Stokes Equations In An Infinite Strip With a Hole And transmission Conditions

Olivier Bodart

Institut Camille Jordan, Université Jean Monnet

olivier.bodart@univ-st-etienne.fr

Let $0 < a_i < b_i < l_i$, i = 1, 2 and $S = (0, l_1) \times (0, l_2)$, $\widetilde{S} = (a_1, b_1) \times (a_2, b_2)$. Let also $Y \subset S \times] - 1, 1[$ be a convex open set with smooth boundary ∂Y . Let Λ be the infinite vertical domain in \mathbf{R}^3 defined by

$$\Lambda = (S \times] - \infty, +\infty[) \setminus \overline{Y}.$$

We define the following subsets in Λ :

$$\begin{split} \Lambda_{-} &= \left\{ y = (y', y_3) \in \mathbf{R}^3 \; ; \; y' \in S \; , \; y_3 < -1 \right\}, \\ \Omega &= \left(S \times] - \infty, +\infty [\right) \setminus \overline{Y}, \\ \Lambda_{+} &= \left\{ y = (y', y_3) \in \mathbf{R}^3 \; ; \; y' \in \widetilde{S} \; , \; y_3 > 1 \right\}, \\ \Gamma_{-} &= \left\{ y = (y', y_3) \in \mathbf{R}^3 \; ; \; y' \in S \; , \; y_3 = -1 \right\}, \\ \Gamma_{-} &= \left\{ y = (y', y_3) \in \mathbf{R}^3 \; ; \; y' \in S \; , \; y_3 = 1 \right\}, \end{split}$$

where we denoted $y' = (y_1, y_2)$. Then we can decompose Λ as follows:

$$\Lambda = \Lambda_{-} \cup \overline{\Omega} \cup \Lambda_{+}.$$

We seek a couple (u, p) defined in Λ as

$$u(x) = \begin{cases} u_{-}(x), & x \in \Lambda_{-} \\ u_{0}(x), & x \in \Omega \\ u_{+}(x), & x \in \Lambda_{+} \end{cases} \quad p(x) = \begin{cases} p_{-}(x), & x \in \Lambda_{-} \\ p_{0}(x), & x \in \Omega \\ p_{+}(x), & x \in \Lambda_{+} \end{cases}$$

where the pairs (y_{-}, p_{-}) (y_{0}, p_{0}) and (y_{+}, p_{+}) satisfy the following system

where the pairs (u_{-}, p_{-}) , (u_{0}, p_{0}) and (u_{+}, p_{+}) satisfy the following system

$$(S) \begin{cases} -\nu \Delta u_{\pm} + \nabla p_{\pm} &= 0 & \text{in } \Lambda_{\pm}, \\ -\nu \Delta u_0 + \nabla p_0 &= 0 & \text{in } \Omega, \\ \nabla \cdot u_{\pm} &= 0 & \text{in } \Lambda_{\pm}, \\ \nabla \cdot u_0 &= 0 & \text{in } \Omega, \\ u_0 &= 0 & \text{on } \partial Y \\ \sigma(u_{-}, p_{-}) \cdot n &= \sigma(u_0, p_0) \cdot n + \nu g & \text{on } \Gamma_{-}, \\ \sigma(u_0, p_0) \cdot n &= \sigma(u_{+}, p_{+}) \cdot n + \nu h & \text{on } \Gamma_{+}, \end{cases}$$

with (u_{-}, p_{-}) and (u_{+}, p_{+}) are periodic with respect to y_1 and y_2 , with periods l_1 and l_2 . Here $\nu > 0$ is the viscosity parameter and n is the unit normal vector on Γ_{-} (resp. Γ_{+}) external to Λ_{-} (resp. Ω), i.e. n = (0, 0, 1). The vector functions g = (g', 0) and h = (h', 0) are supposed to be given in suitable function spaces.

We study the existence and uniqueness of a solution (u, p) to the system (S) which decays exponentially fast, as well as all its derivatives, as $y_3 \to \pm \infty$. The main result of this work is the following:

The main result of this work is the following:

Theorem: Suppose that

$$g \in (H_{per}^{-1/2}(\Gamma_{-}))^3, \quad g_3 = 0, \quad h \in (H_{per}^{-1/2}(\Gamma_{+}))^3, \quad h_3 = 0.$$

There exists a unique solution of the system (S) (up to an additive constant for the pressures) satisfying

$$u \in \left(H^1_{per,loc}(\Lambda)\right)^3, \ \nabla u_- \in \left(L^2(\Lambda)\right)^9, \ p_- \in L^2_{per,loc}(\Lambda).$$

Moreover, let $\delta > 1$ and let β_{\pm} be the mean of the velocity over cross sections of Λ_{\pm} , i.e.

$$\beta_{-} = \frac{1}{|S|} \int_{S} u_{-}(y', -\delta) \, dy', \quad \beta_{+} = \frac{1}{|S|} \int_{S} u_{+}(y', \delta) \, dy'.$$

The following decay estimates hold:

• for any $\alpha \in \mathbf{N}^3$, $y' \in S$, $y_3 \leq -\delta$,

$$|\partial^{\alpha}(u-\beta_{-})(y',y_{3})|+|\partial^{\alpha}p(y',y_{3})| \leq C(\delta,\alpha) \|g\|_{(H^{-1/2}(\Gamma_{-}))^{3}} \exp(c y_{3});$$

• for any $\alpha \in \mathbf{N}^3$, $y' \in \widetilde{S}$, $y_3 \ge \delta$,

$$|\partial^{\alpha}(u-\beta_{+})| + |\partial^{\alpha}p(y',y_{3})| \le C(\delta,\alpha) \|h\|_{(H^{-1/2}(\Gamma_{+}))^{3}} \exp(-cy_{3}),$$

where c > 0 is a constant independent of the data and $C(\delta, \alpha)$ is a constant depending only on δ and α . The subscript "per" denotes periodic Sobolev Spaces.

This work answers a question addressed to the author by G. Panasenko. It will be be used in a forthcoming work to build boundary layers correctors in an homogenization framework.