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2-designs

• Delandtsheer-Doyen parameters 

for block transitivity (1989)

• Davies’ bound for flag-transitivity 

(1987)

• Our new results about each: 

collaboration with Alice Devillers 

and Carmen Amarra



t-(v,k, λ) design D = ( P, B) P set of v points B set of blocks

Block is a k-subset of P 

Each t-subset of points contained in λ blocks

Symmetry: Aut(D) = { permutations of P mapping blocks to blocks }

If 𝑡 ≥ 2 then  Block-transitive ⟹ point-transitive
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t-designs

Want 𝑡 ≥ 2 and 

𝐺 ≤ 𝐴𝑢𝑡 𝐷 block-transitive



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 block-transitive

G point-imprimitive ∃ G − invariant point − partition Σ
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2-design imprimitive symmetry

𝐺 preserves both the block 

set B and the partition  Σ
How do they interact?

𝑣 = 𝑐 ⋅ 𝑑



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 block-transitive, point-imprimitive

• Each block contains n inner pairs (same part of Σ) 

• and mc outer pairs (different parts of Σ) 

• Set 𝑥 = 𝑘(𝑘 − 1)/2 Then part size  𝑐 =
𝑥−𝑛

𝑚
and number of parts 𝑑 =

𝑥−𝑚

𝑛

Delandtsheer-Doyen Theorem

(𝑛, 𝑚) called the Delandtsheer-

Doyen parameters𝑣 = 𝑐 ⋅ 𝑑



2-(v,k, λ) design    D = ( P, B)  𝐺 ≤ 𝐴𝑢𝑡 𝐷 block-transitive, preserves point-partition Σ

• G induces transitive group 𝐾 ≤ 𝑆𝑦𝑚(Σ) on the d parts of Σ , and for Δ ∈ Σ

• Stabiliser 𝐺Δ induces transitive group 𝐻 ≤ 𝑆𝑦𝑚 Δ on c points of Δ

Amarra, Devillers, P:   PairRank(K) = # K-orbits on unordered pairs in Σ ≤ 𝑚

• and PairRank(H) = # H-orbits on unordered pairs in Δ ≤ 𝑛

Bounds on Delandtsheer-Doyen 
parameters (n,m)

Can bounds on the Delandtsheer-

Doyen parameters be attained?



2-(v, k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 block-transitive, point-imprimitive

• Observed: If there exists 2-design with intersections   𝑥1, 𝑥2, … , 𝑥𝑑 then exists 
one with  𝐾 = 𝑆𝑦𝑚(Σ) and 𝐻 = 𝑆𝑦𝑚 Δ

• Here PairRank(K) = PairRank(H) = 1.

• Found all 2-designs with 𝑚 = 𝑛 = 1 provided  𝑘 > 5, 𝑘 ≠ 8

Cameron-Praeger designs 1993             
Pattern of block-part intersections 

When can the PairRank bounds be 

achieved with  max {m, n} ≥ 2 ?𝑣 = 𝑐 ⋅ 𝑑

𝑥1, 𝑥2, … , 𝑥𝑑

𝛴𝑖𝑥𝑖 = 𝑘



D = Projective Plane PG(2,q). With 𝑣 = 1 + 𝑞 + 𝑞2 = 𝑐𝑑 and 𝑐 > 1, 𝑑 > 1, and  𝐺 = 𝐶𝑣 a 
Singer cycle

Here 𝑘 = 𝑞 + 1, and PairRank C𝑑 =
𝑑−1

2
= 𝑚, and PairRank Cc =

c−1

2
= n

Amarra, Devillers, P:   PairRank(K) = # K-orbits on unordered pairs in Σ is ≤ 𝑚

• and PairRank(H) = # H-orbits on unordered pairs in Δ is ≤ 𝑛

Some examples meeting the DD-
PairRank Bounds

Can bounds be attained with 

other kinds of groups?

Good:    m, n can be arbitrarily large

Limitations: exactly which (m,n) arise?

Groups H = Cc and 𝐾 = Cd both regular



Start with 𝑛 ≥ 2. Take Δ = 𝐹𝑐 and 𝑐 = 1 + 2𝑛𝑎 for some 𝑎,

𝐻 = 𝑐 . [2𝑎], (translations and multiplications by 𝑛𝑡ℎ powers]

Then PairRank 𝐻 = 𝑛

To construct a 2-design we need 𝑐 + 𝑛 =
𝑘 𝑘−1

2
[a triangular number]

And take 𝑑 = 1 +
𝑐−1

𝑛
, K = Sd so PairRank 𝐾 = 𝑚 = 1

“Cleverly” define one block and take all images under 𝐻 𝑤𝑟 𝐾:  

Block: 𝑛 parts of Σ contain two points (different H-orbits on pairs);

𝑘 − 2𝑛 more parts contain one point

New construction meeting the DD-
PairRank Bounds (Amarra, Devillers, P)

Conditions give a 2-

design meeting 

PairRank bounds with 

m=1. Which values of n 

work, and for how many 

prime powers c?



Start with 𝑛 ≥ 2. So we want prime power 𝑐 = 1 + 2𝑛𝑎 for some 𝑎, and 

we need 𝑐 + 𝑛 =
𝑘 𝑘−1

2
[a triangular number] with 𝑘 ≥ 2𝑛

Write 𝑘 = 4𝑛𝑡 + 𝑟 with 1 ≤ 𝑟 < 4𝑛 get a quadratic equation:

𝑓𝑛,𝑟 𝑡 = 8𝑛2𝑡2 + 2𝑛 2𝑟 − 1 𝑡 + (
𝑟 𝑟 − 1

2
− 𝑛 )

New construction: when does it work?

• Some n give no solutions, e.g. n = 6, 10, 15
• Most n seem to give many solutions! 

• Possibly infinitely many – depends on

Bunyakovsky’s conjecture in number

theory 

Whenever 𝑓𝑛,𝑟 𝑡 = 𝑐 is a prime 

power, get 2-design with 𝑘 = 4𝑛𝑡 + 𝑟

and 𝑑 =
𝑐−1

𝑛
+ 1, with DD-

parameters (𝑛, 1) and 

𝑎𝑐ℎ𝑖𝑒𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑃𝑎𝑖𝑟𝑅𝑎𝑛𝑘 𝑏𝑜𝑢𝑛𝑑𝑠.



Our conditions:  𝑛 ≥ 2, 1 ≤ 𝑟 < 4𝑛:

𝑓𝑛,𝑟 𝑡 = 8𝑛2𝑡2 + 2𝑛 2𝑟 − 1 𝑡 + (
𝑟 𝑟−1

2
− 𝑛 )

Bunyakovsky’s Conjecture (for these polynomials): 

if 𝑓𝑛,𝑟 𝑡 irreducible over integers, and 𝑓𝑛,𝑟 𝑡 not identically zero modulo any prime

Then 𝑓𝑛,𝑟 𝑡 = 𝑐 is a prime for infinitely many values of 𝑡

Bunyakovsky’s conjecture - 1857

First version on arXiv September 2020

• Attracted attention of Gareth Jones and Sasha Zvonkin

• Intensive email exchanges

• Extremely fruitful –e.g.  for 𝑛 = 2, they found 12,357,532 
prime values for 𝑓2,3 𝑡 with 𝑡 ≤ 108



1857 Bunyakovsky’s Conjecture:  unfortunately still open

1962 Bateman and Horn: proposed approximation 𝐸(𝑥) for which the number of integers 
𝑡 ≤ 𝑥 with 𝑓𝑛,𝑟 𝑡 prime

2020 W. Li: improved (more easily computable) version of Bateman-Horn estimate.

2021 Jones & Zvonkin:

• exhaustive search for several (𝑛, 𝑟) where we had found multiple examples 

• Showed that the numbers of prime values of 𝑓𝑛,𝑟 𝑡 for 𝑡 ≤ 108 were extremely close to
the Bateman-Horn estimate 𝐸(108) in all cases 

• E.g. for (𝑛, 𝑟)= (2,3) number of prime values up to 108 is 

12,357,532 while 𝐸 108 = 12,362,961.06.

• Great for the design construction – also evidence for truth of Bunyakovsky Conjecture 

Bunyakovsky’s conjecture - 1857



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 flag-transitive, point-imprimitive

• Flag: incident point-block pair – each non-empty part-block intersection must 
have same size. 

1987 Hugh Davies: k and v both bounded above in terms of λ

• But Hugh gave no explicit upper bounds as functions of λ

A much shorter second half: flag-
transitive, point-imprimitive 2-designs

Alice Devillers and I set out to find some 

explicit upper bounds.𝑣 = 𝑐 ⋅ 𝑑



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 flag-transitive, point-imprimitive

1993 Cameron, P: Showed that 𝑣 ≤ 𝑘 − 2 2 and that smallest 𝑘 is 6

2018 Zhan, Zhou: exactly 14 examples with 𝑘 = 6 − 𝑎𝑙𝑙 ℎ𝑎𝑣𝑒 𝑣 = 𝑘 − 2 2 = 16

• So just need to find upper bound for k in terms of λ

Hunting for explicit upper bonds: flag-
transitive, point-imprimitive 2-designs

1961 Higman – McLaughlin:   𝜆 ≥ 2

2021 Devillers, Liang, P, Xu: exactly 

two examples with 𝜆 = 2; both have 

𝑘 = 6, 𝑣 = 16

𝑣 = 𝑐 ⋅ 𝑑



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 flag-transitive, point-imprimitive

1993 Cameron, P: Showed that 𝑣 ≤ 𝑘 − 2 2 and that smallest 𝑘 is 6

2021 Devillers, P:  𝑘 ≤ 2𝜆2 𝜆 − 1 and so 𝑣 ≤ (2𝜆2 𝜆 − 1 − 2)2

Hunting for explicit upper bonds: flag-
transitive, point-imprimitive 2-designs

How good are these bounds?

Not tight for 𝜆 = 2 since bound is

𝑘 ≤ 8 while only examples have 𝑘 = 6
𝑣 = 𝑐 ⋅ 𝑑



2-(v,k, λ) design D = ( P, B) 𝐺 ≤ 𝐴𝑢𝑡 𝐷 flag-transitive, point-imprimitive

2021 Devillers, P: 𝑘 ≤ 2𝜆2 𝜆 − 1 so 𝑣 ≤ (2𝜆2 𝜆 − 1 − 2)2

Analysed 𝑣 < 100 with 𝜆 ≤ 4 : exactly eleven examples 

Hunting for explicit upper bonds: flag-
transitive, point-imprimitive 2-designs

Our future objective:  find all the 

examples with 𝜆 = 3, 4𝑣 = 𝑐 ⋅ 𝑑



Find all Delandtsheer-
Doyen parameters (𝑛, 𝑚)
where there exist block-
transitive point-imprimitive 
2-designs 

admitting groups H, K with 
PairRank(H) = 𝑛 and 
PairRank(K) = 𝑚

1 Improve the upper bound  
𝑘 ≤ 2𝜆2(𝜆 − 1) for flag-
transitive point-imprimitive 
2-designs.

Prove Bunyakovsky’s
Conjecture!
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Remaining 
challenges:



A. Delandtsheer and J. Doyen, 
Most block-transitive t-designs 
are point-primitive. Geom. 
Dedicata 29 (1989), 307-310.

H. Davies, Flag-transitivity and 
primitivity, Discrete Math. 63 
(1987), 91-93.

G. A. Jones and A. K. Zvonkin, 
Block designs and prime values 
of polynomials, Available at
arxiv:2105.03915v2.

1

2

3

C. Amarra, A. Devillers and C. E. 
Praeger, Delandsheer-Doyen 
parameters for block-transitive 
point-imprimitive block designs, 
Available at arXiv:2009.00282.

Devillers and C. E. Praeger, On 
flag-transitive imprimitive 2-
designs, J Combin. Designs 
2021, doi:10.1002/jcd.21784

3

4

Some references



Thank you and

Stay safe

Western Australian donkey orchid. 
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