There are counterexamples and examples no open cases
- ► C/E/?=There are counterexamples and examples, general case open

Constant *j*-invariant/Product-quotient surfaces

- Suppose π : X → C is an elliptic surface with constant j-invariant. Then X is a product-quotient surface.
- Suppose for the moment that the *j*-invariant is zero. Let E be an elliptic curve with j(E)=0 and let ω be the automorphism of order six, which acts by multiplication by $\zeta=\exp(2\pi I/6)$ on $H^{1,0}(E)$.
- ▶ There is $\mathbf{Z}/6\mathbf{Z}$ covering of $\tilde{C} \to C$ and an automorphism τ of \tilde{C}/C such that X is birational to

$$(\tilde{C} \times E)/\langle (\tau, \omega) \rangle$$

For j = 1728 we have an automorphism of order 4 on E and $\mathbf{Z}/4\mathbf{Z}$ -cover. For the other j-values we have an automorphism of order 2 and a double cover.

Constant *j*-invariant/Product-quotient surfaces

- ▶ Continue with j = 0.
- We can decompose $H^2(X, \mathbf{Q})$ in

$$H^2(\tilde{C}\times E)^{\langle(\tau,\omega)\rangle}\oplus V$$

with
$$V = C(-1)^r$$
.

• We have that that (2,0)-part of $H^2(C \times E)^{\langle (\tau,\omega) \rangle}$ equals

$$H^{1,0}(E)\otimes H^{1,0}(\tilde{C})_{\zeta^5}$$

Constant *j*-invariant/Product-quotient surfaces

▶ The (1,1) part equals

$$\begin{array}{ccc} \left(H^{1,0}(E)\otimes H^{0,1}(\tilde{C})_{\zeta^5}\right) & \oplus & \left(H^{0,1}(E)\otimes H^{1,0}(\tilde{C})_{\zeta}\right) \\ & \oplus & \left\langle c_1(\tilde{C}\times\{p\}),c_1(\{p\}\times E)\right\rangle \end{array}$$

- ▶ In the examples of [Klo04] (g=0) one has $H^{0,1}(\tilde{C})_{\zeta^5} = H^{1,0}(\tilde{C})_{\zeta} = 0$, which is an obstruction to have a variation of Hodge structures.
- We were not able to pursue this approach in the case g > 0.