Dual incidences and *t*-designs in elementary abelian groups

Kristijan Tabak Rochester Institute of Technology - Croatia kxtcad@rit.edu

Let q be a prime and E_{q^n} is an elementary abelian group of order q^n . Let \mathcal{H} be a collection of some subgroups of E_{q^n} of order q^k . A pair (E_{q^n}, \mathcal{H}) is a $t - (n, k, \lambda)_q$ design if every subgroup of E_{q^n} of order q^t is contained in exactly λ groups from \mathcal{H} . This definition corresponds to the classical definition of a q-analog design.

We introduce two incidence structures denoted by \mathcal{D}_{max} and \mathcal{D}_{min} with \mathcal{H} as set of points. The blocks of \mathcal{D}_{max} are labeled by maximal subgroups of E_{q^n} , while the blocks of \mathcal{D}_{min} are labeled by groups of order q.

We fully describe a duality between \mathcal{D}_{max} and \mathcal{D}_{min} by proving some identities over group rings. The proven results are used to provide a full description of incidence matrices of \mathcal{D}_{max} and \mathcal{D}_{min} and their mutual dependence.