Having Fun with Designs
 Cheryl E Praeger

Acknowledgement of country

Artist: Dr Richard Barry Walley OAM

Main theme

Imprimitive Symmetry

2-designs

- Delandtsheer-Doyen parameters for block transitivity (1989)
- Davies' bound for flag-transitivity (1987)
- Our new results about each: collaboration with Alice Devillers and Carmen Amarra

- <

t-designs

1 t-(v,k, $)$ design $D=(P, B) \quad P$ set of v points B set of blocks Block is a k-subset of P
Each t-subset of points contained in λ blocks

2 Symmetry: $\operatorname{Aut}(\mathrm{D})=$ \{ permutations of P mapping blocks to blocks \} If $t \geq 2$ then Block-transitive \Rightarrow point-transitive

$$
\begin{aligned}
& \text { Want } t \geq 2 \text { and } \\
& G \leq A u t(D) \text { block-transitive }
\end{aligned}
$$

2-design imprimitive symmetry

$12-(v, k, \lambda)$ design $D=(P, B) \quad G \leq \operatorname{Aut}(D)$ block-transitive

2 G point-imprimitive
$\exists \mathrm{G}$ - invariant point - partition Σ
$v=c \cdot d$

> G preserves both the block set B and the partition Σ How do they interact?

Delandtsheer-Doyen Theorem

$$
2-(v, k, \lambda) \text { design } \quad D=(P, B) \quad G \leq A u t(D) \quad \text { block-transitive, point-imprimitive }
$$

- Each block contains n inner pairs (same part of Σ)
- and mc outer pairs (different parts of Σ)
- Set $x=k(k-1) / 2$ Then part size $c=\frac{x-n}{m}$ and number of parts $d=\frac{x-m}{n}$

$$
v=c \cdot d
$$

Bounds on Delandtsheer-Doyen parameters (n,m)

$2-(v, k, \lambda)$ design $D=(P, B) G \leq \operatorname{Aut}(D)$ block-transitive, preserves point-partition Σ

- G induces transitive group $K \leq \operatorname{Sym}(\Sigma)$ on the d parts of Σ, and for $\Delta \in \Sigma$
- Stabiliser G_{Δ} induces transitive group $H \leq \operatorname{Sym}(\Delta)$ on c points of Δ

Amarra, Devillers, P: PairRank(K) = \# K-orbits on unordered pairs in $\Sigma \leq m$ - and PairRank(H) = \# H-orbits on unordered pairs in $\Delta \leq n$

Can bounds on the DelandtsheerDoyen parameters be attained?

Cameron-Praeger designs 1993 Pattern of block-part intersections
 $$
\begin{gathered} x_{1}, x_{2}, \ldots, x_{d} \\ \Sigma_{i} x_{i}=k \end{gathered}
$$

$2-(\mathrm{v}, \mathrm{k}, \lambda)$ design $\mathrm{D}=(\mathrm{P}, \mathrm{B}) \quad G \leq \operatorname{Aut}(\mathrm{D})$ block-transitive, point-imprimitive

- Observed: If there exists 2-design with intersections $x_{1}, x_{2}, \ldots, x_{d}$ then exists one with $K=\operatorname{Sym}(\Sigma)$ and $H=\operatorname{Sym}(\Delta)$
- $\operatorname{Here} \operatorname{PairRank}(\mathrm{K})=\operatorname{PairRank}(H)=1$.
- Found all 2-designs with $m=n=1$ provided $k>5, k \neq 8$

When can the PairRank bounds be achieved with $\max \{m, n\} \geq 2$?

Some examples meeting the DDPairRank Bounds

$\mathrm{D}=$ Projective Plane $\mathrm{PG}(2, \mathrm{q})$. With $v=1+q+q^{2}=c d$ and $c>1, d>1$, and $G=C_{v} \mathrm{a}$ Singer cycle
Here $k=q+1$, and PairRank $\left(\mathrm{C}_{d}\right)=\frac{d-1}{2}=m$, and PairRank $\left(\mathrm{C}_{\mathrm{c}}\right)=\frac{\mathrm{c}-1}{2}=\mathrm{n}$
Amarra, Devillers, P: PairRank $(K)=\#$ K-orbits on unordered pairs in Σ is $\leq m$ - and PairRank $(H)=\#$ H-orbits on unordered pairs in Δ is $\leq n$

Good: m, n can be arbitrarily large Limitations: exactly which (m, n) arise? Groups $\mathrm{H}=\mathrm{C}_{\mathrm{c}}$ and $K=\mathrm{C}_{\mathrm{d}}$ both regular

Can bounds be attained with other kinds of groups?

New construction meeting the DDPairRank Bounds (Amarra, Devillers, P)

Start with $n \geq 2$. Take $\Delta=F_{c}$ and $c=1+2 n a$ for some a,
$H=[c] .[2 a]$, (translations and multiplications by $n^{\text {th }}$ powers]
Then PairRank $(H)=n$
To construct a 2-design we need $c+n=\frac{k(k-1)}{2}$ [a triangular number]

And take $d=1+\frac{c-1}{n}, \quad K=S_{\mathrm{d}}$ so PairRank $(K)=m=1$
"Cleverly" define one block and take all images under H wr K :
Block: n parts of Σ contain two points (different H-orbits on pairs);
$k-2 n$ more parts contain one point

Conditions give a 2design meeting PairRank bounds with $m=1$. Which values of n work, and for how many prime powers c?

New construction: when does it work?

Start with $n \geq 2$. So we want prime power $c=1+2 n a$ for some a, and
we need $c+n=\frac{k(k-1)}{2}$ [a triangular number] with $k \geq 2 n$
Write $k=4 n t+r$ with $1 \leq r<4 n$ get a quadratic equation:

$$
f_{n, r}(t)=8 n^{2} t^{2}+2 n(2 r-1) t+\left(\frac{r(r-1)}{2}-n\right)
$$

```
Whenever }\mp@subsup{f}{n,r}{}(t)=c\mathrm{ is a prime
power, get 2-design with k=4nt +r
and d}=\frac{c-1}{n}+1,\mathrm{ with DD-
parameters ( }n,1)\mathrm{ and
achieving the PairRank bounds.
```

- Some n give no solutions, e.g. $n=6,10,15$
- Most n seem to give many solutions!
- Possibly infinitely many - depends on Bunyakovsky's conjecture in number theory

Bunyakovsky's conjecture - 1857

Our conditions: $n \geq 2,1 \leq r<4 n$:

$$
f_{n, r}(t)=8 n^{2} t^{2}+2 n(2 r-1) t+\left(\frac{r(r-1)}{2}-n\right)
$$

Bunyakovsky's Conjecture (for these polynomials):
if $f_{n, r}(t)$ irreducible over integers, and $f_{n, r}(t)$ not identically zero modulo any prime Then $f_{n, r}(t)=c$ is a prime for infinitely many values of t

First version on arXiv September 2020

- Attracted attention of Gareth Jones and Sasha Zvonkin
- Intensive email exchanges
- Extremely fruitful -e.g. for $n=2$, they found $12,357,532$ prime values for $f_{2,3}(t)$ with $t \leq 10^{8}$

Bunyakovsky's conjecture - 1857

1857 Bunyakovsky's Conjecture: unfortunately still open

1962 Bateman and Horn: proposed approximation $E(x)$ for which the number of integers $t \leq x$ with $f_{n, r}(t)$ prime
2020 W. Li: improved (more easily computable) version of Bateman-Horn estimate.

2021 Jones \& Zvonkin:

- exhaustive search for several (n, r) where we had found multiple examples
- Showed that the numbers of prime values of $f_{n, r}(t)$ for $t \leq 10^{8}$ were extremely close to the Bateman-Horn estimate $E\left(10^{8}\right)$ in all cases
- E.g. for $(n, r)=(2,3)$ number of prime values up to 10^{8} is

$$
\text { 12,357,532 while } E\left(10^{8}\right)=12,362,961.06
$$

- Great for the design construction - also evidence for truth of Bunyakovsky Conjecture

A much shorter second half: flagtransitive, point-imprimitive 2-designs

$2-(v, k, \lambda)$ design $D=(P, B) \quad G \leq \operatorname{Aut}(D)$ flag-transitive, point-imprimitive

- Flag: incident point-block pair - each non-empty part-block intersection must have same size.
1987 Hugh Davies: $\quad k$ and v both bounded above in terms of λ
- But Hugh gave no explicit upper bounds as functions of $\boldsymbol{\lambda}$

Alice Devillers and I set out to find some explicit upper bounds.

Hunting for explicit upper bonds: flagtransitive, point-imprimitive 2-designs

$2-(v, k, \lambda)$ design $\mathrm{D}=(\mathrm{P}, \mathrm{B}) \quad G \leq \operatorname{Aut}(\mathrm{D})$ flag-transitive, point-imprimitive

1993 Cameron, \mathbf{P} : Showed that $v \leq(k-2)^{2}$ and that smallest k is 6 2018 Zhan, Zhou: exactly 14 examples with $k=6$ - all have $v=(k-2)^{2}=16$

- So just need to find upper bound for k in terms of λ

1961 Higman - McLaughlin: $\lambda \geq 2$
2021 Devillers, Liang, P, Xu: exactly
two examples with $\lambda=2$; both have
$k=6, v=16$

Hunting for explicit upper bonds: flagtransitive, point-imprimitive 2-designs

$2-(v, k, \lambda)$ design $D=(P, B) \quad G \leq \operatorname{Aut}(D)$ flag-transitive, point-imprimitive

1993 Cameron, P : Showed that $v \leq(k-2)^{2}$ and that smallest k is 6

$$
2021 \text { Devillers, P: } k \leq 2 \lambda^{2}(\lambda-1) \quad \text { and so } v \leq\left(2 \lambda^{2}(\lambda-1)-2\right)^{2}
$$

How good are these bounds? Not tight for $\lambda=2$ since bound is $k \leq 8$ while only examples have $k=6$

Hunting for explicit upper bonds: flagtransitive, point-imprimitive 2-designs

$2-(\mathrm{v}, \mathrm{k}, \lambda)$ design $\mathrm{D}=(\mathrm{P}, \mathrm{B}) \quad G \leq \operatorname{Aut}(\mathrm{D})$ flag-transitive, point-imprimitive

2021 Devillers, $\mathrm{P}: k \leq 2 \lambda^{2}(\lambda-1)$ so $v \leq\left(2 \lambda^{2}(\lambda-1)-2\right)^{2}$

Analysed $v<100$ with $\lambda \leq 4$: exactly eleven examples

Our future objective: find all the examples with $\lambda=3,4$

Remaining challenges:

1 Find all DelandtsheerDoyen parameters (n, m) where there exist blocktransitive point-imprimitive 2-designs
admitting groups H, K with PairRank (H) $=n$ and
PairRank(K) $=m$

2 Improve the upper bound $k \leq 2 \lambda^{2}(\lambda-1)$ for flagtransitive point-imprimitive 2-designs.

3 Prove Bunyakovsky's Conjecture!

Some references

1 A. Delandtsheer and J. Doyen, Most block-transitive t-designs are point-primitive. Geom. Dedicata 29 (1989), 307-310.
H. Davies, Flag-transitivity and 2 primitivity, Discrete Math. 63 (1987), 91-93.

3 G. A. Jones and A. K. Zvonkin, Block designs and prime values of polynomials, Available at arxiv:2105.03915v2.

3 C. Amarra, A. Devillers and C. E. Praeger, Delandsheer-Doyen parameters for block-transitive point-imprimitive block designs, Available at arXiv:2009.00282.

Devillers and C. E. Praeger, On
4 flag-transitive imprimitive 2designs, J Combin. Designs 2021, doi:10.1002/jcd. 21784

Thank you and Stay safe

