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Motivating Scenario

Filtration and flow of a slow-moving fluid adjacent to/through poro-elastic solid

Ω a Lipschitz domain (two stacked boxes for x3 ∈ (−1, 0) ∪ (0, 1))

Top box Ωb (Biot domain); bottom box Ωf (Stokes domain).

The lateral variables x1, x2 ∈ (0, 1).

The interface ΓI = {x3 = 0} × (0, 1)2.

Modeling Discussion:

interface condition for Biot-Stokes coupling

scales and regimes (inertial, compressibility)

prevalence of engineering and homogenization-theory type work; little rigorous work
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Background, Physical Questions, Mathematical Directions

Poro-elasticity (Biot models) studied intensely last 60 years

Often from the point of view of geoscience [Showalter et al.]

Recently from biological tissues point of view, including nonlinear
poro-elasticity and poro-visco-elasticity
[Bociu et al., ARMA 2014]

We are interested in:

Coupling conditions and regularity at Biot-Stokes interface

Dynamics at the interface? Poro-elastic plate [Mikelić et al.]

Perfusion through the plate (necessary)

Well-posedness of weak solutions for the coupled
Biot-poroplate-Stokes system [Čanić et al., 2021]
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The Poro-elastic Plate

[Mikelić et al.] [Čanić et al., 2021]

ωp is the middle surface of the poro-elastic plate at x3 = 0

(x1, x2) ∈ ωp with the transverse deflection w(x1, x2; t)

(x1, x2, x3) ∈ Ωp = ωp × (−h/2, h/2)

x3 ∈ (−h/2, h/2) corresponding to the transverse coordinate with p = p(x1, x2, x3; t)


ρwtt + D∆2

ωp
w + α∆ωp

∫ h/2

−h/2

x3p dx3 = f (x1, x2, t) in ωp

[c0p − αx3∆ωpw ]t − ∂x3 (k∂x3p) = g(x, t) in Ωp

BCs, ICs

Goal: Develop a theory of weak (strong?) solutions in the broadest linear sense possible.
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Digression: Biot Systems

Ω ⊂ Rn; E ∼ elasticity; A(t) ∼ Laplacian

ρηtt + E(η) + α∇pb = F (1)

[c0p + α∇ · η]t − div[K∇p] = S (2)

Regimes: ρ = 0→ quasi-static; c0 = 0→ incompressible constituents

Permeability K: A(t) = −k∆; A(t) = −div[k(x , t)∇·]; A(t) = −div[k(p,η)∇·]

Cases: ρ, c0 > 0→ thermo-elasticity; ρ = 0→ implicit; c0 = 0→ degenerate

Quasi-static treatment: (1) Lift: η = E−1(F− α∇p); (2) Plug In to Pressure:

[(c0I + B)p]t + A(t)p = S̃ .

Three approaches: (1) Implicit, degenerate semigroups
(2) variational approach to weak solutions
(3) discretization methods

Major distinctions: time-dependence of permeability, nonlinearity of permeability
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General Functional Setup

V ,H are separable Hilbert spaces, with V ↪→ H ↪→ V ′ dense, continuous injections.

A(t) is V → V ′ continuous and monotone for each t ∈ [0,T ].

∀u, v ∈ V 〈A(·)u, v〉 ∈ L∞(0,T )

B is self-adjoint, bounded, and monotone on H.

Definition

The family
{
A(t) : V → V ′ : t ∈ [0,T ]

}
of operators is regular if for every pair

u, v ∈ V , the function 〈A(·)u, v〉 is absolutely continuous on [0,T ] and there exists a
K ∈ L1(0,T ) such that∣∣∣∣ ddt 〈A(t)u, v〉

∣∣∣∣ ≤ K(t)‖u‖V ‖v‖V , u, v ∈ V , a.e. t ∈ [0,T ].
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Abstract Problem and Weak Solutions

Suppose that u0 ∈ H and S ∈ L2(0,T ;V ′) are the specified data.

Find u ∈ L2(0,T ;V ) such that
d

dt
[Bu] +A(·)u = S ∈ L2(0,T ;V ′)

[Bu](0) = Bu0 ∈ V ′.
(3)

Equivalently: Find u ∈ L2(0,T ;V ) with

−
∫ T

0

(Bu(t), v ′(t))dt +

∫ T

0

〈A(t)u(t), v(t)〉dt =

∫ T

0

〈S(t), v(t)〉dt + (Bu0, v(0)) (4)

holding for all
v ∈ {w ∈ L2(0,T ;V ) ∩ H1(0,T ;H) : w(T ) = 0}.

Above, u is called the weak solution to (3).

Webster (UMBC) Poro-Plates June 2021 9 / 22



Fundamental Results

Theorem

If there exist constants λ, c > 0 such that

2〈A(t)v , v〉+ λ(Bv , v) ≥ c||v ||2V , ∀v ∈ V , ∀t ∈ [0,T ],

then there exists a weak solution to the problem in (4). The particular solution satisfies

||u||2
L2(0,T ;V )

≤ C(c, λ)
[
||S||2

L2(0,T ;V ′) + (Bu0, u0)
]
. (5)

If {A(t) : t ∈ [0,T ]} is a regular family of self-adjoint operators, then the solution above is
unique.

Theorem (Lions)

Let (A, ‖ · ‖A) be a Hilbert space and (B, ‖ · ‖B) be a normed linear space. If a : A× B→ R is a
bilinear form such that a(·, φ) ∈ A′ for every φ ∈ B, then TFAE:

inf
‖φ‖B=1

sup
‖u‖A≤1

|a(u, φ)| ≥ c > 0,

for each F ∈ B′, there exists u ∈ A such that: a(u, φ) = F (φ) for all φ ∈ B.

If B is continuously embedded in A and a is B-elliptic, then the above Theorem holds.
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Full Interior Equations

The inertial model:ρwtt + D∆2w + α∆
∫ h

−h x3p dx3 = f in ωp,

[c0p − αx3∆w ]t − ∂3(k∂3p) = g in Ωp,
(6)

k is general—can accommodate static and time-dependent cases (linear).

We consider:

(1) compressible constituents (c0 > 0) and inertial models (ρ > 0) when k = const.,

(2) quasi-static (ρ = 0) models when k = k(t)

The quasi-static model:D∆2w + α∆
∫ h

−h x3p dx3 = f in ωp,

[c0p − αx3∆w ]t − ∂3(k∂3p) = g in Ωp.
(7)
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Initial and Boundary Conditions

ρ > 0 w(x1, x2, 0) = w0(x1, x2), wt(x1, x2, 0) = w1(x1, x2) in ωp,

[c0p − αx3∆w ](x, 0) = d0(x) in Ωp.
(8)

ρ = 0
[c0p − αx3∆w ](x, 0) = d0(x) in Ωp. (9)


w = 0; D∆w + α

∫ h

−h
x3p dx3 = 0 on Γc ,

k∂np = 0 on {x3 = h} ∪ {x3 = −h}

Nothing on lateral sides!

(10)
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Quasistatic Weak Solutions

W = H2(ωp) ∩ H1
0 (ωp) V = H0,0,1(Ωp) =

{
φ ∈ L2(Ωp) : ∂x3φ ∈ L2(Ωp)

}
,

d0 ∈ V ′ f ∈ L2(0,T ;W ′) and g ∈ L2(0,T ;V ′).

Definition (Quasi-static Weak Solution)

A solution to (7) with c0 > 0 is represented by a pair of functions

w ∈ L2(0,T ;W ) and p ∈ L2(0,T ;V ),

with ζ = c0p − x3α∆w ∈ L2(0,T ; L2(Ωp)) ∩ H1(0,T ;V ′), such that:

(a) the following variational forms are satisfied for any z ∈ L2(0,T ;W ), and any
q ∈ {w ∈ L2(0,T ;V ) ∩ H1(0,T ; L2(Ωp)) : w(T ) = 0}:

D

∫ T

0
(∆w ,∆z)ωpdt+α

∫ T

0
(p, x3∆z)Ωpdt =

∫ T

0
〈f , z〉W ′×W dt, (11)∫ T

0

(
k∂x3p, ∂x3q

)
Ωp

dt −
∫ T

0
(ζ, qt)Ωp dt =

∫ T

0
〈g , q〉V ′×V dt (12)

(b) the initial condition holds in the sense of V ′, namely that lim
t↘0

ζ(t) = d0 ∈ V ′.
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Main Result

Assumption

[For Existence] We assume that permeability k is an L∞(Ωp × (0,T )) function such that

0 < k∗ ≤ k(x, t) ≤ k∗, ∀ x ∈ Ωp , ∀ t ∈ [0,T ].

Assumption

[For Uniqueness] Assume that for a.e x ∈ Ωp the function k(x, ·) is absolutely continuous in
t ∈ [0,T ], with |∂tk(x, t)| ≤ K(t) and K ∈ L1(0,T ).

Theorem (Gurvich and W., Applicable Analysis, 2021)

Let c0 > 0, and d0 ∈ L2(Ωp) , with f ∈ H1(0,T ;W ′) , g ∈ L2(0,T ;V ′). Suppose the

permeability functions k satisfies Assumption 1, then there exists a weak solution
(w , p) ∈ L2(0,T ;V )× L2(0,T ;W ). THAT solution satisfies the stability estimate

||p||2
L2(0,T ;V )

+ ||w ||2
L2(0,T ;W )

≤ C
[
||f ||2

H1(0,T ;W ′) + ||g ||2
L2(0,T ;V ′) + ||d0||2L2(Ωp)

]
. (13)

Moreover, if k satisfies Assumption 2, then the solution is unique.
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Peculiarities and Challenges of Our Model

Initial conditions: Taking w(0) and/or p(0) and/or d0) is a non-trivial issue, as is
the space in which they are taken. When c0 > 0, specifying d0 ∈ L2(Ωp) will be
equivalent to specifying p(0) ∈ L2(Ωp), and subsequently, w(0) ∈W . In other
situations, this may not be the case—see [Bociu et al., 2020 and 2021].

2.5-dimensional Biot Plate Equation: Peculiar model with “inflated” domain; no
full elliptic regularity in spatial component:{

D∆2
ωp
w + α∆ωp

∫ h/2

−h/2
x3p dx3 = f in ωp

[c0p − αx3∆ωpw ]t − ∂x3 (k∂x3p) = g in Ωp.

This is problematic for plate nonlinearity—k = k(c0p − αx3∆w) or addition of fvK .

B-map: The pressure-to-Laplacian map is influenced by the BCs, which are
interconnected here. “Lifting and plugging in” requires compatibility for abstract
theory.
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Constituent Operators

Adjoint pair K, K̃: K : L2(Ωp)→ L2(ωp) by K(p) =

∫ h

−h
x3p dx3

K̃ : L2(ωp)→ L2(Ωp) by K̃(q) = x3q

For each t ∈ [0,T ], let A(t) : H0,0,1(Ωp)→ H0,0,1(Ωp)′ be defined through
the bilinear form

A(p, q; t) = (k∂3p, ∂3q)Ωp , ∀ p, q ∈ H0,0,1(Ωp).

E is the hinged biharmonic operator on L2(ωp) with Eu = ∆2u
D(E) ≡ {w ∈ H4(ωp) ∩ H1

0 (ωp) : ∆w
∣∣
Γc

= 0}.
E1/2 = (−∆D) with D(E1/2) = W = H2(ωp) ∩ H1

0 (ωp).

Pressure-to-Laplacian: Denoting β = α2/D

Bp = βK̃∆DE−1∆DK(p) = −αK̃∆Dw = βK̃K(p).

B ∈ L (L2(Ωp)) by the chain:

L2(Ωp )
K // L2(ωp )

−α∆D // W ′
(DE)−1

// W
∆D // L2(ωp )

−αK̃ // L2(Ωp ).
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Reduction to Implicit Degenerate Equation

Abstract system:
DE(w) = −α∆DK(p) + f ∈ L2(0,T ;W ′),

[c0p − αK̃∆Dw ]t − ∂x3 [k∂x3p] = g ∈ L2(0,T ;V ′),

[c0p − αK̃∆Dw ](x, 0) = d0(x) ∈ L2(Ωp).

(14)

Introducing wf (t) = D−1E−1f (t) ∈ H1(0,T ;W ) to exploit elliptic structure yields:
DE(u) = −α∆DK(p) ∈ L2(0,T ;W ′),

[c0p + Bp]t − A(t)p = g + αK̃∆Dwf ,t ∈ L2(0,T ;V ′),

[c0p + Bp](x, 0) = d0(x) + αK̃∆Dwf (x, 0) ∈ L2(Ωp).

(15)

A(t) : H0,0,1(Ωp)→ H0,0,1(Ωp)′ is self-adjoint (in that sense)
and coercive (k ≥ k∗ > 0).

B ∈ L (L2(Ωp)) is self-adjoint and positive.

c0I + B is an isomorphism on L2(Ωp).
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Proof of Main Theorem

Consider V = H0,0,1(Ωp) and H = L2(Ωp)

Let B = c0I + B on H and A(t) = A(t) on V .

Coercivity: A(p, p; t) = 〈A(t)p, p〉V ′×V

([cpI + B]p, p)H + 2A(p, p; t) ≥ cp‖p‖2
Ωp

+ β‖K(p)‖2
ωp

+ 2k∗‖∂3p‖Ωp

≥ min(cp, k∗)‖p‖2
V . (16)

Existence is obtained, with

‖p‖2
L2(0,T ;V )

≤ C(cp , k∗)

[
‖g‖2

L2(0,T ;V ′) + ‖αK̃∆Dwf ‖
2
L2(0,T ;V ′) + (d0, p(0)) +

(
αK̃∆Dwf (0), p(0)

)]
. (17)

By hypothesis:∣∣∣∣ ddt A(p, q; t)

∣∣∣∣ ≤ ∫
Ωp

|∂tkp(x, t)| |∂3p| |∂3q| dx ≤ K(t)‖p‖V ‖q‖V , ∀ p, q ∈ V , ∀ t ∈ [0,T ].

Thus,
{
A(t) : V → V ′ : t ∈ [0,T ]

}
is a regular family.

Uniqueness is obtained.
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Comments

[cpI + B] is an isomorphism on L2(Ωp), specifying d0 ∈ L2(Ωp) is equivalent to
specifying p(0) ∈ L2(Ωp). Moreover, there exist constants such that

c||d0||L2(Ωp) ≤ ||p(0)||L2(Ωp) ≤ C ||d0||L2(Ωp). (18)

The original body force f is encoded through the translation, hence the
time-regularity requirement:

g + αK̃∆Dwf ,t ∈ L2(0,T ;V ′)

Collecting estimates we have:

||w ||W ≤ C

(
α

D

)
||Kp||L2(ωp ) + ||∆−1

D f ||L2(ωp ) ≤ C
[
||p||2

L2(Ωp )
+ ||f ||W ′

]
,

||p(0)||L2(Ωp ) ≤ C ||[c0I + B]p(0)||L2(Ωp ) ≤ C ||d0||L2(Ωp ),

||αK̃∆Dwf ||V ′ ≤
α

D
||K̃∆DE−1f ||V ′ ≤ C ||K̃∆−1

D f ||L2(Ωp ) ≤ C ||∆−1
D f ||L2(ωp ) ≤ C ||f ||W ′ ,

||f
∣∣
t=0
||W ′ ≤ C ||f ||H1(0,T ;W ′).

which yields the final estimate

||p||2L2(0,T ;V ) + ||w ||2L2(0,T ;W ) ≤ C
[
||f ||2H1(0,T ;W ′) + ||g ||2L2(0,T ;V ′) + ||d0||2L2(Ωp)

]
. (19)
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Future Directions

Quasi-static strong solutions: that ∆DE−1∆D ∈ L (L2(ωp))
was critical in the use of the abstract theory of weak solutions.

The action of B extends to U ≡
{
p ∈ L2(Ωp) : Kp ∈ D(∆D)

}
U

K // D(∆D )

−α∆D // L2(ωp )

(DE)−1
// D(E)

∆D // D(∆D )

−αK̃ // U.

Other configurations: Rework the abstract theory for these specific lifts

Plate nonlinearities: permeability k = k(c0p + Bp)
von Karman/Berger for large deflections (issues with pressure modeling)

In-plane dynamics and tangential perfusion
[Mikelić, et al.] (decoupled if linear)

Obtaining result for c0 = 0 through singular limit [Bociu et al., JDE 2021]
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Inertial Semigroup Result I

Consider the inertial Biot plate as before with c, ρ > 0, after re-scaling, with k = const.:

wt − v = 0 in ωp

vt + D∆2w + αp∆
∫ h

−h
x3p dx3 = f in ωp,

∂tp − αpx3∆v − ∂3(k∂3p) = g in Ωp,

w(x1, x2, 0) = w0(x1, x2), wt(x1, x2, 0) = w1(x1, x2) in ωp,

p(x, 0)− αx3∆w1(x1, x2) = d0(x) in Ωp,

w = 0; D∆w + α
∫ h

−h
x3p dx3 = 0 on Γc ,

∂np = 0 on {x3 = h} ∪ {x3 = −h}.
(20)

A = −k∂2
3 defined on

D(A) =
{
u ∈ H0,0,2(Ωp) : γ1[u] = 0 on {x3 = ±h}

}
.

We utilize the spaces as before:

D(E) ={w ∈ H4(ωp) ∩ H1
0 (ωp) : γ0[∆w ] = 0} = D(∆2

D), (21)

D(E1/2) = W = H2(ωp) ∩ H1
0 (ωp); V = H0,0,1(Ωp). (22)

Webster (UMBC) Poro-Plates June 2021 21 / 22



Inertial Semigroup Result II

Theorem (Gurvich and W., Applicable Analysis, 2021)

Consider the inertial plate system (20) with f = g = 0, in y = [w , v , p], posed on

X = D(E1/2)× L2(ωp)× L2(Ωp)

endowed with the norm ‖y‖2
X =

∥∥E1/2w
∥∥2

0,ωp
+ ‖v‖2

0,ωp
+ ‖p‖2

0,Ωp
. Define the matrix operator

A : D(A) =
{

[w , v , p] ∈W ×W ×D(A) : [∆w + αKp] ∈ D(∆D)
}

with differential action

Ay =

 v

−E1/2
[
E1/2w + αKp

]
αK̃∆Dv − Ap

 , ∀ y ∈ D(A).

Then A is the generator of a strongly continuous semigroup {eAt : t ≥ 0} of contractions on X
corresponding to the Cauchy problem.

ẏ = Ay; y(0) = [w0,w1, p] ∈ D(A).
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Muha, B. and Čanić, S., 2014. Existence of a solution to a fluid multi-layered-structure interaction problem. JDE, 256(2), pp.658–706.

Showalter, R.E., 2000. Diffusion in poro-elastic media. JMAA, 251(1), pp.310–340.

Showalter, R.E., 1974. Degenerate evolution equations and applications. Indiana University Mathematics Journal, 23(8), pp.655-677.

Showalter, R.E., 2013. Monotone operators in Banach space and nonlinear partial differential equations (Vol. 49). American Mathematical Soc..
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