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Partitionability

A complex and its face poset. Source: (Duval, Klivans and Martin, 2017)

Partitionability
We want to partition the face poset of a complex ∆ into intervals

[τ, σ ] := {ρ ∈ ∆ | τ ⊆ ρ ⊆ σ, σ is a facet in ∆}.
If that partition exists, then ∆ is partitionable.
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A relative complex and its face poset. Source: (Duval, Klivans and Martin, 2017)
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Why does partitionability matter?

1 Face counting problems

2 Computational issues

3 Interplay between properties

It was believed that
Cohen–Macaulay =⇒ partitionable. (Stanley, 1979), (Garsia, 1980)

However
Cohen–Macaulay 6=⇒ partitionable. (Duval et al., 2016)

What can we say about 2-dim complexes?
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In our work...

1 We devised simple tools to get partitioning schemes of a
(relative) complex in terms of constituent (relative)
subcomplexes.

2 We show that the following 2-dim spaces are partitionable:

◦ The open Möbius strip.

◦ The real projective plane.
◦ The dunce hat.
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Toolbox

Strategy Divide-and-conquer-ish

The “tearing-apart-then-gluing-back” method

◦ Divide the complex into partitionable subcomplexes.

◦ Glue back.

Our gluing tools

Name Input (# R.S.C.)* Preserves shellability

Shelling-Like Lemma 2 True
folding operation 1 False

* Relative simplicial complexes

Facts on disks (a.k.a. 2-balls)
◦ (Relative) shellability =⇒ (Relative) partitionability.

◦ (Relative) disks (+conditions in the boundary) are shellable.
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Möbius strip

Theorem (SG, 2020+)
Any triangulation of the Möbius strip M is partitionable relative to
its own boundary.

Proof outline:

◦ Start with a simplicial triangulation ∆M of M.
◦ Cut (∆M,∆∂M) and get a partitioning scheme.
◦ Glue back with the Folding operation .
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Real projective plane

The projective plane RP2 as a CW-complex and one of its triangulations.
Theorem (SG, 2020+)

Any triangulation of RP2 is partitionable.

Proof outline:

◦ Start with a simplicial triangulation ∆RP2 of RP2.
◦ Decompose ∆RP2 into two partitionable subcomplexes.
◦ Reconstruct ∆RP2 by applying the Shelling-like Lemma .
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RP2 is partitionable
1 Decomposition

Decomposition of RP2 into a Möbius strip and a disk.

2 Reconstruction∆D(∆M,∆D ∩ ∆M)
}

partitionable ======⇒
Shelling-like

Lemma

∆RP2 partitionable,



RP2 is partitionable
1 Decomposition

Decomposition of RP2 into a Möbius strip and a disk.
2 Reconstruction∆D(∆M,∆D ∩ ∆M)

}
partitionable

======⇒
Shelling-like

Lemma

∆RP2 partitionable,



RP2 is partitionable
1 Decomposition

Decomposition of RP2 into a Möbius strip and a disk.
2 Reconstruction∆D(∆M,∆D ∩ ∆M)

}
partitionable ======⇒

Shelling-like
Lemma

∆RP2 partitionable,



Dunce hat Z

The dunce hat Z as a CW-complex (Zeeman, 1964) and one of its triangulations.

Theorem (SG, 2020+)
Any triangulation of Z is partitionable.

Proof outline:

◦ Start with a simplicial triangulation ∆Z of the dunce hat Z.
◦ Decompose ∆Z into two complexes subcomplexes Λ and Σ.
◦ Shell Λ. Cut and fold Σ with the Folding Operation .

◦ Reconstruct ∆Z by applying the Shelling-like Lemma .



Dunce hat Z

The dunce hat Z as a CW-complex (Zeeman, 1964) and one of its triangulations.
Theorem (SG, 2020+)
Any triangulation of Z is partitionable.

Proof outline:

◦ Start with a simplicial triangulation ∆Z of the dunce hat Z.
◦ Decompose ∆Z into two complexes subcomplexes Λ and Σ.
◦ Shell Λ. Cut and fold Σ with the Folding Operation .

◦ Reconstruct ∆Z by applying the Shelling-like Lemma .



Dunce hat Z

The dunce hat Z as a CW-complex (Zeeman, 1964) and one of its triangulations.
Theorem (SG, 2020+)
Any triangulation of Z is partitionable.

Proof outline:

◦ Start with a simplicial triangulation ∆Z of the dunce hat Z.
◦ Decompose ∆Z into two complexes subcomplexes Λ and Σ.
◦ Shell Λ. Cut and fold Σ with the Folding Operation .

◦ Reconstruct ∆Z by applying the Shelling-like Lemma .



Z is partitionable

Decomposition of Z into the complexes Λ (yellow) and Σ (green).



Thank you


