

20 - 26 JUNE **2021** PORTOROŽ

Partitioning the projective plane and the dunce hat

ANDRÉS DAVID SANTAMARÍA-GALVIS

UP-FAMNIT

8TH
EUROPEAN
CONGRESS OF
MATHEMATICS

Wed, June 23rd, 2021

Applied Combinatorial and Geometric Topology (MS - ID 34) 8th European Congress of Mathematics Portorož - Slovenia

A complex and its face poset. Source: (Duval, Klivans and Martin, 2017)

PARTITIONABILITY

We want to partition the face poset of a complex $\boldsymbol{\Delta}$ into intervals

$$[\tau, \sigma] := \{ \rho \in \Delta \mid \tau \subseteq \rho \subseteq \sigma, \ \sigma \text{ is a facet in } \Delta \}.$$

If that partition exists, then Δ is **partitionable**.

A complex and its face poset. Source: (DUVAL, KLIVANS AND MARTIN, 2017)

A complex and its face poset. Source: (Duval, Klivans and Martin, 2017)

A complex and its face poset. Source: (Duval, Klivans and Martin, 2017)

A **relative** complex and its face poset. Source: (DUVAL, KLIVANS AND MARTIN, 2017)

1 Face counting problems

- 1 Face counting problems
- 2 Computational issues

- 1 Face counting problems
- 2 Computational issues
- 3 Interplay between properties

```
It was believed that

Cohen-Macaulay ⇒ partitionable. (STANLEY, 1979), (GARSIA, 1980)

However

Cohen-Macaulay → partitionable. (Duval et al., 2016)
```

- 1 Face counting problems
- 2 Computational issues
- 3 Interplay between properties

```
It was believed that
Cohen–Macaulay ⇒ partitionable. (STANLEY, 1979), (GARSIA, 1980)
However
Cohen–Macaulay → partitionable. (DUVAL ET AL., 2016)
```

What can we say about 2-dim complexes?

In our work...

- 2 We show that the following 2-dim spaces are partitionable:
 - o The real projective plane.
 - o The dunce hat.

In our work...

- 2 We show that the following 2-dim spaces are partitionable:
 - The open Möbius strip.
 - The real projective plane.
 - The dunce hat.

In our work...

- We devised simple tools to get partitioning schemes of a (relative) complex in terms of constituent (relative) subcomplexes.
- 2 We show that the following 2-dim spaces are partitionable:
 - The open Möbius strip.
 - The real projective plane.
 - The dunce hat.

Toolbox

STRATEGY DIVIDE-AND-CONQUER-ISH

The "tearing-apart-then-gluing-back" method

- O Divide the complex into partitionable subcomplexes.
- o Glue back.

Toolbox

STRATEGY

DIVIDE-AND-CONQUER-ISH

The "tearing-apart-then-gluing-back" method

- Divide the complex into partitionable subcomplexes.
- o Glue back.

OUR GLUING TOOLS

Name	INPUT (# R.S.C.)*	PRESERVES SHELLABILITY
SHELLING-LIKE LEMMA	2	True
FOLDING OPERATION	1	FALSE

^{*} Relative simplicial complexes

Toolbox

STRATEGY

DIVIDE-AND-CONQUER-ISH

The "tearing-apart-then-gluing-back" method

- Divide the complex into partitionable subcomplexes.
- o Glue back.

OUR GLUING TOOLS

NAME	INPUT (# R.S.C.)*	PRESERVES SHELLABILITY
SHELLING-LIKE LEMMA	2	True
FOLDING OPERATION	1	FALSE

^{*} Relative simplicial complexes

FACTS ON DISKS (A.K.A. 2-BALLS)

- \circ (Relative) shellability \Longrightarrow (Relative) partitionability.
- (Relative) disks (+conditions in the boundary) are shellable.

Möbius strip

THEOREM (SG, 2020+)

Any triangulation of the Möbius strip \boldsymbol{M} is partitionable relative to its own boundary.

Möbius strip

THEOREM (SG, 2020+)

Any triangulation of the Möbius strip M is partitionable relative to its own boundary.

PROOF OUTLINE:

- $\circ~$ Start with a simplicial triangulation Δ_M of M.
- \circ Cut $(\Delta_M, \Delta_{\partial M})$ and get a partitioning scheme.
- Glue back with the FOLDING OPERATION.

Real projective plane

The **projective plane** $\mathbb{R}P^2$ as a CW-complex and one of its triangulations.

THEOREM (SG, 2020+)

Any triangulation of $\mathbb{R}P^2$ is partitionable.

Real projective plane

PROOF OUTLINE:

- Start with a simplicial triangulation $\Delta_{\mathbb{R}P^2}$ of $\mathbb{R}P^2$.
- O Decompose $\Delta_{\mathbb{R}P^2}$ into two partitionable subcomplexes.
- o Reconstruct $\Delta_{\mathbb{R}P^2}$ by applying the Shelling-like Lemma

THEOREM (SG, 2020+)

Any triangulation of $\mathbb{R}P^2$ is partitionable.

\mathbb{RP}^2 is partitionable

1 Decomposition

Decomposition of $\mathbb{R}P^2$ into a Möbius strip and a disk.

$\mathbb{R}P^2$ is partitionable

Decomposition

Decomposition of $\mathbb{R}\mathsf{P}^2$ into a Möbius strip and a disk.

2 Reconstruction

$$\left. \begin{array}{c} \Delta_D \\ (\Delta_M, \Delta_D \cap \Delta_M) \end{array} \right\} \ \ \text{partitionable}$$

$\mathbb{R}P^2$ is partitionable

Decomposition

Decomposition of $\mathbb{R}\mathsf{P}^2$ into a Möbius strip and a disk.

2 Reconstruction

$$\begin{array}{c} \Delta_D \\ (\Delta_M, \Delta_D \cap \Delta_M) \end{array} \} \ \ \text{partitionable} \xrightarrow[\text{SHELLING-LIKE}]{} \Delta_{\mathbb{R}P^2} \ \text{partitionable,}$$

Dunce hat Z

The **dunce hat** Z as a CW-complex (ZEEMAN, 1964) and one of its triangulations.

Dunce hat Z

The **dunce hat** Z as a CW-complex (ZEEMAN, 1964) and one of its triangulations.

THEOREM (SG, 2020+)

Any triangulation of Z is partitionable.

Dunce hat Z

PROOF OUTLINE:

- \circ Start with a simplicial triangulation Δ_Z of the dunce hat Z.
- Decompose Δ_Z into two complexes subcomplexes Λ and Σ .
- \circ Shell \land . Cut and fold Σ with the FOLDING OPERATION
- \circ Reconstruct Δ_Z by applying the Shelling-like Lemma

The **dunce nat** \angle as a CW-complex (ZEEMAN, 1964) and one of its triangulations.

THEOREM (SG. 2020+)

Any triangulation of Z is partitionable

Z is partitionable

Decomposition of Z into the complexes Λ (yellow) and Σ (green).

